
A MATTER OF DEGREE:IMPROVED APPROXIMATION ALGORITHMS FORDEGREE-BOUNDED MINIMUM SPANNING TREES �J. K�ONEMANN AND R. RAVIAbstra
t. In this paper, we present a new bi
riteria approximation algorithm for the degree-bounded minimum spanning tree problem. In this problem, we are given an undire
ted graph, anonnegative 
ost fun
tion on the edges, and a positive integer B�, and the goal is to �nd a minimum
ost spanning tree T with maximum degree at most B�. In an n-node graph, our algorithm �ndsa spanning tree with maximum degree O(B� + log n) and 
ost O( optB� ) where optB� is theminimum 
ost of any spanning tree whose maximum degree is at most B�. Our algorithm uses ideasfrom Lagrangean duality. We show how a set of optimum Lagrangean multipliers yields bounds onboth the degree and the 
ost of the 
omputed solution.Key words.AMS subje
t 
lassi�
ations.1. Introdu
tion.1.1. Motivation and formulation. In the design of 
omputer networks a fun-damental problem is that of transmitting a single information pa
ket from a givensour
e-host to a set of re
ipient-hosts. This problem is widely known as the broad
astor multi
ast problem, depending on whether we want to transmit the pa
ket to allother hosts or to a spe
i�
 subset of re
ipients. Both problems have been widelystudied [3, 6, 18℄. In parti
ular, it is believed that the multi
ast problem will play anin
reasingly important role in data networks.A naive solution to the multi
ast problem would be to implement it as a seriesof uni
asts. In other words, the sour
e sends a single pa
ket to every re
ipient host.The routing is done independently for ea
h of the uni
asts. However, the 
ost of thisapproa
h in terms of bandwidth 
onsumption be
omes una

eptable if the number ofhosts in the multi
ast group grows.Graph theoreti
 ideas have turned out to be essential in the design of eÆ
ientnetwork routing proto
ols. A physi
al network 
an be modeled as a 
omplete graphwhere ea
h host is asso
iated with a node and an edge represents the virtual linkbetween the 
orresponding hosts. Usually, edges of that graph are annotated bythe transmission delay of the 
orresponding virtual link. A standard solution tobroad
asting and multi
asting problems is then to send pa
kets along the edges of aminimum spanning tree rooted at the sour
e node [18℄. Every internal node dupli
atesthe in
oming message and sends it to its 
hildren.However, a spanning tree might have a high fan-out out at 
ertain internal nodes.Swit
hes in point-to-point networks may vary in their ability to support multi
asting.That is, some routers may not support multi
asting at all and others may only supporta limited number of 
opies they 
an make of an in
oming pa
ket [20℄. Bauer andVarma [1℄ show that it is natural to model swit
h 
apabilities by node degrees ingraphs.The pre
eding dis
ussion suggests that a solution to the multi
asting problemshould minimize the total transmission delay and the maximum degree of a vertex�GSIA, Carnegie Mellon University, Pittsburgh, PA 15213. EMail: fjo
hen,ravig�
mu.edu. Re-sear
h supported in part by NSF grant 96-25279.1



