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We consider the vehicle routing problem with stochastic demands (VRPSD). We give randomized approximation algorithms
achieving approximation guarantees of 1+ « for split-delivery VRPSD, and 2 4 « for unsplit-delivery VRPSD; here « is
the best approximation guarantee for the traveling salesman problem. These bounds match the best known for even the
respective deterministic problems [Altinkemer, K., B. Gavish. 1987. Heuristics for unequal weight delivery problems with a
fixed error guarantee. Oper. Res. Lett. 6(4) 149—158; Altinkemer, K., B. Gavish. 1990. Heuristics for delivery problems with
constant error guarantees. Transportation Res. 24(4) 294-297]. We also show that the “cyclic heuristic” for split-delivery
VRPSD achieves a constant approximation ratio, as conjectured in Bertsimas [Bertsimas, D. J. 1992. A vehicle routing
problem with stochastic demand. Oper. Res. 40(3) 574-585].
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1. Introduction

The capacitated vehicle routing problem (VRP) is defined
on a finite metric space (V,d), where V is a finite set
of locations/vertices and d: V x V — R, a distance func-
tion that is symmetric and satisfies the triangle inequality.
There is a specified depot location r € V, and the prob-
lem involves distributing (identical) items from the depot
to other locations. Specifically, the depot r has an infinite
supply of items, and a single vehicle of capacity Q > 0 (ini-
tially located at the depot r) is used to distribute the items.
There are ¢; € {0, 1, ..., O} units of the item demanded at
each location i € V. The objective is to find a minimum-
length tour of the vehicle that satisfies demands at all loca-
tions subject to the constraint that the vehicle carries at
most Q units at any time. In the split-delivery version of
the problem, the demand at a location may be satisfied by
multiple visits of the vehicle. In the unsplit-delivery ver-
sion, the entire demand at a location must be satisfied in a
single visit by the vehicle.

The vehicle routing problem with stochastic demands
(VRPSD) involves demands that are random variables with
known distributions: in particular, the demand at each loca-
tion i € V is specified by random variable &; (assumed to be
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in the range [0, Q]). The random variables {§,},., are inde-
pendent of each other and of the vehicle routing algorithm.
The exact demand at any location i (i.e., the instantiation of
the random variable ¢;) is known only when the vehicle vis-
its location i. A feasible policy for the vehicle is any strat-
egy of visiting locations such that all demands are satisfied.
The goal is to design a policy that minimizes the expected
length of the vehicle route. Again there are two variants
of the problem, allowing for split and unsplit deliveries;
we consider both of them. VRPSD has been studied exten-
sively in the literature, and several heuristics have been
proposed. For surveys on VRPSD, see, e.g., Stewart and
Golden (1983), Powell et al. (1995), Gendreau et al. (1996),
Bertsimas and Simchi-Levi (1996), and Dror (2002).

Related Work. Throughout this paper, we let a > 1
denote the best approximation guarantee for the Travel-
ing Salesman Problem. We have o = % for general metrics
(Christofides 1977), and @ = 1 + € (for any constant
€ > 0) for constant dimensional Euclidean metrics (Arora
1998, Mitchell 1999). The best known approximation
guarantees for split-delivery VRP is 1 + a - (1—1/Q)
(Haimovich and Rinnooy Kan 1985, Altinkemer and
Gavish 1990), and for unsplit-delivery VRP is 2 + « -
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(1—2/Q) (Altinkemer and Gavish 1987); recall that Q
is an upper bound on the demand at any vertex. These
bounds have been improved slightly to 1+ a- (1 —1/Q) —
1/3Q% and 2 + a - (1-2/0) — 1/(30Q%), respectively,
(when Q >3) (Bompadre et al. 2006). Recently, some
improved bounds have been obtained for unit-demand VRP
on the Euclidean plane: Bompadre et al. (2007) showed
that the algorithm of Haimovich and Rinnooy Kan (1985)
achieves an approximation ratio 2 — ¢ for random instances
(here ¢ > 0 is an absolute constant). Also, Das and Mathieu
(2010) gave a quasipolynomial time approximation scheme
(i.e., an algorithm, that for any constant € > 0, achieves
an (1 4 €)-approximation with running time 200"’} for
worst-case instances of points in the Euclidean plane.

