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Abstract—Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods

are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue

making effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear

programming (ILP) formulations for finding the most parsimonious phylogenetic tree from a set of binary variation data. One method

uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has,

however, proven to be extremely efficient in practice on data sets that are well beyond the reach of the available provably efficient

methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times

competitive with fast heuristics that cannot guarantee optimality. An alternative formulation establishes that the problem can be solved

with a polynomial-sized ILP. We further present a Web server that was developed based on the exponential-sized ILP that performs

fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human

genome.

Index Terms—Graph algorithms, trees, biology and genetics, linear programming.
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1 INTRODUCTION

PHYLOGENY construction, or the inference of evolutionary
trees from some form of population variation data, is

one of the oldest most intensively studied problems in
computational biology. Yet, it remains far from being
solved. The problem has become particularly acute for the
special case of intraspecies phylogenetics, or tokogenetics,
in which we wish to build evolutionary trees among
individuals in a single species. In part, the persistence of
the problem reflects its basic computational difficulty. The
problem in most reasonable variants is formally NP-hard
[1] and thus has no known efficient solution. The continuing
relevance of phylogeny inference algorithms also stems
from the fact that the data sets that will be solved have been
getting increasingly large in both population sizes and the
numbers of variations examined. The genomic era has led to
the identification of vast numbers of variant sites for human
populations [2], [3], as well as various other complex
eukaryotic organisms [4], [5], [6]. Large-scale resequencing
efforts are now under way to use such sites for studying
population histories with precision that has never been
previously possible [7]. Even more vast data sets are

available for microbial and viral genomes. As a result,
methods that were adequate even a few years ago may no
longer be suitable today.

In this work, we focus on the inference of intraspecies
phylogenies on binary genetic variation data, which is of
particular practical importance because of the large amount
of binary SNP data that are now available. The binary
intraspecies phylogeny problem has traditionally been
modeled by the minimum Steiner tree problem on binary
sequences, which is a classic NP-hard problem [1]. Some
special cases of the problem are efficiently solvable, most
notably the case of perfect phylogenies, in which each variant
site mutates only once within the optimal tree [8], [9], [10].
However, real data will not, in general, conform to the
perfect phylogeny assumption. The standard, in practice, is
the use of sophisticated heuristics that will always produce
a tree but cannot guarantee optimality (e.g., [11], [12], and
[13]). Some theoretical advances have recently been made in
the efficient solution of near-perfect phylogenies, i.e., those
that deviate only by a fixed amount from the assumption of
perfection [14], [15], [16], [17]. These methods can provide
provably efficient solutions in many instances but still
struggle with some moderate-sized data sets in practice. As
a result, some recent attention has turned to integer linear
programming (ILP) methods [18]. ILPs provide provably
optimal solutions, and while they do not provide guaran-
teed runtime bounds, they may have practical runtimes that
are far better than those of the provably efficient methods.

In this work, we develop two ILP formulations for
solving the most parsimonious phylogenetic tree problem
on binary sequences. These methods find provably optimal
trees from real binary sequence data, much like the prior
theoretical methods and unlike the prevailing heuristic
methods. The practical runtime is, however, substantially
lower than that of the existing provably efficient theoretical
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methods, allowing us to tackle larger and more difficult
data sets. In what follows, we formalize the problem solved,
present our methods, and establish their practical value on
a selection of real variation data sets. We further document
a Web server that provides open access to this ILP method
and serves as a front end to a database of local phylogenies
inferred throughout the autosomal human genome. This
work provides a platform for more extensive empirical
studies of variation patterns on genomic scales than what
were previously possible and may also help in laying the
groundwork for more sophisticated optimization methods
that will likely be needed in the future.

2 DEFINITIONS

We will assume that the input to the problem is a
haplotype matrix H, where each row corresponds to a
haploid sequence of a taxon, and each column corre-
sponds to a binary marker such as a Single Nucleotide
Polymorphism (SNP). The input H can therefore be
viewed as an n�m binary matrix.

Definition 1. A phylogeny T for input I is a tree where each
vertex represents a binary string in f0; 1gm and all the input
sequences are represented in T . The length of T is the sum of
the Hamming distances between all the adjacent vertices. The
problem of constructing the most parsimonious (optimal)
phylogeny is to find the phylogeny T � such that lengthðT �Þ is
minimized.

Definition 2. A phylogeny T for input I with m varying sites is
q-near-perfect (or q-imperfect) if lengthðT Þ ¼ mþ q.

The problem of reconstructing phylogenies is closely
related to the Steiner tree problem, which is a well-studied
problem in combinatorial optimization (for a survey and
applications, see [19] and [20]). Given a graph G ¼ ðV ;EÞ
and a set of terminals in V , the problem is to find the
smallest subgraph of G such that there is a path between
any pair of terminals.

The problem can be related to the phylogeny
construction problem as follows: Let graph G be the
m-cube defined on vertices V ¼ f0; 1gm and edges
E ¼ fðu; vÞ 2 V � V :

P
i jui � vij ¼ 1g. The vertices are

binary strings of length m and an edge connects two
vertices if and only if their Hamming distance is 1. Let
VT � V be the set of species corresponding to the rows
of input matrix H. The maximum parsimony problem is
then equivalent to the minimum Steiner tree problem on
underlying graph G with terminal vertices VT . Even in
this restricted setting, the Steiner tree problem has been
shown to be NP-complete [21]. However, the phylogeny
reconstruction problem when the optimal phylogeny is
q-near-perfect can be solved in time polynomial in n and
m when q ¼ Oðlogðpolyðn;mÞÞÞ [17]. If q is very large,
though, such algorithms do not perform well. Moreover,
these algorithms use a subroutine that solves the Steiner
tree problem on m-cubes when the dimensions are small.
Therefore, improving the existing solutions for the
general problem will also improve the runtime for the
restricted cases.