2 J. K�onemann and R. Raviin the 
omputed solution. Traditional approa
hes for this kind of bi
riteria problemoften 
ompute the minimum-
ost solution under a linear 
ombination of the two 
ostmeasures [14, 17℄. However, in the 
ase of very disparate obje
tives these te
hniquesusually do not produ
e useful solutions.In this paper, we address a natural budgeted version of the degree-bounded min-imum spanning tree problem (BMST). Here, we are given an undire
ted graph G =(V;E), a 
ost fun
tion 
 : E ! IR+ and a positive integer B � 2. We would like to�nd a spanning tree T of maximum vertex degree at most B and minimum 
ost. Thisformulation was �rst introdu
ed in [17℄ and 
an be modeled by the following integerlinear program. optB = min Xe2E 
exe (IP)s.t x(Æ(v)) � B 8v 2 V (1.1)x 2 SPGx integerHere, Æ(v) denotes the set of all edges of E that are in
ident to v and SPG isthe spanning tree polyhedron, that is, the 
onvex hull of edge-in
iden
e ve
tors ofspanning trees of G. We note that 
omplete des
riptions of SPG are known in theliterature ([2, 4℄).1.2. Previous work and our result. Ravi et al. [17℄ showed how to 
om-pute a spanning tree T of maximum degree O(B log ( nB )) and total 
ost at mostO(log n) optB . They generalize their ideas to Steiner trees, generalized Steiner forestsand the node-weighted 
ase.Another result that is related to our work is given in a paper by Khuller, Ragh-ava
hari and Young [11℄. The authors show how to 
ompute a spanning tree of npoints in the plane that has degree at most 3 (4) and 
ost at most 1:5 (1:25) that ofa minimum-
ost spanning tree (without any degree 
onstraints).While the approximation fa
tor of O(log n) on the 
ost of the solution 
annotbe improved substantially (via redu
tions from the set 
overing problem [12℄) in thenode-weighted 
ase, improvements for the edge-weighted 
ase were left open in [17℄.Our main result is su
h an improvement and is stated in the following theorem. Wedenote the degree of a node v in tree T by ÆT (v). Let the maximum node degree ina tree T be denoted by �(T ).Theorem 1.1. There is a polynomial-time approximation algorithm that, givena graph G = (V;E), a nonnegative 
ost fun
tion 
 : E ! IR+, a 
onstant B� � 2 anda parameter ! > 0, 
omputes a spanning tree T su
h that1. �(T ) � (1 + !)bB� + logb n for any arbitrary 
onstant b > 1, and2. 
(T ) < (1 + 1=!)optB� .For instan
e, 
hoosing ! = 1=2 and b = 2 would yield a tree with degree at most3B� + log2 n and 
ost at most 3optB� .1.3. Te
hnique: Lagrangean Duality. Our algorithm builds on the Lagrangeandual of (IP) resulting from dualizing the degree 
onstraints. We denote its value byoptLD(B) . optLD(B) = max��0 minT2 SPG f
(T ) +Xv2V �v(ÆT (v) �B)g: (LD(B))



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 3For any �xed � � 0, an optimum integral solution to (IP) is a feasible 
andidatefor attaining the inner minimum above. Sin
e the maximum degree of su
h a solutionis at most B and � � 0, it follows that optLD(B) is a lower bound on optB .Proposition 1.2. [15℄ optLD(B) � optBThe interesting fa
t is that optLD(B) 
an be 
omputed in polynomial time [15℄.The result is a ve
tor �B of optimum Lagrangean multipliers on the nodes and a set ofoptimum trees OB, all of whi
h a
hieve the inner minimum for this set of multipliers.In other words, every tree TB 2 OB minimizes the following obje
tive:
(TB) +Xv2V �Bv (ÆTB (v)�B):Given �B , the task of �nding a tree T that minimizes the above obje
tive fun
tion is
alled the Lagrangean subproblem of LD(B).Using 
�B (uv) = 
(uv) + �Bu + �Bv the last expression 
an be restated as
�B (TB)�BXv2V �Bv (1.2)Noti
e that for a given �B and B, the se
ond term is a 
onstant. Hen
e, any minimumspanning tree of G under 
ost 
�B , denoted by MST(G; 
�B ), is a solution for T .An important feature of our algorithm is to relax the degree 
onstraints slightlyfrom B to (1 + !)B for some �xed ! > 0 and show that there is a tree T 2 O(1+!)Bthat satis�es the 
onditions of Theorem 1.1.This paper is organized as follows: in Se
tion 2 we review results on the relatedminimum-degree spanning tree problem. In parti
ular, we present the fundamentalideas from [5, 7℄. In Se
tion 3, we state our algorithm. Finally, we give the analysisof our pro
edure in Se
tion 4.2. Minimum Degree Spanning Trees. Related to the BMST problem is theproblem of minimizing the maximum degree of a spanning tree in some graph G(MDST). This problem is NP-hard sin
e the Hamiltonian path problem is a spe
ial
ase. In fa
t, it isNP-
omplete to de
ide for any k � 2 whether G 
ontains a spanningtree of maximum degree k [8℄.F�urer and Raghava
hari presented an approximation algorithm with an additiveperforman
e guarantee of one [7℄: i.e., they des
ribe a polynomial time algorithm that�nds a spanning tree T of G su
h that �(T ) � ��+1, where �� denotes the minimumpossible maximum degree over all spanning trees. In the same paper the authors alsogive a lo
al sear
h algorithm for the MDST problem. This approa
h yields a treewith maximum degree at most b�� + logb n for any 
onstant b > 1. Later, Fis
hernoted that this pro
edure 
an be adapted to �nd a minimum-
ost spanning tree ofapproximately minimum maximum degree in an edge-weighted graph [5℄.The lo
al sear
h algorithms from [5, 7℄ play an important role in this paper. Inthis se
tion we show a minor strengthening of these results that is 
ru
ial to theanalysis of our algorithm.2.1. A lo
al improvement algorithm. In this se
tion, we explain the basi
ideas from the lo
al sear
h algorithm for the MDST problem. We state the algorithmsin
e we use it later. The pro
edure starts with a spanning tree T and tries to improveit by swapping non-tree edges against tree edges.



