A MATTER OF DEGREE:
IMPROVED APPROXIMATION ALGORITHMS FOR
DEGREE-BOUNDED MINIMUM SPANNING TREES *

J. KONEMANN AND R. RAVI

Abstract. In this paper, we present a new bicriteria approximation algorithm for the degree-
bounded minimum spanning tree problem. In this problem, we are given an undirected graph, a
nonnegative cost function on the edges, and a positive integer B*, and the goal is to find a minimum
cost spanning tree 1" with maximum degree at most B*. In an n-node graph, our algorithm finds
a spanning tree with maximum degree O(B* + logn) and cost O(opt g.) where opt p. is the
minimum cost of any spanning tree whose maximum degree is at most B*. Our algorithm uses ideas
from Lagrangean duality. We show how a set of optimum Lagrangean multipliers yields bounds on
both the degree and the cost of the computed solution.
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1. Introduction.

1.1. Motivation and formulation. In the design of computer networks a fun-
damental problem is that of transmitting a single information packet from a given
source-host to a set of recipient-hosts. This problem is widely known as the broadcast
or multicast problem, depending on whether we want to transmit the packet to all
other hosts or to a specific subset of recipients. Both problems have been widely
studied [3, 6, 18]. In particular, it is believed that the multicast problem will play an
increasingly important role in data networks.

A naive solution to the multicast problem would be to implement it as a series
of unicasts. In other words, the source sends a single packet to every recipient host.
The routing is done independently for each of the unicasts. However, the cost of this
approach in terms of bandwidth consumption becomes unacceptable if the number of
hosts in the multicast group grows.

Graph theoretic ideas have turned out to be essential in the design of efficient
network routing protocols. A physical network can be modeled as a complete graph
where each host is associated with a node and an edge represents the wvirtual link
between the corresponding hosts. Usually, edges of that graph are annotated by
the transmission delay of the corresponding virtual link. A standard solution to
broadcasting and multicasting problems is then to send packets along the edges of a
minimum spanning tree rooted at the source node [18]. Every internal node duplicates
the incoming message and sends it to its children.

However, a spanning tree might have a high fan-out out at certain internal nodes.
Switches in point-to-point networks may vary in their ability to support multicasting.
That is, some routers may not support multicasting at all and others may only support
a limited number of copies they can make of an incoming packet [20]. Bauer and
Varma [1] show that it is natural to model switch capabilities by node degrees in
graphs.

The preceding discussion suggests that a solution to the multicasting problem
should minimize the total transmission delay and the maximum degree of a vertex
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in the computed solution. Traditional approaches for this kind of bicriteria problem
often compute the minimum-cost solution under a linear combination of the two cost
measures [14, 17]. However, in the case of very disparate objectives these techniques
usually do not produce useful solutions.

In this paper, we address a natural budgeted version of the degree-bounded min-
imum spanning tree problem (BMST). Here, we are given an undirected graph G =
(V, E), a cost function ¢ : E — IR" and a positive integer B > 2. We would like to
find a spanning tree T' of maximum vertex degree at most B and minimum cost. This
formulation was first introduced in [17] and can be modeled by the following integer
linear program.

opty = min Z CeTe (IP)
eckE
st z(d(v))<B WYweV (1.1)
x € SPg
z integer

Here, 6(v) denotes the set of all edges of E that are incident to v and SPgis
the spanning tree polyhedron, that is, the convex hull of edge-incidence vectors of
spanning trees of G. We note that complete descriptions of SPg are known in the
literature ([2, 4]).

1.2. Previous work and our result. Ravi et al. [17] showed how to com-
pute a spanning tree T' of maximum degree O(Blog(g)) and total cost at most
O(logn) opt g . They generalize their ideas to Steiner trees, generalized Steiner forests
and the node-weighted case.

Another result that is related to our work is given in a paper by Khuller, Ragh-
avachari and Young [11]. The authors show how to compute a spanning tree of n
points in the plane that has degree at most 3 (4) and cost at most 1.5 (1.25) that of
a minimum-cost spanning tree (without any degree constraints).

While the approximation factor of O(logn) on the cost of the solution cannot
be improved substantially (via reductions from the set covering problem [12]) in the
node-weighted case, improvements for the edge-weighted case were left open in [17].
Our main result is such an improvement and is stated in the following theorem. We
denote the degree of a node v in tree 7' by 07 (v). Let the maximum node degree in
a tree T be denoted by A(T).