Moving to stochastic demands, a (1 + a + o(1))-
approximation algorithm is known for split-delivery
VRPSD in the special case of identical demand distribu-
tions (Bertsimas 1992). For the case of general distribu-
tions, the algorithm in Bertsimas (1992) was shown to be
a O + o approximation, and obtaining tighter bounds was
left open.

Our Results. In this note, we present a simple random-
ized approximation algorithm for VRPSD achieving the
following worst-case guarantees: (1 + «) for split-delivery
VRPSD (Theorem 3.1), and (2 + «) for unsplit-delivery
VRPSD (Theorem 4.1). This matches (up to an additive
O(a/Q) term) the corresponding best known guarantees
for deterministic VRP. We also show in Theorem 3.2 that
the “cyclic heuristic” for VRPSD suggested in Bertsimas
(1992) achieves a constant approximation guarantee, as
conjectured.

We note that our algorithms for VRPSD yield a priori
strategies, that involve visiting vertices in some fixed order
(in fact, according to any a-approximate TSP tour). Fur-
thermore, the algorithms do not even require knowledge
of the demand distributions at different vertices: it suffices
to know just which vertices have a demand distribution
that is not identically zero. The idea of visiting vertices
in the order given by an approximate TSP tour is a nat-
ural strategy (this was also used in Bertsimas 1992). The
key idea in our analysis is to condition on the demand
realization—this allows us to bound the total length of
refill-trips in terms of known lower bounds for the prob-
lem. Furthermore, we use randomization to obtain tighter
approximation guarantees: the randomness permits an aver-
aging argument similar to Haimovich and Rinnooy Kan
(1985), Altinkemer and Gavish (1990, 1987) in spite of
having stochastic demands. Due to the randomization, our
solutions have the somewhat counterintuitive property that
while refilling items at the depot, they fill up to a level
strictly below the maximum capacity 0. We note that for
both split and unsplit deliveries, the natural strategy of
always refilling to maximum capacity Q also achieves a
constant approximation guarantee. However, the constants
are weaker than those for the randomized strategies (com-
pare Theorem 3.2 to Theorem 3.1).

2. Preliminaries

The following discussion holds for both split and unsplit
delivery versions of VRPSD.

Without loss of generality, we may assume that none of
the demand random variables is identically zero, because
such locations can just be ignored. Under this assumption,
any feasible policy must visit every location with probabil-
ity 1; otherwise, because demands are independent, there
is a nonzero probability that some demand is not satisfied,
implying that the policy is infeasible. Consequently, the
minimum-length traveling salesman tour on all locations in
metric (V, d) is a lower bound for VRPSD.

Conditioned on the demand realization g; at each location
i€ V\{r},LB(q) :=(2/Q) ¥ iz q;d(r,1) is a lower bound
on the optimal solution length (see, e.g., Haimovich and
Rinnooy Kan 1985). Hence, the expected value E[LB(q)] =
(2/0Q) Xis E[&] - d(r, i) is a lower bound for VRPSD.
These lower bounds were also used in Bertsimas (1992).

3. Split-Delivery VRPSD

In this section we consider the split-delivery problem,
where the demand at any location may be satisfied over
multiple visits to that location. We first present the ran-
domized approximation algorithm. The vehicle visits ver-
tices in the order given by any a-approximate TSP tour.
The main idea in our algorithm is to initially fill the vehi-
cle with a random number of items (and later, whenever
the vehicle is empty, perform refills to maximum capac-
ity Q). This might seem wasteful compared to the more
natural strategy of deterministically filling up to maximum
capacity Q; however, as shown in the following exam-
ple, the expected vehicle route under our algorithm can be
much shorter. Indeed, this is precisely the reason why we
can obtain a better approximation ratio for our randomized
algorithm (Theorem 3.1) than for the deterministic algo-
rithm (Theorem 3.2).

ExampLE. Consider a VRP instance on four locations
{r, a, b, c}, with r being the depot. There is a demand of
Q — 1 at each of a and ¢, and demand of 2 at b; recall
that Q is the vehicle capacity. The TSP tour is 7 = (r, q,
b, ¢, r) with distances d(r,a) =d(c,r) =1 and d(a, b) =
d(b,c) =L where L > 1 is a large value. The metric is
given by shortest-path distances on 7. See also Figure 1.

If the vehicle starts with being filled deterministically
to Q, it needs to refill from b and the route followed is
o,:=(r,a,b,r,b,c,r). This has length d(o,) =d(7)+
2-d(r,b)=4(L+1).