4 J. K�onemann and R. RaviDefinition 2.1. Given a tree T and a non-tree edge uv, let C(uv) be the unique
y
le in T [ fuvg and let wz 2 C(e). We 
all the swap huv; wzi an improvement forw if maxfÆT (u); ÆT (v)g+ 1 < ÆT (w):If an edge swap huv; wzi is an improvement step for either w or z then the maximumdegree of the nodes u; v; w and z de
reases as a result of the swap; We 
all su
h aswap simply an improvement.The algorithm in [7℄ performs improvement steps as long as possible. In fa
t,it is not hard to see that starting with an arbitrary tree, the number of possibleimprovements is �nite. We end up with a lo
ally optimal tree.Definition 2.2. A tree T is 
alled lo
ally optimal (LOT) if no vertex degree 
anbe de
reased by applying an improvement swap.Computing a lo
ally optimal tree might be too ambitious a goal however. In fa
t,it is not known how to do this in polynomial time. However, the analysis in [7℄ showsthat it is enough to 
ompute a pseudo-optimal tree.Definition 2.3. A tree T of maximum degree �(T ) is 
alled pseudo-optimal(POT) if for all verti
es v with �(T ) � dlogb ne � ÆT (v) � �(T ), no improvementstep for v is appli
able. Here b is an arbitrary 
onstant bigger than one.Fis
her's adaptation [5℄ of the algorithm from [7℄ 
omputes a minimum-
ost span-ning tree of approximately minimum maximum degree. To obtain his algorithm wehave to make two small 
hanges to the pro
edure from [7℄. First, instead of startingwith an arbitrary spanning tree, we start with a minimum-
ost spanning tree. Se
ond,an improvement step must be 
ost neutral. That is, for an improvement step huv; wzito be appli
able we must have 
uv = 
wz. Algorithm 1 states the pro
edure.Algorithm 1 The algorithm PLo
al 
omputes a pseudo-optimal tree.1: Given: graph G = (V;E) and 
ost fun
tion 
 : E ! IR+2: T  MST(G; 
)3: while T is not pseudo optimal do4: Identify 
ost neutral improvement huv; wzi5: T  T � wz + uv6: end while2.2. Analysis and running time. In what follows we highlight and strengthenthe major ideas of the analysis from [5, 7℄. The strengthening is due to �Eva Tardos[19℄ and leads to a shorter and simpler proof of Lemma 4.5 than the one that appearedin the extended abstra
t [13℄.The fundamental underlying proof idea for the unweighted problem is based onan averaging argument that we present here. Let a setW � V be su
h that for a givengraph G = (V;E), the graph G[V �W ℄ has t 
onne
ted 
omponents. A spanning treeof G has to 
onne
t these t 
omponents and the nodes from W . We need exa
tlyt + jW j � 1 edges going between the nodes of W and the t 
onne
ted 
omponentsto a

omplish this. Ea
h of these edges must be in
ident to a node from W . Hen
eaveraging yields a lower bound of (t+ jW j�1)=jW j on the maximum degree �� of T .Proposition 2.4. [7℄ Let W be a set of size w whose removal splits G into t
omponents. Then �� � �w+t�1w �.