THEOREM 1.1. There is a polynomial-time approximation algorithm that, given
a graph G = (V, E), a nonnegative cost function ¢ : E — IR, a constant B* > 2 and
a parameter w > 0, computes a spanning tree T such that

1. A(T) < (14 w)bB* +log, n for any arbitrary constant b > 1, and
2. ¢(T) < (1+1/w)opt g..

For instance, choosing w = 1/2 and b = 2 would yield a tree with degree at most

3B* + log, n and cost at most 3 opt g..

1.3. Technique: Lagrangean Duality. Our algorithm builds on the Lagrangean
dual of (IP) resulting from dualizing the degree constraints. We denote its value by

OPt.p(B) -

oPtLp) =max min {c(T) + 2 Ao(0r(v) — B)}- (LD(B))
- ¢ LS
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For any fixed A > 0, an optimum integral solution to (IP) is a feasible candidate
for attaining the inner minimum above. Since the maximum degree of such a solution
is at most B and A > 0, it follows that opt; g is a lower bound on optg .

PROPOSITION 1.2. [15] opt; ;5 < opty

The interesting fact is that optp p)can be computed in polynomial time [15].

The result is a vector AP of optimum Lagrangean multipliers on the nodes and a set of
optimum trees OB, all of which achieve the inner minimum for this set of multipliers.
In other words, every tree T2 € OF minimizes the following objective:

o(TP) + > A (075 (v) - B).

veV

Given AP the task of finding a tree 7' that minimizes the above objective function is
called the Lagrangean subproblem of LD(B).

Using *” (uv) = c(uv) + A8 + AB the last expression can be restated as

AP =B A (1.2)
veV

Notice that for a given A® and B, the second term is a constant. Hence, any minimum
spanning tree of G under cost c>‘B, denoted by MST(G, c’\B), is a solution for T'.

An important feature of our algorithm is to relax the degree constraints slightly
from B to (1 + w)B for some fixed w > 0 and show that there is a tree T € Q1+« B
that satisfies the conditions of Theorem 1.1.

This paper is organized as follows: in Section 2 we review results on the related
minimum-degree spanning tree problem. In particular, we present the fundamental
ideas from [5, 7]. In Section 3, we state our algorithm. Finally, we give the analysis
of our procedure in Section 4.

2. Minimum Degree Spanning Trees. Related to the BMST problem is the
problem of minimizing the maximum degree of a spanning tree in some graph G
(MDST). This problem is NP-hard since the Hamiltonian path problem is a special
case. In fact, it is N'P-complete to decide for any k& > 2 whether G contains a spanning
tree of maximum degree k [8].

Fiirer and Raghavachari presented an approximation algorithm with an additive
performance guarantee of one [7]: i.e., they describe a polynomial time algorithm that
finds a spanning tree T' of G such that A(T) < A*+1, where A* denotes the minimum
possible maximum degree over all spanning trees. In the same paper the authors also
give a local search algorithm for the MDST problem. This approach yields a tree
with maximum degree at most bA* + log, n for any constant b > 1. Later, Fischer
noted that this procedure can be adapted to find a minimum-cost spanning tree of
approximately minimum maximum degree in an edge-weighted graph [5].

The local search algorithms from [5, 7] play an important role in this paper. In
this section we show a minor strengthening of these results that is crucial to the
analysis of our algorithm.

2.1. A local improvement algorithm. In this section, we explain the basic
ideas from the local search algorithm for the MDST problem. We state the algorithm
since we use it later. The procedure starts with a spanning tree 7" and tries to improve
it by swapping non-tree edges against tree edges.
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DEFINITION 2.1. Given a tree T and a non-tree edge uv, let C(uv) be the unique
cycle in T U {uv} and let wz € C(e). We call the swap (uv,wz) an improvement for

w if
max{dy(u),0r(v)} +1 < dp(w).

If an edge swap (uv,wz) is an improvement step for either w or z then the maximum
degree of the nodes u,v,w and z decreases as a result of the swap; We call such a
swap simply an improvement.