3 PREPROCESSING

We now describe a set of preprocessing steps that can
substantially reduce the size of the input data without
affecting the final output.

3.1 Reducing the Set of Possible Steiner Vertices

The complexity of solving the Steiner tree problem in
general graphs is a consequence of the exponentially many
possible subsets that can be chosen as the final set of Steiner
vertices in the most parsimonious phylogeny. Therefore, an
important component of any computational solution to the
Steiner tree problem is to eliminate vertices that cannot be
present in any optimal tree. We describe an approach that
has been used to eliminate such vertices when the under-
lying graph is the m-cube.

For input graph H and column c of H, the split cð0Þjcð1Þ
defined by c is a partition of the taxa into two sets, where
cð0Þ is the set of taxa with value 0 in column c, and cð1Þ is
the set of taxa with value 1 in column c. This forms a
partition of the taxa, since cð0Þ [ cð1Þ is the set of all taxa,
and cð0Þ \ cð1Þ is empty. Each of cð0Þ and cð1Þ is called a
block of c. Buneman used the blocks of binary taxa to
introduce a graph, now called the Buneman graph BðHÞ,
which captures structural properties of the optimal phylo-
geny [22]. We will explain the generalization of this graph
according to Barthélemy [23]. Each vertex of the Buneman
graph is an m-tuple of blocks ½c1ði1Þ; c2ði2Þ; . . . cmðimÞ� (ij ¼ 0
or 1 for each 1 � j � m), with one block for each column,
such that each pair of blocks has nonempty intersection
(cjðijÞ \ ckðikÞ 6¼ ; for all 1 � j, k � m). There is an edge
between two vertices in BðHÞ if and only if they differ in
exactly one block. Buneman graphs are very useful because
of the following theorem.

Theorem 3.1 [11], [24]. For input matrix H, let T �H denote the
optimal phylogeny on H and let BðHÞ denote the Buneman
graph on H. If matrix H has binary values, then every optimal
phylogeny T �H is a subgraph of BðHÞ.

Using the above theorem, our problem is now reduced to
constructing the Buneman graph on input H and solving
our problem on the underlying graph BðHÞ. Ideally, we
would like to find the Buneman graph in time OðpolyðkÞÞ,
where k is the number of vertices in the Buneman graph.
Note that this is output sensitive. We first state the
following theorem, which we will use to show that the
Buneman graph can be generated efficiently.

Theorem 3.2 [24]. The Buneman graph BðHÞ is connected for
any input matrix H in which all columns contain both states
0, 1 and all pairs of columns are distinct.

To generate the graph BðHÞ, let i1; i2; . . . im be the first
taxon in H. Then, v ¼ ½c1ði1Þ; c2ði2Þ; . . . cmðimÞ� is a vertex of
BðHÞ. Now, there are several ways of generating the graph
BðHÞ. The pseudocode in Fig. 1 begins with VT , i.e., the set
of vertices of the BðHÞ corresponding to H. The algorithm
then iteratively selects a vertex v and enumerates all the
neighbors. For each vertex, the algorithm checks if it obeys
the conditions of the Buneman graph, and if it does so, it is
added to �, and we recurse it.
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Lemma 3.3. The algorithm in Fig. 1 finds the Buneman graph
BðHÞ for the given input in time OðkmÞ, where k is the
number of vertices in BðHÞ.

Proof. The algorithm begins with a vertex v 2 BðHÞ and
determines BðHÞ in the depth-first search order. By
Theorem 3.2, the algorithm will visit all vertices in BðHÞ.
Step 1a iterates over all m possible neighbors of vertex v
in the m-cube, which takes time OðmÞ. For each vertex
v 2 BðHÞ, function bunemanNeighbor is called using v
exactly once. Therefore, if there are k vertices in BðHÞ,
then the time spent to discover all of BðHÞ is OðkmÞ.
Note that instead of using depth-first search, we could
use breadth-first search or any other traversal order. tu

3.2 Decomposition into Smaller Problems

In addition to allowing us to reduce the set of possible
Steiner vertices, we show how Theorem 3.1 also allows us to
decompose the problem into independent subproblems.

Definition 3 [25]. A pair of columns i, j conflict if the matrix H
restricted to i, j contains all four gametes (0, 0), (0, 1), (1, 0),
and (1, 1). Equivalently, the columns conflict if the projection
of H onto dimensions i, j contains all four points of the square.

For input I, the structure of the conflicts of I provides
important information for building optimal phylogenies for
I. For example, it is well known that a perfect phylogeny
exists if and only if no pair of columns conflict [9], [24]. In
order to represent the conflicts of H, we construct the
conflict graph G, where the vertices of G are columns of H,
and the edges of G correspond to pairs of conflicting
columns [26]. The following theorem has been stated
previously without proof [26]. For the sake of completeness,
we provide an explicit proof using Theorem 3.1 and ideas
from Gusfield and Bansal [26]. We denote the matrix H
restricted to set of columns C as CðHÞ.
Theorem 3.4. Let � denote the set of nontrivial connected

components of conflict graph G and let Visol denote the set of
isolated vertices of G. Then, any optimal Steiner tree on H is a
union of optimal Steiner trees on the separate components of G
and lengthðT �HÞ ¼ jVisolj þ

P
C2� lengthðT �CðHÞÞ.

Proof. We use the fact that the optimal phylogeny is
contained in the Buneman graph and show that the
connected components impose restrictions on the set of
possible edges in the Buneman graph. For two columns c
and c0, the block cðiÞ is the dominated block of c with
respect to the pair ðc; c0Þ if block cðiÞ is contained in some

block of c0 (i.e., cðiÞ � c0ð0Þ, or cðiÞ � c0ð1Þ). Similarly,
block cðiÞ is the dominating block of c with respect to the
pair ðc; c0Þ if cðiÞ contains some block of c0.

