
Idle Thread Talk

Gabriel Somlo

2

Consider the humble 410 idle thread

int main()

{

 while (1) {

 } // a.k.a. for (;;);

}

3

Consider the humble 410 idle thread

FOO:

 jmp FOO

● Funny, I expected at least a NOP in there
● But obviously that wasn't necessary

● Run around in circles until scheduler gets
invoked, and may pick something better

4

Let's run P3 kernel on QEMU-KVM

● 'qemu' process uses 100% of a host core

● 'idle' thread is a LOT less idle than one
might expect...

5

Let's look through the P3 handout

● On page 31, it casually mentions:
● “... Or, you may choose to hand-craft an

idle program w/o reference to an
executable file.”

● Why on ${Deity}'s Green Earth would I
want to do that for ?

● And what's this about “without ... an
executable file” ?

6

How about a less hyperactive idle ?

FOO:

 hlt

 jmp FOO
● The CPU core actually stops for a while
● Great for saving energy
● On QEMU, host CPU drops below 10%
● Interrupts wake the core, same chance to

schedule something better as before

7

Why no executable file ?

FOO:

 hlt

 jmp FOO
● HLT is a privileged instruction
● New idle thread can never drop into user

mode
● That's OK, saves us a few userspace

pages (.txt, stack, etc.)

8

So we're done, right ?

● Idle thread now heavily sedated

● But what about SMP ?
● Sadly, I missed the SMP P4 by one

semester :)

● What if a core can “find work” for another ?

9

Reaction time vs. energy efficiency
● With spinning idle, we can

FOO:

 <look_for_something_useful>

 jne FOO

 <switch_to_something_useful>
● With HLT-based idle, work accumulates

● Until an interrupt wakes the sleeping core
● Could be an IPI from another (awake) core
● Way slower than spinning + mem. access

10

Reaction time vs. energy efficiency

● Linux used to default to HLT (see
arch/x86/kernel/process.c)

● Spinning available as option with SMP
(poll_idle)

● Burning energy is the price for eternal
vigilance... Or is it ?

● If only we had a compromise solution
● Stay mellow, save energy
● Wake without delay when needed

11

Enter MONITOR & MWAIT

● MONITOR: start watching a (write-back)
memory location for writes

● MWAIT: turn off core until “something”
writes to MONITORed memory location

● Originally intended for thread synch
● Memory may hold some kind of lock

● Reminds me a bit of deschedule() and
make_runnable() from 410...

12

MONITOR
void __monitor(const void *memaddr,

 unsigned ext, unsigned hint);

__monitor:

 mov <memaddr>, %rax

 mov <ext>, %ecx // leave 0

 mov <hint>, %edx // leave 0

 monitor

// a write to <memaddr> will “trigger” the

// “armed” monitoring hardware

13

MWAIT

void __mwait(unsigned ext, unsigned hint);

__mwait:

 mov <ext>, %ecx // ignore IF==0

 mov <hint>, %eax // C-state > C1

 mwait

// sleep while memory monitor is “armed”

// wake when “triggered”, or on interrupt

// act as NOP when monitor not armed

14

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

 __monitor(flag, 0, 0);

 if (*flag == 0)

 __mwait(0, 0);

}

waker-upper thread
*flag = 1;

// while loop never entered

15

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

 __monitor(flag, 0, 0);

 if (*flag == 0)

 __mwait(0, 0);

}

waker-upper thread

*flag = 1;

// arming after change

// luckily, we check again

// before going to sleep

16

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

 __monitor(flag, 0, 0);

 if (*flag == 0)

 __mwait(0, 0);

}

waker-upper thread

// trigger right after arming

*flag = 1;

// we don't mwait, but it

// would have been a NOP

// regardless

17

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

 __monitor(flag, 0, 0);

 if (*flag == 0)

 __mwait(0, 0);

}

waker-upper thread

// trigger before mwait

*flag = 1;

// mwait acts as NOP

18

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

 __monitor(flag, 0, 0);

 if (*flag == 0)

 __mwait(0, 0);

}

waker-upper thread

// first sleep, then trigger

*flag = 1;

// canonical use case

19

How do MONITOR & MWAIT work ?