The algorithm in [7] performs improvement steps as long as possible. In fact,
it is not hard to see that starting with an arbitrary tree, the number of possible
improvements is finite. We end up with a locally optimal tree.

DEFINITION 2.2. A tree T' is called locally optimal (LOT) if no vertex degree can
be decreased by applying an improvement swap.

Computing a locally optimal tree might be too ambitious a goal however. In fact,
it is not known how to do this in polynomial time. However, the analysis in [7] shows
that it is enough to compute a pseudo-optimal tree.

DEFINITION 2.3. A tree T of mazimum degree A(T) is called pseudo-optimal
(POT) if for all vertices v with A(T) — [logyn] < dr(v) < A(T), no improvement
step for v is applicable. Here b is an arbitrary constant bigger than one.

Fischer’s adaptation [5] of the algorithm from [7] computes a minimum-cost span-
ning tree of approximately minimum maximum degree. To obtain his algorithm we
have to make two small changes to the procedure from [7]. First, instead of starting
with an arbitrary spanning tree, we start with a minimum-cost spanning tree. Second,
an improvement step must be cost neutral. That is, for an improvement step (uv,wz)
to be applicable we must have ¢y, = ¢,,. Algorithm 1 states the procedure.

Algorithm 1 The algorithm PLocal computes a pseudo-optimal tree.

1: Given: graph G = (V, E) and cost function ¢ : E — R
2: T < MST(G,c¢)

3: while T is not pseudo optimal do

4:  Identify cost neutral improvement (uv,wz)

5

6

T+ T —wz+uv
: end while

2.2. Analysis and running time. In what follows we highlight and strengthen
the major ideas of the analysis from [5, 7]. The strengthening is due to Eva Tardos
[19] and leads to a shorter and simpler proof of Lemma 4.5 than the one that appeared
in the extended abstract [13].

The fundamental underlying proof idea for the unweighted problem is based on
an averaging argument that we present here. Let a set W C V be such that for a given
graph G = (V, E), the graph G[V — W] has t connected components. A spanning tree
of G has to connect these t components and the nodes from W. We need exactly
t + |W| — 1 edges going between the nodes of W and the ¢ connected components
to accomplish this. Each of these edges must be incident to a node from W. Hence
averaging yields a lower bound of (t+ |W]|—1)/|W| on the maximum degree A* of T'.

PROPOSITION 2.4. [7] Let W be a set of size w whose removal splits G into t
components. Then A* > [%’H]
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We now turn to the weighted case, i.e. the minimum-degree minimum-cost span-
ning tree problem. The above mentioned strengthening of the results from [5] is based
on the following definitions.

DEFINITION 2.5. Given an undirected graph G = (V, E) and a non-negative cost
function c on the edges, let O° be defined as

O°={T :T is an MST under cost c}.

In the following we will be talking about convex combinations of spanning trees.
Hence we introduce some further simplifying notation.

DEFINITION 2.6. Let T = ZTGOC arT be a conver combination of minimum-
cost spanning trees of G with respect to cost function c, i.e. ar > 0 for all T and
Y reo-ar = 1. We denote the fractional degree of verter v in T by

82(w) = Y ardyp(v).

TeO:

Finally we define the minimum maximum degree of convex combinations of span-
ning trees.

DEFINITION 2.7. Given G = (V,E) and a non-negative cost function ¢ on the
edges, let A’ denote the minimum mazimum degree of any conver combination of
minimum-cost spanning trees, i.e.

AY = min max 0 (v).
convexr comb. « VeV

The following easy proposition will be used in the later analysis.
PROPOSITION 2.8. [7] For any constant b > 1 and a tree T', let Sy be the set of
nodes that have degree at least d in T'. Then, there is a

de {Ar —Jlogyn] +1,...,Ar}

such that |Sq—1| < b|Sql.

The main theorem is the following.

THEOREM 2.9. [5, 7] If T is a pseudo-optimal MST, then Ap < bA%+[logyn] for
any constant b > 1. Moreover, a pseudo-optimal MST can be computed in polynomial
time.

Proof. Given a constant b > 1, choose d as in Proposition 2.8. That is, we have
[Sa—1]| < b|S4|- Recall that S; contains the nodes of degree at least d in the tree T

Removing Sy from T leaves us with a forest F'. Let G be obtained from @
by contracting each connected component of F. It is now easy to see that every
minimum-cost spanning tree of G contains a minimum-cost spanning tree of G (e.g.,
every edge added by Kruskal’s algorithm for finding a minimum-cost spanning tree
for G is feasible for a minimum-cost spanning tree of G if it were not contracted in
the formation of G).