Let C be a component in � [ Visol. If C is the only
component in G, the theorem follows immediately.
Otherwise, we can reorder the columns so that C
consists of the first k columns, i.e., c1; c2; . . . ; ck 2 C,
and ckþ1; . . . ; cm 62 C. Recall that for any edge in the
Buneman graph BðHÞ, its end points correspond to
two m-tuples of blocks, which differ in exactly one
column. Label this edge by the column for which its
end points differ. For any collection of columns
�1; �2; . . . ; �l, let T �H ½�1; �2; . . . ; �l� denote the subgraph
of T �H induced by the set of edges labeled by
�1; �2; . . . ; �l. We will characterize all edges in the
Buneman graph labeled by columns in C by using the
following lemma from Gusfield and Bansal [26]. tu

Lemma 3.5 [26]. For a column ci, with i > k, ci does not conflict
with any column in connected component C, and therefore,
exactly one of cið0Þ or cið1Þ is the dominating block in ci with
respect to every column in C.

Let ciðliÞ (i > k) denote the set of dominating blocks of ci
with respect to C. (It follows that cið1� liÞ is the dominated
block in ci with respect to every column in C.)

Any vertex in the Buneman graph is an m-tuple of blocks
that have a pairwise nonempty intersection. Therefore, an
edge e labeled by a column in C, say, c1, must have end
points in which the blocks of column ckþ1; ckþ2; . . . ; cm
intersect both c1ð0Þ and c1ð1Þ. This implies that the blocks
of ckþ1; ckþ2f ; . . . ; cm are forced to be the dominating blocks
with respect to component C, i.e., the last m-k coordinates of
the end points of e must be ckþ1ðlkþ1Þ; ckþ2ðlkþ2Þ . . . ; cmðlmÞ.
Let BðCÞ be the subgraph of BðHÞ generated by the vertices
whose last m� k columns have this form. Then, any edge
labeled by a column in C has both end points in BðCÞ.
Lemma 3.6. T �H ½C� ¼ T �H ½c1; c2; . . . ; ck� is an optimal Steiner tree

on BðCÞ.
Proof. We say that vertex v 2 BðCÞ is a C-projected terminal

vertex if there exists h 2 H with the same states as v in
columns of C. We first show that any two terminals in
BðCÞ that are C-projected vertices are connected by a
path in T �H ½c1; c2; . . . ; ck�. Suppose otherwise and let v1

and v2 be two distinct vertices in BðCÞ, which are not
connected by such a path. By the definition of T �H , there is
a path P in T �H connecting v1 to v2. We can assume that v1

and v2 are chosen so that the length of path P is
minimized. Let d1; d2; . . . ; dl denote the edge labels of P
(by assumption, at least one of d1; d2; . . . ; dl is not in
fc1; c2; . . . ; ckg). If for some i, we have di 2 fc1; c2; . . . ; ckg,
then the end points u and w of di are in BðCÞ, and v1, u, or
w, v2 is a pair that is not connected in T �H ½c1; c2; . . . ; ck�,
which is a contradiction to the choice of vertices v1, v2.

Therefore, all edge labels di are in the set
fckþ1; ckþ2; . . . ; cmg. However, since v1 and v2 are in
BðCÞ, the final m� k components of these two vertices
are ckþ1ðlkþ1Þ; ckþ2ðlkþ2Þ . . . ; cmðlmÞ by definition. Finally,
since there are no edges in P labeled by c1; c2; . . . ; ck, it
follows that v1 and v2 are equal in all components, which
is a contradiction.
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Therefore, T �H ½c1; c2; . . . ; ck� is a Steiner tree on BðCÞ,
where the set of terminal vertices are the C-projected
terminal vertices. Therefore, if T �H is not optimal, then by
removing T �H ½c1; c2; . . . ; ck� from T �H and replacing it by a
tree of smaller cost, we obtain a Steiner tree for H with
smaller cost than T �H , which is a contradiction.

The terminal vertices of CðHÞ correspond to
C-projected terminal vertices of BðHÞ. Therefore, the
above shows that for every connected component C,
T �CðHÞ is a subgraph of T �H . Therefore,

lengthðT �HÞ ¼
X

C2�[Visol
length T �CðHÞ

� �

¼ jVisolj þ
X
C2�

length T �CðHÞ

� �
:

This completes the proof of Theorem 3.4. tu

Our decomposition preprocessing step proceeds as

follows: We first construct the conflict graph G for input

matrix H and identify the set of connected components of G.

We ignore the columns corresponding to the isolated

vertices Visol, since they each contribute exactly one edge

to the final phylogeny. Then, the columns corresponding to

each connected component c of � can be used indepen-

dently to solve for the most parsimonious phylogeny. Our

problem is now reduced to input matrices H consisting of a

single nontrivial connected component.

3.3 Merging Rows and Columns

We now transform the input matrix H to possibly reduce its

size. We can remove rows of H until all the rows are

distinct, since this does not change the phylogeny.

Furthermore, we can remove all the columns of H that do

not contain both states 0 and 1, since such columns will not

affect the size or the topology of the phylogeny. Finally, we

will assign weights wi to column i; wi is initialized to 1 for

all i. We iteratively perform the following operation:

Identify columns i and j that are identical (up to relabeling

0, 1), set wi :¼ wi þ wj, and remove column j from the

matrix. Notice that in the final matrix H, all pairwise rows

are distinct, all pairwise columns are distinct (even after

relabeling 0, 1), every column contains both 0, 1, and all the

columns have weights wi 	 1. From now on, the input to

the problem consists of the matrix H, along with vector w

containing the weights for the columns of H. We can now

redefine the length of a phylogeny by using a weighted

Hamming distance as follows:

Definition 4. The length of phylogeny T ðV ;EÞ is

lengthðT Þ ¼
P
ðu;vÞ2E

P
i2Dðu;vÞ wi, where Dðu; vÞ is the set

of indices where u, v differ.