On the other hand, suppose the vehicle is initialized with
a uniformly random quantity £ € {0, ..., Q}. In this case,
there are four possible vehicle routes shown below (because
demands at some vertices may be zero, the vehicle per-
forms a refill trip only when it is empty and at a vertex of
positive residual demand).

1. £= Q. The vehicle route is just o, of length 4(L+1).
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Figure 1. VRP instance with TSP tour 7=(r, a, b, ¢, r).

a (demand Q-1)

b (demand 2)

¢ (demand Q-1)

2. £ = Q — 1. The vehicle refills from » and c, so the
route is ! :=(r, a, b, r, b, c, r, ¢, r), of length 4L +6.

3. 1 < €< Q—2. The vehicle refills from a and ¢, so
the route is o2 :=(r, a, r, a, b, ¢, r, ¢, r), of length 2L +6.

4. £ =0. The vehicle refills from a and b, and the route
iso):=(r,a, r,a, b, r, b, c,r), of length 4L + 6.

Now the expected length of the vehicle route equals:

1 o 0-2

o1 1t gt o
d(az)—i—; d(a3)—2L+6+6 2
o+1 0+1°

As Q — oo, this expectation tends to 2L + 6, which is
smaller than the deterministic route length of 4L 4 4.

THEOREM 3.1. There is a randomized (1 + «)-approxi-
mation algorithm for VRPSD with split deliveries.

PrOOF. The algorithm SplitALG proceeds as follows.
1. Compute an a-approximate TSP tour 7 on all vertices.
2. Number the vertices such that r is numbered 0 and
tour 7 visits vertices in the order 0, 1,2, ..., |V|—1.
3. Choose a uniformly random value £ € [0, Q], and ini-
tialize the vehicle to carry £ units.
4. The vehicle starts from vertex 0 (the depot), and for
eachi=1,...,|V|—1 does the following:
(a) Let O, be the units (of the item) carried by the
vehicle when it visits vertex i (note that Q, = £).
(b) Let q be the demand observed at vertex i.
(c) If ¢, < Q,, then serve the demand at i and move
on to vertex i + 1 (with Ql+1 <« Q q:)-
(d) If ¢, > Q,, then serve Q, units of demand at i and
make a refill visit to and from r:
e The vehicle fills up Q units at r, returns to i and
serves the remaining ¢, — Q, demand at i.
Then continue on to vertex i+ 1 with Qm <~ 0—(q,—0).
We will bound the expected length of the solution
obtained by the above algorithm. In the analysis, we first
condition on the realization g; of demands at all vertices
i € V\{r}. The initial vehicle load ¢ at the depot r remains
uniformly random in [0, Q]. A vertex i € V is called a
breakpoint if the vehicle executes a refill trip to r from i
(i.e., Step 4(d) applies at vertex i). This happens precisely

when the vehicle becomes empty at vertex i while there is
still unserved demand at i. Observe that Vertex i is a break-
point iff there is p € Z,, such that ZJ 1% <fl+p-0<
q;+ it j=19)- Because ¢ is the only random variable, and it
is uniform in [0, Q], we have:

Pr[i is break point] = %

The solution length conditioned on demands {g;};cy\(
equals d(7) +23%,,, d(r,i) - (i breakpoint), where d(7)
is the length of the tour 7 under the length function d,
and [(i breakpoint) is the indicator random variable for
the event that i is a break point (for each i # r). Hence,
the expected solution length (conditioned on the demands

{qi}iGV\[r}) is:

d(7)+2) Prfi is break point] - d(r, i) =d(7)
i#r

+ é > g -d(r,i)=d(r)+LB(q)
ir

Recall that this expectation is only over the choice of £.
Now, taking expectations over the demands, the expected
solution length equals d(7) 4+ E[LB(gq)]. Because 7 is an
a-approximate minimum TSP tour and E[LB(g)] is a lower
bound for VRPSD, the expected length of this solution is
at most (1 + «) times the optimal value of the VRPSD
instance. [

We now consider the algorithm SplitALG if we start
with deterministic value £ = Q (vehicle is initially filled to
capacity). We show next that even this algorithm achieves a
constant approximation guarantee. This algorithm performs
no better than the cyclic heuristic suggested in Bertsimas
(1992), and hence we establish the same upper bound for
the cyclic heuristic. It was shown (Bertsimas 1992) that
the cyclic heuristic achieves a worst-case guarantee of a +
14 o(1) in the case of identical demand distributions at
all vertices, and a Q + « guarantee for general demands
(Bertsimas 1992, Theorem 4). Moreover, it was conjectured
that the worst-case guarantee of the cyclic heuristic is a
constant (independent of Q) even with general demand dis-
tributions. The following theorem shows that this is indeed
the case.