Let (u,v) € E —T be an edge that connects two components of F' such that
u,v € Sq_1, 1.e. both v and v have degree at most d — 2. We claim that such an edge
cannot be included in any minimum spanning tree of G. To see that, let P{{: » be the

edges of the unique w, v-path in 7" and let ];iv be the subset of the edges of P{{:v that

are in G.
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It follows from the pseudo-optimality of 7' that the cost of edge (u,v) must be
higher than the cost of each edge from PUT7 - For otherwise, (u,v) can be swapped in

place of another edge of the same or higher cost in PuT7 » and all such edges are incident
to at least one node in S;_1, leading to an improvement. This means (u,v) cannot be
a part of any minimum spanning tree of G. Equivalently, a minimum-cost spanning
tree of G must use edges incident to Sy_1 to connect the components of F' and the
nodes of Sy.

By the definition of S;, we know that F' has at least

|Sald = 2(|Sa| = 1) = |Sal(d = 2) +2

trees. This follows from an easy counting argument after observing that every node
in Sq has degree at least d in T' and there are at most |Sy| — 1 edges going between
nodes of Sy.

This means that we need at least

[Sal(d—2) +2+[Sq| —1=|Sq|(d—1) +1

edges to connect up the components of F' and the nodes of Sy in any spanning tree.
By the preceeding argument each of these edges has to be incident to at least one
node of degree at least d — 1 in an MST. Hence the the average degree of a node of
Sq—1 in any MST is

Sal(d—1) + 1
|Sa—a1|

Moreover, the average degree of a node in Sy_; in any conver combination of MSTs
is also at least the above ratio. Since A’ denotes the minimum possible maximum
degree of any fractional MST, it follows using our choice of index d from Proposition
2.8 that
d-1
A% > 5
Using the range of d we obtain A(T) < bAY + [logyn]. The results in [5, 7] show
a lower-bound on the degree of any MST. The extention to fractional MST’s is the
mentioned strengthening [19] of the previous ideas.
For the running time we follow [7]. Note that each improvement step can be
implemented in polynomial time. We need to bound the number of iterations. The
proof uses a potential function argument. Define the potential of a vertex v as

®(v) = 37

where T' is the current tree. The total potential is the sum over all vertex potentials,
that is

(1) =) ().
veV

Now, an improvement step in Algorithm 1 improves the degree of a vertex v € Sy
with d7(v) = d and d > A(T) — [log, n] + 1. Hence, the reduction in the potential is
going to be at least

(37 42.3972) —3.39"1 = 2.31°2
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Using the range of d we can lower bound the right hand side of the last equality by

A(T
3A(T)710gb n—-1 _ (3 ( )> .
n

The potential ®(T') of the tree T is at most n32(T), This implies that the overall
decrease of the potential due to the improvement step is

0 (42)

In other words, we reduce the potential by at least a polynomial factor in each itera-
tion. In O(n?) iterations the reduction is by a constant factor. Hence, the algorithm
needs O(n?) improvement steps in total. O

3. The BMST-Algorithm. In this section, we describe our algorithm for the
BMST problem. It uses the Lagrangean formulation LD(B) from the introduction
and Algorithm 1.

The input to our algorithm consists of a graph GG, a non-negative cost function c,
a degree bound B* and a positive constant w. Let B = (1 + w)B*.

Algorithm 2 Our algorithm for the BMST problem

1: Given: graph G = (V, E), a cost function ¢ : E — R, a degree bound B* > 2
and a parameter w > 0.

2: B+ (14+w)B*

3: A\ « Solve(LD(B))

4: T + PLocal(G,c)‘B)

Since the optimum Lagrange multipliers and pseudo-optimal MSTs can be com-
puted in polynomial time [7, 15], Algorithm 2 runs in polynomial time.