It is straightforward to prove the correctness of the

preprocessing step.

Lemma 3.7. The length of the optimal phylogeny on the

preprocessed input is the same as that of the original input.

4 ILP FORMULATION

A common approach for studying the minimum Steiner tree

problem is to use ILP methods. For convenience, we will

consider the more general problem of finding a minimum

Steiner tree for directed weighted graphsG (we represent an

undirected graph as a directed graph by replacing each edge

by two directed edges). The input to the minimum directed

Steiner tree problem is a directed graph, a set of terminals T ,

and a specified root vertex r 2 T . The minimum Steiner tree

is the minimum cost subgraph containing a directed path

from r to every other terminal in T .
For a subgraph S of graph G, we associate a vector

xS 2 IRE , where edge variable xSe takes value 1 if e appears

in the subgraph S; otherwise, it takes value 0. A subset of

vertices U � V is proper if it is nonempty and does not

contain all vertices. For U � V , let �þðUÞ denote the set of

edges ðu; vÞ, with u 2 U , v 62 U , and for a subset of edges

F � E, let xðF Þ ¼
P

e2F xe. Finally, edge weights are given

by we 2 RE .
The problem of finding a minimum directed Steiner tree

rooted at r has previously been examined with an ILP based

on graph cuts [27], [28], [29]:

min
X

u;v
wu;vxu;v subject to ð1Þ

x �þðUÞð Þ 	 1 8U � V ; r 2 U; T \ U 6¼ ;;
ð2Þ

xu;v 2 f0; 1g for all ðu; vÞ 2 E: ð3Þ

Constraint (2) imposes that r has a directed path to all

terminal vertices T . Note that in our phylogenetic tree

reconstruction problem, the underlying graph for the

problem is the Buneman graph, and any input taxon can

be chosen as the root vertex r. Since the Buneman graph

may have an exponential number of vertices and edges with

respect to the size of the input matrix H, the runtime for

solving this integer program may be doubly exponential in

m in the worst case.
We develop an alternative formulation based on multi-

commodity flows [29]. In this formulation, one unit of flow

is sent from the root vertex to every terminal vertex. Every

terminal vertex, except the root, acts as a sink for one unit of

flow, and the Steiner vertices have perfect flow conserva-

tion. We use two types of variables—ftu;v and su;v—for each

edge ðu; vÞ 2 E. The variables ftu;v are real valued and

represent the amount of flow along edge ðu; vÞ whose

destination is terminal t. Variables su;v are binary variables

denoting the presence or absence of edge ðu; vÞ. The

program is then the following:

min
X

u;v
wu;vsu;v subject to ð4Þ

X
v
ftu;v ¼

X
v
ftv;u for all u =2 T; ð5Þ

X
v
ftv;t ¼ 1;

X
v
ftt;v ¼ 0;

X
v
ftr;v ¼ 1 for all t 2 T; ð6Þ
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0 � ftu;v � su;v for all t 2 T; ð7Þ

su;v 2 f0; 1g for all e 2 E: ð8Þ

Constraint (5) imposes the condition of flow conserva-

tion on the Steiner vertices. Constraint (6) imposes the

inflow/outflow constraints on terminals in T . Finally,

constraint (7) imposes the condition that there is a positive

flow on an edge only if the edge is selected. By the max-

flow min-cut theorem, the projection of the solution onto

the variables s satisfies (2) [28]. The results will thus satisfy

the following theorem.

Theorem 4.1. All integer variables of the above linear program

are binary, and the solution to the ILP gives the most

parsimonious phylogenetic tree.

5 ALTERNATIVE POLYNOMIAL-SIZED

ILP FORMULATION

The preceding ILP requires, in the worst case, an exponen-

tially large number of variables and constraints. It is,

however, possible to formulate this problem with only a

polynomial number (in n and m) of variables and

constraints. The exponential-sized ILP ultimately proved

to be more efficient in practice than the polynomial-sized

ILP, and we therefore used that one for our empirical

validation. We nonetheless include this alternative formula-

tion, because it may prove to be more promising for future

improvements and extensions to more general cases of the

Steiner tree problem than our exponential-sized ILP will.

Note that preprocessing operations B and C above for the

exponential-sized ILP will also be relevant to the poly-

nomial-sized ILP. We will therefore assume that we have

performed those preprocessing steps and, in particular, that

we have eliminated all redundant rows and columns in the

data set.
We will use hi;j, 1 � i � n, to denote the state of the ith

taxon at site j of the input matrix H. Note that these are not

variables of the linear program. We will use hi;j,

nþ 1 � i � 2n, to represent the state of the ith Steiner

vertex at site j. We will therefore use nm such variables in

the ILP.
However, T � might not use n Steiner vertices, and

therefore, we associate binary variables pi to denote the

presence or absence of a Steiner vertex i.
We use 2 2n

2

� �
edge selection binary variables ei;j to denote

the presence or absence of directed edge ði; jÞ. We wantP
i;j ei;j to be the number of edges in T �.
To define the distance between a pair of vertices, we need

some additional auxiliary variables. We use n
2

� �
m variables

ci;j;k ¼ jhi;k � hj;kj to denote whether vertices i, j differ at site

k. The absolute value for this constraint can be expressed as a

linear equation. Now, distance ri;j ¼
Pm

k¼1 wkci;j;k.
To define the objective, however, we need

P
i;j ei;jri;j,

which is quadratic. We can instead achieve the same

result by defining the following linear constraint

si;j 	 ri;j �mwmax þmwmaxei;j, w h e r e wmax ¼ maxi wi.