THEOREM 3.2. The cyclic heuristic is a (1 4+ 2a)-approxi-
mation algorithm for VRPSD.

PrOOF. Let 7 denote an a-approximate TSP tour. O, 1,
2,...,|V| =1 where r is numbered 0. The cyclic heuris-
tic (Bertsimas 1992) considers |V| — 1 different strategies:
obtained by visiting vertices in the order (0, i, i+1,...,
i+|V]|—1) modulo |V| for each 1 <i < |V|—1, and returns
the strategy with the least objective value. We prove the
claimed upper bound for even the (possibly weaker) algo-
rithm that only considers the vertex ordering O, 1, 2,...,
|V|—1 (as in 7). The vehicle starts from 0, being filled with
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O units, and traverses 7 while performing refill trips to the
depot whenever it is empty (i.e., algorithm SplitALG with
£ = Q). As in the proof of Theorem 3.1, we first condition
on the demand realization ¢; at each vertex i € V\{r}. A
vertex i € V is called a breakpoint if the vehicle executes
a refill trip to r from i. Let U be the set of all breakpoints
and |U| = u; for notational uniformity, we also include r
as a break point. Then the length of the vehicle’s route is
d(t)+2> v d(r, w). We now establish the following key
claim. O

CrLamm 3.3. We have

2-) d(r,w)<d(1)+= qu d(r,v).

welU veV

ProoOF. Let the breakpoints U consist of r = S, B,
..., B,_; in that order along 7. For any [/ € {0,1,...,
u — 1} :=[u], let 7, denote the portion of tour 7 between
vertices B, and 3,,, inclusively (the indices are mod-
ulo u). Note that 7 is the concatenation 7, - 7+ 7,_;,
ie., Y47 d(1) =d(t). For each [ € [u], define a subtour
originating and ending at r as m, := (r, 8;) - 7, - (B;1, 7).
Observe that the route traced by the vehicle is precisely
the concatenation - 7, - 7, - - - 7,_,. Because the vehicle
capacity is Q and it makes refill trips only when it runs
out of items, the vehicle delivers exactly Q units in each
segment 77, (for 0 <! < u—2), and Q' < Q units in the last
segment r,_,. For each [ € [u] and vertex i € 7, let C,(i)
denote the number of units delivered at vertex i by the vehi-
cle in segment ;. For technical reasons, set C,_,(r) :=
O — Q'. From the preceding discussion, we obtain:

Z C[(i) =0,

ieT;

Z C,(i) = q;,

llie,

Vie[u], and
VieV\{r}). (1)

Consider any fixed segment 7, (for [ € [u]). For any ver-
tex i € 7, let #(i, B;) (respectively, t(i, 8,,)) denote the
length along 7,, from B, to i (respectively, i to 3,,,). It fol-
lows that (i, 8,) +t(i, B,;.,) = d(7,) for all vertices i € 7,.
By the triangle inequality, we have:

d(B,r) <d(By, i) +d (i, r) <t(By, i) +d(i, r) }

d(Brr, 1) Sd(Bryy, 1) +d(ir) <t(Bryy, i) +d(i,r)
for all vertices i € 7,.

Taking a convex combination of the first (respectively, sec-
ond) set of inequalities, with multiplier C,(i)/Q for each
i € T;, we obtain the following. (Equation (1) implies that
these are indeed convex multipliers.)

a(B.r) <X UL 1By +ati. )
d(Brs1, 1) < i) i) +d(i,r)).

ieT Q

Adding these two inequalities (using properties of #(-) and
C,(-) from above),

(B ) +dBr. ) <X D (B ) + 1B )

ien Q
ier; Q
C
()Y ’Q() + 2360t

=d(7)+ é Y C(i)-d(i,r).

i€

Finally, adding the above inequality over / € [u], where the
indices [/ are modulo u,

u—1
2. Z d(w,r)= Z(d(ﬁz, r)+d(Bis 1))
SWIGEE P STORIOR
i€V ilier

<d(n)+= ¥ q-d(ir).
0 ieV\r

The last inequality uses Equation (1). Thus we obtain the
claim. O

Claim 3.3 gives 2- >, ., d(r, w) < d(7)+LB(g), which
implies that conditioned on demands {g;},.y, the solution
length is at most 2-d(7) 4+ LB(g). Taking expectations, we
obtain the desired bound on the cyclic heuristic. [

REMARK. We note that Theorems 3.1 and 3.2 hold even if
the range of demand random variables is unbounded. The
only difference in the proof of Theorem 3.1 would be to
use E[number of refill trips from {] in place of Pr[i is the
break point]. For Theorem 3.2, we can treat the breakpoints
as a multiset and the same analysis holds.