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 5We now turn to the weighted 
ase, i.e. the minimum-degree minimum-
ost span-ning tree problem. The above mentioned strengthening of the results from [5℄ is basedon the following de�nitions.Definition 2.5. Given an undire
ted graph G = (V;E) and a non-negative 
ostfun
tion 
 on the edges, let O
 be de�ned asO
 = fT : T is an MST under 
ost 
g:In the following we will be talking about 
onvex 
ombinations of spanning trees.Hen
e we introdu
e some further simplifying notation.Definition 2.6. Let T�
 = PT2O
 �TT be a 
onvex 
ombination of minimum-
ost spanning trees of G with respe
t to 
ost fun
tion 
, i.e. �T � 0 for all T andPT2O
 �T = 1. We denote the fra
tional degree of vertex v in T�
 byÆ�
 (v) = XT2O
 �T ÆT (v):Finally we de�ne the minimum maximum degree of 
onvex 
ombinations of span-ning trees.Definition 2.7. Given G = (V;E) and a non-negative 
ost fun
tion 
 on theedges, let ��
 denote the minimum maximum degree of any 
onvex 
ombination ofminimum-
ost spanning trees, i.e.��
 = min
onvex 
omb. � maxv2V Æ�
 (v):The following easy proposition will be used in the later analysis.Proposition 2.8. [7℄ For any 
onstant b > 1 and a tree T , let Sd be the set ofnodes that have degree at least d in T . Then, there is ad 2 f�T � dlogb ne+ 1; : : : ;�T gsu
h that jSd�1j � bjSdj.The main theorem is the following.Theorem 2.9. [5, 7℄ If T is a pseudo-optimal MST, then �T < b��
+dlogb ne forany 
onstant b > 1. Moreover, a pseudo-optimal MST 
an be 
omputed in polynomialtime.Proof. Given a 
onstant b > 1, 
hoose d as in Proposition 2.8. That is, we havejSd�1j � bjSdj. Re
all that Sd 
ontains the nodes of degree at least d in the tree T .Removing Sd from T leaves us with a forest F . Let bG be obtained from Gby 
ontra
ting ea
h 
onne
ted 
omponent of F . It is now easy to see that everyminimum-
ost spanning tree of G 
ontains a minimum-
ost spanning tree of bG (e.g.,every edge added by Kruskal's algorithm for �nding a minimum-
ost spanning treefor G is feasible for a minimum-
ost spanning tree of bG if it were not 
ontra
ted inthe formation of bG).Let (u; v) 2 E � T be an edge that 
onne
ts two 
omponents of F su
h thatu; v 62 Sd�1, i.e. both u and v have degree at most d� 2. We 
laim that su
h an edge
annot be in
luded in any minimum spanning tree of bG. To see that, let P Tu;v be theedges of the unique u; v-path in T and let dP Tu;v be the subset of the edges of P Tu;v thatare in bG.



6 J. K�onemann and R. RaviIt follows from the pseudo-optimality of T that the 
ost of edge (u; v) must behigher than the 
ost of ea
h edge from dP Tu;v . For otherwise, (u; v) 
an be swapped inpla
e of another edge of the same or higher 
ost in dP Tu;v and all su
h edges are in
identto at least one node in Sd�1, leading to an improvement. This means (u; v) 
annot bea part of any minimum spanning tree of bG. Equivalently, a minimum-
ost spanningtree of G must use edges in
ident to Sd�1 to 
onne
t the 
omponents of F and thenodes of Sd.By the de�nition of Sd, we know that F has at leastjSdjd� 2(jSdj � 1) = jSdj(d� 2) + 2trees. This follows from an easy 
ounting argument after observing that every nodein Sd has degree at least d in T and there are at most jSdj � 1 edges going betweennodes of Sd.This means that we need at leastjSdj(d� 2) + 2 + jSdj � 1 = jSdj(d� 1) + 1edges to 
onne
t up the 
omponents of F and the nodes of Sd in any spanning tree.By the pre
eeding argument ea
h of these edges has to be in
ident to at least onenode of degree at least d � 1 in an MST. Hen
e the the average degree of a node ofSd�1 in any MST is jSdj(d� 1) + 1jSd�1j :Moreover, the average degree of a node in Sd�1 in any 
onvex 
ombination of MSTsis also at least the above ratio. Sin
e ��
 denotes the minimum possible maximumdegree of any fra
tional MST, it follows using our 
hoi
e of index d from Proposition2.8 that ��
 > d� 1b :Using the range of d we obtain �(T ) < b��
 + dlogb ne. The results in [5, 7℄ showa lower-bound on the degree of any MST. The extention to fra
tional MST's is thementioned strengthening [19℄ of the previous ideas.For the running time we follow [7℄. Note that ea
h improvement step 
an beimplemented in polynomial time. We need to bound the number of iterations. Theproof uses a potential fun
tion argument. De�ne the potential of a vertex v as�(v) = 3ÆT (v)where T is the 
urrent tree. The total potential is the sum over all vertex potentials,that is �(T ) = Xv2V �(v):Now, an improvement step in Algorithm 1 improves the degree of a vertex v 2 Sdwith ÆT (v) = d and d � �(T )� dlogb ne+ 1. Hen
e, the redu
tion in the potential isgoing to be at least (3d + 2 � 3d�2)� 3 � 3d�1 = 2 � 3d�2:



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 7Using the range of d we 
an lower bound the right hand side of the last equality by3�(T )�logb n�1 = 
�3�(T )n � :The potential �(T ) of the tree T is at most n3�(T ). This implies that the overallde
rease of the potential due to the improvement step is
��(T )n2 �In other words, we redu
e the potential by at least a polynomial fa
tor in ea
h itera-tion. In O(n2) iterations the redu
tion is by a 
onstant fa
tor. Hen
e, the algorithmneeds O(n3) improvement steps in total.3. The BMST-Algorithm. In this se
tion, we des
ribe our algorithm for theBMST problem. It uses the Lagrangean formulation LD(B) from the introdu
tionand Algorithm 1.The input to our algorithm 
onsists of a graph G, a non-negative 
ost fun
tion 
,a degree bound B� and a positive 
onstant !. Let B = (1 + !)B�.Algorithm 2 Our algorithm for the BMST problem1: Given: graph G = (V;E), a 
ost fun
tion 
 : E ! IR+, a degree bound B� � 2and a parameter ! > 0.2: B  (1 + !)B�3: �B  Solve(LD(B))4: T  PLo
al(G; 
�B )Sin
e the optimum Lagrange multipliers and pseudo-optimal MSTs 
an be 
om-puted in polynomial time [7, 15℄, Algorithm 2 runs in polynomial time.Re
all that 
�B denotes the original 
ost fun
tion 
 augmented by the Lagrangeanmultipliers �B , i.e. 
�Buv = 
uv+�u+�v. We use OB to denote the set of all minimum-
ost spanning trees of G for 
ost fun
tion 
�B .4. Analysis. In this se
tion we prove Theorem 1.1. First we show that the 
ost
(T ) of the tree output by Algorithm 2, T , is small. Then, we prove that T has lowmaximum degree. Our proofs rely on te
hniques from Lagrangean duality.4.1. The 
ost of T . Re
all that optLD(B) � optB from Proposition 1.2. Un-fortunately, optLD(B) = optB is not true in general. There might be a duality gap.However, it 
an be shown that optLD(B) equals the optimum obje
tive fun
tion valueof the relaxation of (IP). The proof is insightful and hen
e we present it here.Theorem 4.1. [15℄ optLD(B) = minf
(T ) : T 2 SPG ;8v 2 V : ÆT (v) � BgProof. We 
an restate (LD(B)) as the following linear program in variables � and�. Re
all that we denote its maximum obje
tive fun
tion value by optLD(B) .max � (4.1)s.t. � � 
(T )�Xv2V �v(B � ÆT (v)) 8T 2 SPG� � 0



8 J. K�onemann and R. RaviThe �rst blo
k of 
onstraints states that � is at most the 
ost of any spanning treeT of G with respe
t to the Lagrangean fun
tion (1.2). The maximization obje
tiveof (4.1) for
es � to attain the best possible 
ost. Writing down the dual of the lastprogram yields min 
( XT2 SPG �TT ) (4.2)s.t. XT2SPG �T = 1XT2SPG �T ÆT (v) � B XT2 SPG �T = B 8v 2 V� � 0Note that T� =PT2 SPG �TT is a 
onvex 
ombination of trees in SPG . Also, observethat PT2 SPG �T ÆT (v) is pre
isely the degree Æ�(v) of this fra
tional tree at node v.These observations yield the theorem.The theorem has two ni
e 
orollaries that we use. In the following, let �B denotethe ve
tor of optimum Lagrangean multipliers for (LD(B)). Re
all that OB is the setof minimum-
ost spanning trees under 
�B .Corollary 4.2. There exists a 
onvex 
ombination T� = PT2OB �TT su
hthat 1. 8v 2 V : Æ�
�B (v) � B and2. �Bv > 0 only if Æ�
�B (v) = B.Proof. This follows from 
omplementary sla
kness applied to the optimum solu-tions of the dual linear programs (4.1) and (4.2).The se
ond 
orollary gives a bound on ��
�B .Corollary 4.3. ��
�B � BProof. By Corollary 4.2, we know that there is a 
onvex 
ombination T� of treesfrom OB su
h that Æ�
�B (v) � B for all v. Hen
e��
�B = min� maxv2V Æ�
�B (v) � B:We now prove that 
(T ) is small.Lemma 4.4. For all trees T 2 OB we have 
(T ) < (1 + 1=!)optB� .Proof. Re
all that we de�ned B = (1 + !)B�The following inequality holds for every T 2 OB :Xv2V �Bv (ÆT (v) �B�) � 
(T ) +Xv2V �Bv (ÆT (v) �B�) (4.3)� optLD(B�)In the �rst inequality we just added 
(T ). Note, that the right hand side of the �rstline is just the Lagrangean obje
tive fun
tion (1.2) for B�. Re
all that T is a minimumspanning tree with respe
t to 
�B . Moreover, �B is a feasible set of multipliers for(LD(B�)). Hen
e, the se
ond inequality follows.