Now, the objective function is simply to minimizeP
i;j si;j.

We, however, need additional constraints to ensure that
the output is a tree and it connects all the terminal vertices.
First, we have Oðn2Þ constraints: for all i, j,

P
k ci;j;k 	 1. We

also have 2n integer variables di representing the depth of a
vertex i from the root (arbitrarily the first row of H). We
ensure that vertex a can connect to another vertex of the
phylogeny only if it is one depth smaller, with the constraints
that for all i, j, yi;j � di þ dj 	 �1, yi;j þ di � dj 	 1, and
ð2nþ 1Þei;j þ yi;j � 2nþ 1. Also,

P
j ei;j þ pi ¼ 1 for all i to

ensure that there exists only one parent for every vertex
(except the root). Finally, the constraint

P
i;j ei;j ¼ n� 1

ensures that the set of edges selected forms a tree. We now
have the following theorem. Putting these components
together results in the following ILP:

min
X

i;j
si;j subject to ð9Þ

ci;j;k 	 hi;k � hj;k; 81 � i; j � n; i 6¼ j; 1 � k � m; ð10Þ

ci;j;k 	 hj;k � hi;k; 81 � i; j � n; i 6¼ j; 1 � k � m; ð11Þ

ri;j ¼
Xm

k¼1
wkci;j;k; 81 � i; j � n; i 6¼ j; ð12Þ

si;j 	 ri;j þmwmaxðei;j � 1Þ; 81 � i; j � n; i 6¼ j; ð13Þ

X
k
ci;j;k 	 1; 81 � i; j � n; i 6¼ j; ð14Þ

yi;j � di þ dj 	 �1; 81 � i; j � n; i 6¼ j; ð15Þ

yi;j þ di � dj 	 1; 81 � i; j � n; i 6¼ j; ð16Þ

ð2nþ 1Þei;j þ yi;j � 2nþ 1; 81 � i; j � n; i 6¼ j; ð17Þ

X
j
ei;j þ pi ¼ 1; 81 � i � n; ð18Þ

X
i;j
ei;j ¼ n� 1: ð19Þ

We further constrain all variables to be nonnegative and
fix the depth of the root node to be zero.

Theorem 5.1. The above linear program uses a polynomial
number of variables and constraints, and the solution of the
ILP is the most parsimonious phylogenetic tree.

Proof. We have nm variables coding unknown allele values
for the n Steiner nodes that might be present in the
phylogeny, ð2nÞð2n� 1Þ edge selection variables identi-
fying the edges in the phylogeny, 1

2 ðnÞðn� 1Þm auxiliary
variables used to measure Hamming distances, 1

2 ðnÞðn�
1Þ variables specifying the Hamming distances of
selected edges only, 2n depth variables, 2n� 1 parent
variables, and ð2nÞð2n� 1Þ auxiliary yij variables used in
setting the depth constraints. The total variable set
therefore has size Oðn2mÞ.

We have 2nðn� 1Þm constraints for computing abso-
lute values (lines 10 and 11), nðn� 1Þ for determining
edge costs between nodes (line 12), nðn� 1Þ for determin-
ing weights of selected edges (line 13), nðn� 1Þ enforcing
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that all nodes are connected to the phylogeny (line 14),
3nðn� 1Þ for enforcing node depth constraints (lines 15-
17), n for ensuring that each node has a parent (line 18),
and one forcing the phylogeny to have n� 1 edges and,
thus, to be a tree (line 19). The total number of constraints
is therefore also Oðn2mÞ.

The correctness of the program has been established
in the text above, explaining its derivation. tu

6 EMPIRICAL VALIDATION

Experience with both ILPs showed the exponential-sized
one to be generally the more efficient in practice. This
seems to be the case in practice because the LP relaxation
of the exponential-sized ILP produces integer solutions or
just requires a few rounding iterations. In contrast, the
polynomial-sized ILP contains integer variables that
remain fractional and therefore require many relaxations
to be solved. We therefore used that variant for our
empirical studies. We applied the ILP to several sets of
variation data chosen to span a range of data character-
istics and computational difficulties. We used only
nonrecombining data (Y chromosome, mitochondrial,
and bacterial DNA), because imperfection in nonrecom-
bining data will most likely be explained by recurrent
mutations. We used two Y chromosome data sets: a set of
all human Y chromosome data from the HapMap [2] and
a set of predominantly chimpanzee primate data [30].
Several different samples of mitochondrial DNA (mtDNA)
were also included [31], [32], [33], [34]. Finally, we
analyzed a single bacterial sample [35].

The preprocessing and ILP formulation was performed
in C++ and was solved using the Concert callable library of
CPLEX 10.0. In each case, the ILP was able to find an
optimal tree on the data after preprocessing. We also used
the pars program of phylip, which attempts to heur-
istically find the most parsimonious phylogeny. pars was
run with default parameters. Empirical tests were con-
ducted on a 2.4-GHz Pentium 4 computer with 1-Gbyte
RAM running Linux. We attempted to use the penny

program of phylip, which finds provably optimal solu-
tions by branch and bound, but it terminated in under
20 minutes only for the smallest mitochondrial data set, and
we aborted it after 20 minutes for all other tests.