● Why the while() loop in the example ?
● MWAIT may also wake up when one looks

at it funny

● Based on cache coherence protocol
(wikipedia: MESI, also expects write-back)

● Armed on valid cache line(s)
● Triggered when cache line(s) invalidated
● Although size of monitored area is NOT

equal (or even related) to size of cache line

20

How do MONITOR & MWAIT work ?
● CPU (via CPUID) will report size of

monitored memory area
● Intel docs mention “cache coherence line”

a few times, all on the same page (of 900+)
● No definition, though
● Obviously dependent on L1 coherence

protocol implementation
● Suspecting relationship to L2 line size

● On single CPU, MWAIT behaves like HALT
(modulo DMA, which causes it to wake up)

21

Can we use MONITOR & MWAIT ?

● Per docs, one must check CPUID for
availability before use !

● Linux: checks CPUID, and prefers MWAIT
for its idle thread (over HLT or poll_idle)

● Windows: probably, but who cares ;)
● OS X: blatantly calls MONITOR & MWAIT

without checking CPUID !
● Because it knows they're there !
● No MWAIT ? “Just Buy a Mac! (tm)”

22

Emulate MONITOR / MWAIT in KVM

● Start with a closer look at VMX (or SVM)
● VMCS: the VM “control structure”

● Very fine-grained control of VM behavior,
way beyond Popek-Goldberg

● Per-VM list of “Things Which Will Trap”
(or “cause VM exits”, in Intel-speak)

● Some 20+ instructions are on the list, and
may be optionally configured to cause a
VM exit, or not

● MONITOR & MWAIT are on the list

23

KVM vs. MONITOR & MWAIT

● When KVM initializes a VMCS, it asks for
MONITOR & MWAIT to cause VM exits

● Current emulation handler for both is
handle_invalid_op()

● This causes an “invalid opcode” fault as
observed by the guest

● The guest virtual CPU's CPUID never
claimed to support them

● But OS X doesn't check CPUID !

24

KVM vs. MONITOR & MWAIT

● Existing KVM patch for OS X turns off
VMCS flags asking for VM exit on
MONITOR and MWAIT

● Leave guest to run MONITOR & MWAIT
● Assume architecturally same as NOP
● Assume enough noise to keep MWAIT

awake (theoretically a safety concern !)
– On single-vcpu QEMU-KVM, should ≈ HLT
– Burning 100% host CPU, meaning ≈ NOP !
– At the mercy of underlying h/w details !

25

KVM vs. MONITOR & MWAIT

● A “better” KVM patch (tried and working)
● Leave VM exit flags on
● Modify emulation handler instead
● Currently using handle_pause()

● PAUSE is “NOP for spin-wait loops”
● Prevents false-positive “memory order

violation detection” in spin-wait loops
● May add a delay vs. “true” NOP
● handle_pause() tries to yield to other vcpu

26

KVM vs. MONITOR & MWAIT

● Now I have MONITOR & MWAIT emulation
● MWAIT can do one of three things:

● PAUSE (MONITOR as well)
– safe & easy (functional patch already done)
– downside is hyperactive idle

● HLT (MONITOR remains ≈ PAUSE)
– medium-range trickery (see next slide)

● True emulation
– probably hard
– must trap memory writes by other VCPUs !

27

OS X vs. MONITOR & MWAIT

● Only one function in OS X uses them
● Must be the idle thread !
● From all available VCPUs
● IOPL / CPL is 0 (kernel mode)

● IF is 0 (interrupts disabled)
● No wonder emulating as HLT hangs !
● MWAIT %ecx is 1 (wake on int if IF=0)

– So it works on single-CPU systems

● Try: “Modified HLT + always wake on INT” !

28

Questions, Comments ?

● Thanks !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