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 9We also have
(T ) = 
(T ) +Xv2V �Bv (ÆT (v)�B�) +Xv2V �Bv (B� � ÆT (v))� optLD(B�) +Xv2V �Bv (B� � ÆT (v))where the inequality follows from (4.3). Applying Proposition 1.2 and the fa
t thatÆT (v) � 1 for all v 2 V leads to
(T ) < optB� +B�Xv2V �Bv :In the remainder of this proof we will derive the inequality B�Pv2V �Bv � optB�=!.This yields the lemma. From Corollary 4.2, we know that there is a 
onvex 
ombina-tion T� = XT2OB �TTsu
h that �Bv > 0 only if Æ�
�B (v) = B.We derive a new inequality by summing over all T 2 OB , �T times the inequality(4.3) for ea
h T . We obtainXT2OB �T  Xv2V �Bv (ÆT (v)�B�)! � optLD(B�) XT2OB �T (4.4)The right hand side is equivalent to opt LD(B�) be
ausePT2OB �T = 1. Reorderingthe left hand side yields Xv2V �Bv   XT2OB �T ÆT (v)!�B�!Instead of summing over all v 2 V it suÆ
es to sum over v, where �Bv > 0. For su
hv, we have Æ�
�B = XT2OB �T ÆT (v) = Bby Corollary 4.2. Using B = (1 + !)B� it follows that the left hand side of (4.4) isequivalent to !B�Xv2V �Bvand this �nishes the proof of the lemma.4.2. The Maximum Degree of T . Lemma 4.5. �T � (1 + !)bB� + dlogb nefor 
onstants b > 1 and !.Proof. T is a pseudo-optimal minimum-
ost spanning tree with respe
t to 
ostfun
tion 
�B . From Theorem 2.9 we know that�T � b��
�B + dlogb ne:An appli
ation of Corollary 4.3, noting B = (1 + !)B� yields the lemma.



10 J. K�onemann and R. Ravi5. Con
lusions.5.1. Summary and remarks. In this paper we developed an improved ap-proximation algorithm for the degree-bounded minimum spanning tree problem. Fora positive 
onstant B� and an n-node graph, our method 
omputes a spanning treewhose 
ost is at most a 
onstant fa
tor worse than the 
ost of the optimum degree-B�-bounded minimum spanning tree. Additionally, we proved that the maximum degreeof the resulting tree is O(B�+logn). Our pro
edure solves a Lagrangean relaxation ofthe BMST integer program for slightly relaxed degree 
onstraints ((1 + !)B� insteadof B�). We showed how this sla
k helps to prove low 
ost of the resulting tree. Ouralgorithm also makes use of a lo
al sear
h te
hnique from [5, 7℄. We showed how aslight strengthening of the results in [5, 7℄ 
an be used to prove low maximum degreeof the resulting tree.As a side note, the reader should noti
e that in Algorithm 2 we assumed the exa
tsolution of (LD(B)). However, in an implementation, a reasonable approximation tothe optimum Lagrangean multipliers will most likely be suÆ
ient. To 
ompute su
h anapproximation, we 
ould employ subgradient optimization te
hniques from [9, 10, 16℄.5.2. Extensions and open questions. An interesting open question is whetherour results extend to the 
ase of Steiner trees and general Steiner networks. The
entral diÆ
ulty of su
h an extension stems from the fa
t that, in the Steiner 
ase,the subproblem that arises from dualizing the degree 
onstraints (the minimum 
ostSteiner tree problem) is NP-hard itself.Another avenue for extending our work is to examine if our approa
h 
apable ofhandling individual node degrees? In the 
urrent version, node degrees are assumedto be uniform. Lemma 4.5 relies on the pseudo-optimality of tree T from Algorithm 2and on results from [5, 7℄. These results do not apply to non-uniform degrees. Is therean extention of the known MDST algorithms to handle individual degree bounds?We believe that the te
hniques used in this paper 
an be generalized to apply toa broader 
lass of multi
riteria problems. A 
entral point in the development of amore general framework is the identi�
ation of key properties of suitable optimizationproblems; in the BMST problem, the dualization of the degree 
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t form of the obje
tive fun
tion ofthis subproblem proved to be a key for the analysis.A
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