We first used the mitochondrial data as a basic validation
of the correctness of the methods and the reasonableness of
the maximum parsimony criterion on these data. The HVS-I
and HVS-II segments of the mitochondrial D-loop region
have exceptionally high mutation rates [31], providing a
good test case of the ability of our algorithm to distinguish
regions that we would expect to have perfect or near-perfect
phylogenies from those that were expected to have highly
imperfect phylogenies. Fig. 2 shows a scan of 201-site-long
windows across the complete 16,569-site mtDNA genome.
Since the mtDNA is circular, the windows wrap around
over the ends in the genome order. The y-axis corresponds
to imperfection, which is the number of recurrent mutations
in the most parsimonious phylogeny. The figure indeed
shows substantially larger phylogenies within the high
mutation rate D-loop region (1 . . . 577 and 16,028 . . . 16,569)
than in the low-mutation-rate coding regions, confirming
the relevance of a parsimony metric for such data sets.

We then ran the ILP on a collection of data sets to assess
its efficiency. Fig. 3 provides two examples of the most
parsimonious phylogenies for data sets at opposite extremes
of difficulty: an mtDNA sample [31] with imperfection 21
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Fig. 2. Imperfection of the most parsimonious phylogeny for overlapping
windows across the complete mitochondrial genome. The x-axis shows
the sites in their order along the genomic axis. The y-axis shows the
imperfection for the window centered at the corresponding site. The
hypervariable D-loop region (1 . . . 577 and 16,028 . . . 16,569) shows
significantly larger imperfection.

Fig. 3. Examples of trees of varying levels of difficulty. Nodes labeled
with numbers correspond to the numbered input haplotypes, while those
labeled A# correspond to inferred Steiner nodes. Edges are labeled with
the site variations to which they correspond. (a) Human mitochondrial
data from Wirth et al. [31]. (b) Human Y chromosome from HapMap [21].



(Fig. 3a) and the human Y chromosome sample with
imperfection 1 (Fig. 3b). Table 1 presents the empirical
runtime data for all of the data sets. The columns “input
before” and “input after” correspond to the size of the
original input and that after preprocessing (rows �
columns). The table also provides the ILP size for each data
set (variables and constraints). Runtimes vary over several
orders of magnitude and appear largely insensitive to the
actual sizes of the data sets. Rather, the major determinant of
runtime appears to be a data set’s imperfection, i.e., the
difference between the optimal length and the number of
variant sites. It has recently been shown that the phylogeny
problem under various assumptions is a fixed parameter
tractable in imperfection [14], [15], [16], [17], possibly
suggesting why it is a critical factor in runtime determina-
tion. The pars program of phylip, despite providing no
guarantees of optimality, indeed finds optimal phylogenies
in all of the above instances. It is, however, slower than the
ILP in most of these cases.

7 ONLINE TOOL

In order to provide more general access to our methods, we
have implemented a Web server based on our worst case
exponential-sized ILP. The server provides a front end to an
implementation of the ILP in C++ using the CPLEX
10 libraries. We call the server SCan for IMperfect Phylo-
genies (SCIMP). It can be accessed at http://www.cs.cmu.
edu/~imperfect/index.html. There are two ways of using
the Web server, as explained in the following.

First, the users can input a haplotype variation data set.
These are simply a set of n haplotype sequences typed over
m SNPs. As stated in the previous sections, this has to be
phased data. Therefore, essentially, the input is an n�
mf0; 1g matrix.

Alternatively, the users can select any region of the
genome and provide the number of contiguous SNPs that
will be examined in that region. The user also needs to
specify the population group that will be used. The Web
server currently has support for the Central European
population (CEPH) and Yoruba African population (YRI).
The entire HapMap (phase II) phasing data is present in the
Web server’s back-end database, and this makes it easy for
users to quickly examine and construct phylogenies for any

region of interest. Since the HapMap data for these two
populations were sequenced in trios, the number of phasing
errors should be very small.

The Web server can be used in two different modes. As
has been described until now, the user can just request it to
construct the most parsimonious phylogenetic tree and
return the topology, the parsimony score (the number of
mutations), and the imperfection (the number of recurrent
mutations).

The Web server can also perform an imperfection scan.
The user specifies the location and size and, additionally,
for this mode, provides a window length w in the number of
SNPs. The Web server then slides this window across the
genome and, for each overlapping set of w consecutive
SNPs, constructs a maximum parsimony phylogeny. The
server returns to the user a plot of the imperfection (the
number of recurrent mutations) of each of these windows
across the entire region examined. It can further provide the
maximum parsimony tree found within each window.

In addition to providing a general interface to the
phylogeny inference code, the server also houses a pre-
computed database of maximum parsimony phylogenies
that it constructed offline for more than 3.7 million instances
by using the HapMap SNPs. Therefore, when users request
to see phylogenies that are present in this precomputed data
set (or while performing scans), the results are returned as
soon as they are fetched, with no online solution required.
This precomputed databases currently has phylogenies for
every contiguous region of up to 10 SNPs in all of HapMap.

Fig. 3 provides examples of the server output.

8 CONCLUSION

We have developed ILP formulations for optimally solving

for the most parsimonious phylogeny by using binary

genome variation data. These methods fill an important

practical need for fast methods for generating provably

optimal trees from large SNP variation data sets. This need

is not served well by the heuristic methods that are

currently the standard for tree building, which generally

work well in practice but cannot provide guarantees of

optimality. More recent theoretical methods that find

provably optimal trees within defined runtime bounds are
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inefficient in practice without a fast subroutine for solving

the general problem on smaller instances. The ILP approach

allows extremely fast solutions of the easy cases while still

yielding runtimes that are competitive with a widely used

fast heuristic for hard instances. Such methods will likely be

increasingly important as data sets accumulate on larger

population groups and larger numbers of variant sites.

ACKNOWLEDGMENTS

The authors would like to thank Daniel Gusfield for his

helpful discussions and for motivating their use of LP for

problems in phylogenetics. This work was supported by the

US National Science Foundation under Grants IIS-0612099,

CCR-0105548, and CCR-0122581 (the ALADDIN Project). A

preliminary version of this paper appeared in the Proceed-

ings of the Third International Symposium on Bioinformatics

Research and Applications (ISBRA 2007) [36].

