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Consider the humble 410 idle thread

int main()

{

        while (1) {

        }                 // a.k.a. for (;;);

}
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Consider the humble 410 idle thread

FOO:

                 jmp FOO

● Funny, I expected at least a NOP in there
● But obviously that wasn't necessary

● Run around in circles until scheduler gets 
invoked, and may pick something better
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Let's run P3 kernel on QEMU-KVM

● 'qemu' process uses 100% of a host core

● 'idle' thread is a LOT less idle than one 
might expect...
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Let's look through the P3 handout

● On page 31, it casually mentions:
● “... Or, you may choose to hand-craft an 

idle program w/o reference to an 
executable file.”

● Why on ${Deity}'s Green Earth would I 
want to do that for ?

● And what's this about “without ... an 
executable file” ?
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How about a less hyperactive idle ?

FOO:

                 hlt

                 jmp FOO
● The CPU core actually stops for a while
● Great for saving energy
● On QEMU, host CPU drops below 10%
● Interrupts wake the core, same chance to 

schedule something better as before
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Why no executable file ?

FOO:

                 hlt

                 jmp FOO
● HLT is a privileged instruction
● New idle thread can never drop into user 

mode
● That's OK, saves us a few userspace 

pages (.txt, stack, etc.)
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So we're done, right ?

● Idle thread now heavily sedated

● But what about SMP ?
● Sadly, I missed the SMP P4 by one 

semester :)

● What if a core can “find work” for another ?
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Reaction time vs. energy efficiency
● With spinning idle, we can

FOO:

                 <look_for_something_useful>

                 jne FOO

                 <switch_to_something_useful>
● With HLT-based idle, work accumulates

● Until an interrupt wakes the sleeping core
● Could be an IPI from another (awake) core
● Way slower than spinning + mem. access
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Reaction time vs. energy efficiency

● Linux used to default to HLT (see 
arch/x86/kernel/process.c)

● Spinning available as option with SMP 
(poll_idle)

● Burning energy is the price for eternal 
vigilance... Or is it ?

● If only we had a compromise solution
● Stay mellow, save energy
● Wake without delay when needed
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Enter MONITOR & MWAIT

● MONITOR: start watching a (write-back) 
memory location for writes

● MWAIT: turn off core until “something” 
writes to MONITORed memory location

● Originally intended for thread synch
● Memory may hold some kind of lock

● Reminds me a bit of deschedule() and 
make_runnable() from 410...



12

MONITOR
void __monitor(const void *memaddr,

                       unsigned ext, unsigned hint);

__monitor:

           mov  <memaddr>, %rax

           mov <ext>,             %ecx  // leave 0

           mov <hint>,            %edx  // leave 0

           monitor

// a write to <memaddr> will “trigger” the

// “armed” monitoring hardware
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MWAIT

void __mwait(unsigned ext, unsigned hint);

__mwait:

           mov <ext>,  %ecx   // ignore IF==0

           mov <hint>, %eax   // C-state > C1

           mwait

// sleep while memory monitor is “armed”

// wake when “triggered”, or on interrupt

// act as NOP when monitor not armed
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Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

      __monitor(flag, 0, 0);

      if (*flag == 0)

            __mwait(0, 0);

}

waker-upper thread
*flag = 1;

// while loop never entered



15

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

      __monitor(flag, 0, 0);

      if (*flag == 0)

            __mwait(0, 0);

}

waker-upper thread

*flag = 1;

// arming after change

// luckily, we check again

// before going to sleep
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Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

      __monitor(flag, 0, 0);

      if (*flag == 0)

            __mwait(0, 0);

}

waker-upper thread

// trigger right after arming

*flag = 1;

// we don't mwait, but it

// would have been a NOP

// regardless
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Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

      __monitor(flag, 0, 0);

      if (*flag == 0)

            __mwait(0, 0);

}

waker-upper thread

// trigger before mwait

*flag = 1;

// mwait acts as NOP



18

Using MONITOR & MWAIT

sleeper thread

while (*flag == 0) {

      __monitor(flag, 0, 0);

      if (*flag == 0)

            __mwait(0, 0);

}

waker-upper thread

// first sleep, then trigger

*flag = 1;

// canonical use case



19

How do MONITOR & MWAIT work ?