4. Unsplit-Delivery VRPSD

We now consider the unsplit-delivery problem, where the
demand at any location has to be satisfied in a single visit
to it, and prove a constant approximation guarantee. This
algorithm has one notable difference from the split-delivery
algorithm—the vehicle does not necessarily refill to full
capacity Q every time it revisits the depot; this aspect
seems crucial to proving the performance guarantee.

THEOREM 4.1. There is a randomized (2 4 «)-approxima-
tion algorithm for VRPSD with unsplit deliveries.

PrOOF. The algorithm UnsplitALG is very similar to the
split-delivery case and is given below.

1. Compute an «-approximate TSP tour 7 on all
locations.
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2. Number the locations such that r is numbered 0 and
the tour 7 visits locations in the order 0, 1,2, ...,|V|—1.
3. Choose a uniformly random value £ € [0, Q] and ini-
tialize the vehicle to carry £ units.
4. The vehicle starts at location 0, and for each i =
I,..., V| =1 does:
(a) Let U, be the units (of the item) carried by the
vehicle when it visits vertex i.
(b) Let g; be the demand observed at vertex i.
(c) If ¢; < U, then serve the demand at i and move
on to vertex i + 1 (with U, < U, — g;).
(d) If ¢, > U,, then make rwo visits to and from the
depot:
¢ In the first visit, the vehicle fills up till g, units at
r and serves the demand at i.
* In the second visit, the vehicle fills up till Q +
U, — g units at r, and returns to .
Then move on to vertex i + 1 with ZZ.H <~ Q0+U —q.
Just as in Theorem 3.1, we first condition on the real-
ization ¢; of demands at all locations i € V\{r}. Again,
location i € V is called a breakpoint if the vehicle executes
a refill trip to r from i (i.e., Step 4(d) applies at loca-
tion i). We claim that for the same realization of demands,
the breakpoints encountered by Algorithms SplitALG and
UnsplitALG are identical. This follows from the obser-
vation that for all locations i € V\{r}, the value Q, (in
SplitALG) equals U, (in UnsplitALG). Thus (from proof of
Theorem 3.1), we have Pr[i is breakpoint] = ¢;/Q for algo-
rithm UnsplitALG as well. Note that the solution length in
UnsplitALG equals d(7) +43_,.., d(r, i) - I(i breakpoint),
where [(i breakpoint) is the indicator random variable for i
being a breakpoint (for each i # r). Hence, the expected
solution length (conditioned on {g;};cy\(,) is:

d(7)+4) Prfi is the breakpoint] - d(r, i) = d(7)
i#r

25 g -d(r, i) =d(7)+2-LB(q)
Q i#r

+2-
Unconditionally, the expected solution length from Unsplit-
ALG is d(7)+2- E[LB(g)]. Noting that 7 is an a-approx-
imate TSP tour, and E[LB(g)] is a lower bound for even
split-delivery VRPSD, we obtain that UnsplitALG achieves
a (24 a) approximation for unsplit-delivery VRPSD.

REMARK. A more natural strategy than the randomized one
above would be to always refill to capacity Q. We note that
this algorithm also achieves a constant approximation guar-
antee: this can be proved along the lines of Theorem 3.2.
However, the resulting bound is again weaker than what is
achievable using randomization.

5. Conclusions

In this paper, we presented an (1 + «)-approximation algo-
rithm for the split-delivery VRP with stochastic demands
(where « is the approximation ratio for TSP), and a
(2 + a)-approximation for the unsplit-delivery version of
the problem. The natural open question is to improve these
guarantees: because the presented bounds match those for
the deterministic versions, the first step in this direction
would be to improve the approximation ratio for deter-
ministic VRP, which has not seen any real improvement
since Haimovich and Rinnooy Kan (1985).
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