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman & Co., 1979.

[2] Int’l HapMap Consortium, “The International HapMap Project,”
Nature, vol. 426, pp. 789-796, www.hapmap.org, 2005.

[3] E.M. Smigielski, K. Sirotkin, M. Ward, and S.T. Sherry, “dbSNP: A
Database of Single Nucleotide Polymorphisms,” Nucleic Acids
Research, vol. 28, no. 1, pp. 352-355, 2000.

[4] Chimpanzee Sequencing and Analysis Consortium, “Initial
Sequence of the Chimpanzee Genome and Comparison with the
Human Genome,” Nature, vol. 437, no. 7055, pp. 69-87, http://
dx.doi.org/10.1038/nature04072, 2005.

[5] K. Linblad-Toh, E. Winchester, M.J. Daly, D.G. Wang, J.N.
Hirschhorn, J.P. Laviolette, K. Ardlie, D.E. Reich, E. Robinson, P.
Sklar, N. Shah, D. Thomas, J.B. Fan, T. Gingeras, J. Warrington, N.
Patil, T.J. Hudson, and E.S. Lander, “Large-Scale Discovery and
Genotyping of Single-Nucleotide Polymorphisms in the Mouse,”
Nature Genetics, vol. 24, no. 4, pp. 381-386, 2000.

[6] K. Linblad-Toh, C.M. Wade, T.S. Mikkelsen, E.K. Karlsson, D.B.
Jaffe, M. Kamal, M. Clamp, J.L. Chang, E.J. Kulbokas, M.C. Zody,
E. Mauceli, X. Xie, M. Breen, R.K. Wayne, E.A. Ostrander, C.P.
Ponting, F. Galibert, D.R. Smith, P.J. deJong, E. Kirkness, P.
Alvarez, T. Biagi, W. Brockman, J. Butler, C.-W. Chin, A. Cook, J.
Cuff, M.J. Daly, D. DeCaprio, S. Gnerre, M. Grabherr, M. Kellis, M.
Kleber, C. Bardeleben, L. Goodstadt, A. Heger, C. Hitte, L. Kim,
K.-P. Kopfli, H.G. Parker, J.P. Pollinger, S.M.J. Searle, N.B. Sutter,
R. Thomas, C. Webber, and E.S. Lander, “Genome Sequence,
Comparative Analysis and Haplotype Structure of the Domestic
Dog,” Nature, vol. 438, no. 7069, pp. 803-819, http://dx.doi.org/
10.1038/nature04338, 2005.

[7] ENCODE Project Consortium, “The ENCODE (ENCyclopedia of
DNA Elements) Project,” Science, vol. 306, no. 5696, pp. 636-640,
2004.

[8] R. Agarwala and D. Fernandez-Baca, “A Polynomial-Time
Algorithm for the Perfect Phylogeny Problem When the Number
of Character States Is Fixed,” SIAM J. Computing, vol. 23, pp. 1216-
1224, 1994.

[9] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary
Trees,” Networks, vol. 21, pp. 19-28, 1991.

[10] S. Kannan and T. Warnow, “A Fast Algorithm for the Computa-
tion and Enumeration of Perfect Phylogenies,” SIAM J. Computing,
vol. 26, pp. 1749-1763, 1997.

[11] H.J. Bandelt, P. Forster, B.C. Sykes, and M.B. Richards, “Mito-
chondrial Portraits of Human Populations Using Median Net-
works,” Genetics, vol. 141, pp. 743-753, 1989.

[12] J. Felsenstein, “PHYLIP (Phylogeny Inference Package) Ver-
sion 3.6,” distributed by the author, Dept. of Genome Sciences,
Univ. of Washington, 2005.

[13] N. Saitou and M. Nei, “The Neighbor-Joining Method: A New
Method for Reconstructing Phylogenetic Trees,” Molecular Biology
and Evolution, vol. 4, no. 4, pp. 406-425, 1987.

[14] G.E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz,
and S. Sridhar, “Fixed Parameter Tractability of Binary Near-
Perfect Phylogenetic Tree Reconstruction,” Proc. 33rd Int’l Collo-
quium Automata, Languages and Programming (ICALP ’06), pp. 667-
689, 2006.

[15] D. Fernandez-Baca and J. Lagergren, “A Polynomial-Time Algo-
rithm for Near-Perfect Phylogeny,” SIAM J. Computing, vol. 32,
pp. 1115-1127, 2003.

[16] S. Sridhar, G.E. Blelloch, R. Ravi, and R. Schwartz, “Optimal
Imperfect Phylogeny Reconstruction and Haplotyping,” Proc.
Computational Systems Bioinformatics Conf. (CSB ’06), pp. 199-210,
2006.

[17] S. Sridhar, K. Dhamdhere, G.E. Blelloch, E. Halperin, R. Ravi, and
R. Schwartz, “Simple Reconstruction of Binary Near-Perfect
Phylogenetic Trees,” Proc. Int’l Workshop Bioinformatics Research
and Applications (IWBRA), 2006.

[18] D. Gusfield, “Haplotyping by Pure Parsimony,” Proc. 14th Symp.
Combinatorial Pattern Matching (CPM ’03), pp. 144-155, 2003.

[19] Steiner Trees in Industry, X. Cheng and D.Z. Zu, eds., Springer,
2002.

[20] F.K. Hwang, D.S. Richards, and P. Winter, “The Steiner Minimum
Tree Problems,” Annals of Discrete Math., vol. 53, 1992.

[21] L.R. Foulds and R.L. Graham, “The Steiner Problem in Phylogeny
Is NP-Complete,” Advances in Applied Math., vol. 3, 1982.