● Why the while() loop in the example ?
● MWAIT may also wake up when one looks 

at it funny

● Based on cache coherence protocol 
(wikipedia: MESI, also expects write-back)

● Armed on valid cache line(s)
● Triggered when cache line(s) invalidated
● Although size of monitored area is NOT 

equal (or even related) to size of cache line
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How do MONITOR & MWAIT work ?
● CPU (via CPUID) will report size of 

monitored memory area
● Intel docs mention “cache coherence line” 

a few times, all on the same page (of 900+)
● No definition, though
● Obviously dependent on L1 coherence 

protocol implementation
● Suspecting relationship to L2 line size

● On single CPU, MWAIT behaves like HALT 
(modulo DMA, which causes it to wake up)
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Can we use MONITOR & MWAIT ?

● Per docs, one must check CPUID for 
availability before use !

● Linux: checks CPUID, and prefers MWAIT 
for its idle thread (over HLT or poll_idle)

● Windows: probably, but who cares ;)
● OS X: blatantly calls MONITOR & MWAIT 

without checking CPUID !
● Because it knows they're there !
● No MWAIT ?     “Just Buy a Mac! (tm)”
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Emulate MONITOR / MWAIT in KVM

● Start with a closer look at VMX (or SVM)
● VMCS: the VM “control structure”

● Very fine-grained control of VM behavior, 
way beyond Popek-Goldberg

● Per-VM list of “Things Which Will Trap”   
(or “cause VM exits”, in Intel-speak)

● Some 20+ instructions are on the list, and 
may be optionally configured to cause a 
VM exit, or not

● MONITOR & MWAIT are on the list
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KVM vs. MONITOR & MWAIT

● When KVM initializes a VMCS, it asks for 
MONITOR & MWAIT to cause VM exits

● Current emulation handler for both is 
handle_invalid_op()

● This causes an “invalid opcode” fault as 
observed by the guest

● The guest virtual CPU's CPUID never 
claimed to support them

● But OS X doesn't check CPUID !
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KVM vs. MONITOR & MWAIT

● Existing KVM patch for OS X turns off 
VMCS flags asking for VM exit on 
MONITOR and MWAIT

● Leave guest to run MONITOR & MWAIT
● Assume architecturally same as NOP
● Assume enough noise to keep MWAIT 

awake (theoretically a safety concern !)
– On single-vcpu QEMU-KVM, should ≈ HLT
– Burning 100% host CPU, meaning ≈ NOP !
– At the mercy of underlying h/w details !
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KVM vs. MONITOR & MWAIT

● A “better” KVM patch (tried and working)
● Leave VM exit flags on
● Modify emulation handler instead
● Currently using handle_pause()

● PAUSE is “NOP for spin-wait loops”
● Prevents false-positive “memory order 

violation detection” in spin-wait loops
● May add a delay vs. “true” NOP
● handle_pause() tries to yield to other vcpu
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KVM vs. MONITOR & MWAIT

● Now I have MONITOR & MWAIT emulation
● MWAIT can do one of three things:

● PAUSE (MONITOR as well)
– safe & easy (functional patch already done)
– downside is hyperactive idle

● HLT (MONITOR remains ≈ PAUSE)
– medium-range trickery (see next slide)

● True emulation
– probably hard
– must trap memory writes by other VCPUs !
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OS X vs. MONITOR & MWAIT

● Only one function in OS X uses them
● Must be the idle thread !
● From all available VCPUs
● IOPL / CPL is 0 (kernel mode)

● IF is 0 (interrupts disabled)
● No wonder emulating as HLT hangs !
● MWAIT %ecx is 1 (wake on int if IF=0)

– So it works on single-CPU systems

● Try: “Modified HLT + always wake on INT” !
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Questions, Comments ?

● Thanks !
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