[22] P. Buneman, “The Recovery of Trees from Measures of Dissim-
ilarity,” Math. in the Archeological and Historical Sciences, F. Hodson
et al., eds., pp. 387-395, 1971.

[23] J. Barthélemy, “From Copair Hypergraphs to Median Graphs with
Latent Vertices,” Discrete Math, vol. 76, pp. 9-28, 1989.

[24] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[25] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, “Haplotyping as

Perfect Phylogeny: A Direct Approach,” J. Computational Biology,
vol. 10, pp. 323-340, 2003.

[26] D. Gusfield and V. Bansal, “A Fundamental Decomposition
Theory for Phylogenetic Networks and Incompatible Characters,”
Proc. Ninth Int’l Conf. Research in Computational Molecular Biology
(RECOMB ’05), pp. 217-232, 2005.

[27] J. Beasley, “An Algorithm for the Steiner Problem in Graphs,”
Networks, vol. 14, pp. 147-159, 1984.

[28] N. Maculan, “The Steiner Problem in Graphs,” Annals of Discrete
Math., vol. 31, pp. 185-212, 1987.

[29] R. Wong, “A Dual Ascent Approach for Steiner Tree Problems on
a Directed Graph,” Math. Programming, vol. 28, pp. 271-287, 1984.

[30] A.C. Stone, R.C. Griffiths, S.L. Zegura, and M.F. Hammer, “High
Levels of Y-Chromosome Nucleotide Diversity in the Genus Pan,”
Proc. Nat’l Academy of Sciences, vol. 99, pp. 43-48, 2002.

[31] T. Wirth, X. Wang, B. Linz, R.P. Novick, J.K. Lum, M. Blaser, G.
Morelli, D. Falush, and M. Achtman, “Distinguishing Human
Ethnic Groups by Means of Sequences from Helicobacter Pylori:
Lessons from Ladakh,” Proc. Nat’l Academy of Sciences, vol. 101,
no. 14, pp. 4746-4751, 2004.

[32] S. Sharma, A. Saha, E. Rai, A. Bhat, and R. Bamezai, “Human
mtDNA Hypervariable Regions, HVR I and II, Hint at Deep
Common Maternal Founder and Subsequent Maternal Gene Flow
in Indian Population Groups,” Am. J. Human Genetics, vol. 50,
pp. 497-506, 2005.

[33] C.J. Lewis, R. Tito, B. Lizarraga, and A. Stone, “Land, Language,
and Loci: mtDNA in Native Americans and the Genetic History of
Peru,” Am. J. Physical Anthropology, vol. 127, pp. 351-360, 2005.

[34] A. Helgason, G. Palsson, H.S. Pedersen, E. Angulalik, E.D.
Gunnarsdottir, B. Yngvadottir, and K. Stefansson, “mtDNA
Variation in Inuit Populations of Greenland and Canada:
Migration History and Population Structure,” Am. J. Physical
Anthropology, vol. 130, pp. 123-134, 2006.

[35] M. Merimaa, M. Liivak, E. Heinaru, J. Truu, and A. Heinaru,
“Functional Co-Adaption of Phenol Hydroxylase and Catechol
2,3-Dioxygenase Genes in Bacteria Possessing Different Phenol
and p-Cresol Degradation Pathways,” Proc. Eighth Symp. Bacterial
Genetics and Ecology (BAGECO ’05), vol. 31, pp. 185-212, 2005.

[36] S. Sridhar, F. Lam, G. Blelloch, R. Ravi, and R. Schwartz,
“Efficiently Finding the Most Parsimonious Phylogenetic Tree
via Linear Programming,” Proc. Int’l Symp. Bioinformatics Research
and Applications (ISBRA ’07), pp. 37-48, 2007.

330 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 3, JULY-SEPTEMBER 2008



Srinath Sridhar received the BS degree in
computer science from the University of Texas,
Austin, in 2003 and the PhD degree from the
Carnegie Mellon University in 2007. His re-
search interests include computational biology.

Fumei Lam received the BA degree in mathe-
matics from the University of California, Berke-
ley, in 2000 and the PhD degree in applied math
from the Massachusetts Institute of Technology
in 2005. She spent one year as a postdoctoral
researcher at Carnegie Mellon University and
currently holds a postdoctoral position in the
Center for Computational Molecular Biology,
Brown University.

Guy E. Blelloch received the BA degree in
physics and the BS degree in engineering
from Swarthmore College in 1983 and the MS
and PhD degrees in computer science from
the Massachusetts Institute of Technology in
1986 and 1988, respectively. He is currently a
professor of computer science at Carnegie
Mellon University, where he is also a codir-
ector of the ALADDIN Center for the study of
algorithms. His research interests include

programming languages and applied algorithms.

R. Ravi received the BTech degree in computer
science and engineering from the Indian Institute
of Technology, Madras, in 1989 and the PhD
degree in computer science from Brown Uni-
versity in 1993. After postdoctoral fellowships at
the University of California, Davis, and in
DIMACS, Princeton University, in 1995, he
joined the Operations Research Faculty, Tepper
School of Business, Carnegie Mellon University,
where he is currently the Carnegie Bosch

Professor of Operations Research and Computer Science.

Russell Schwartz received the BS and MEng
degrees (in 1996) and PhD degree (in 2000)
from the Massachusetts of Technology. He
joined the Informatics Research Group, Celera
Genomics, in 2000. In 2002, he joined the faculty
of the Carnegie Mellon University, where he is
currently an associate professor of biological
sciences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SRIDHAR ET AL.: MIXED INTEGER LINEAR PROGRAMMING FOR MAXIMUM-PARSIMONY PHYLOGENY INFERENCE 331