Recall that ¢*” denotes the original cost function ¢ augmented by the Lagrangean
multipliers A2, i.e. cﬁf = Cup + Ay +Ay. We use OF to denote the set of all minimum-
cost spanning trees of G for cost function A7

4., Analysis. In this section we prove Theorem 1.1. First we show that the cost
¢(T) of the tree output by Algorithm 2, T, is small. Then, we prove that T has low
maximum degree. Our proofs rely on techniques from Lagrangean duality.

4.1. The cost of T. Recall that opt, p(p) < OPt from Proposition 1.2. Un-
fortunately, opt p(B) = 9Pty is not true in general. There might be a duality gap.
However, it can be shown that opt; pg)equals the optimum objective function value
of the relaxation of (IP). The proof is insightful and hence we present it here.

THEOREM 4.1. [15] opt, pp) =min{c(T) : T € Sk ,Yv € V : 0r(v) < B}

Proof. We can restate (LD(B); as the following linear program in variables 7 and
A. Recall that we denote its maximum objective function value by opt g, -

max 1 (4.1)

st. n <) - Z Ao(B —dor(v)) VT € SPs
veV
A>0



8 J. Kénemann and R. Ravi

The first block of constraints states that n is at most the cost of any spanning tree
T of G with respect to the Lagrangean function (1.2). The maximization objective
of (4.1) forces n to attain the best possible cost. Writing down the dual of the last
program yields

min ¢ Z ayT) (4.2)
s.t. Z ar =1

Note that 7% = 3, gp, @rT is a convex combination of trees in SP¢ . Also, observe
that 3 .c gp, @rdr(v) is precisely the degree %(v) of this fractional tree at node v.
These observations yield the theorem. O

The theorem has two nice corollaries that we use. In the following, let A® denote
the vector of optimum Lagrangean multipliers for (LD(B)). Recall that OF is the set
B

of minimum-cost spanning trees under c¢* .

COROLLARY 4.2. There exists a conver combination T* = Y .. os arT such
that

1. Yo eV:6%, (v) < B and
2. A7 >0 only if 6% 5 (v) = B.
Proof. This follows from complementary slackness applied to the optimum solu-
tions of the dual linear programs (4.1) and (4.2). O
The second corollary gives a bound on AZA B-
COROLLARY 4.3. A;B <B

Proof. By Corollary 4.2, we know that there is a convex combination T'% of trees
from OF such that 6% (v) < B for all v. Hence

A% s =minmaxd%s(v) < B.
a veV

We now prove that ¢(7') is small.

LEMMA 4.4. For all trees T € OF we have ¢(T) < (1 + 1/w) opt g..
Proof. Recall that we defined B = (1 + w)B*

The following inequality holds for every T' € OF:

ST AP (60(0) - BY) < o(T) + 3 A (61(v) - BY) (4.3)

veV veV
< opt ;p(Br)

In the first inequality we just added ¢(T). Note, that the right hand side of the first
line is just the Lagrangean objective function (1.2) for B*. Recall that T' is a minimum

spanning tree with respect to A Moreover, AP is a feasible set of multipliers for
(LD(B*)). Hence, the second inequality follows.
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We also have

co(T) = e(T) + Y A (0r(v) = BY) + Y A7 (B" = ér(v))

veV veV

< opt Lpse) T Z AJ(B* = 07 (v))
veV

where the inequality follows from (4.3). Applying Proposition 1.2 and the fact that
dr(v) > 1 for all v € V leads to
¢(T) < opt g. + B* Z AB.
veV

In the remainder of this proof we will derive the inequality B* ), .y, A5 < opt . /w.
This yields the lemma. From Corollary 4.2, we know that there is a convex combina-

tion
7%= Y arT
TeOB

such that A7 > 0 only if 6% (v) = B.
We derive a new inequality by summing over all T € O, ay times the inequality
(4.3) for each T'. We obtain

> ar (Z AB (67 (v) —B*)> < OPt Lp(pey D, Or (4.4)

TeOB veV TeOB

The right hand side is equivalent to opt ; ., because 3 ;.cos ar = 1. Reordering

the left hand side yields
Z/\vB (( Z aT5T(v)> —B*>
veV TeOB

Instead of summing over all v € V it suffices to sum over v, where AZ > 0. For such
v, we have

?/\B = Z aT5T(v) =B
TeOB

by Corollary 4.2. Using B = (1 + w)B* it follows that the left hand side of (4.4) is

equivalent to
wB* Z \B
veV

and this finishes the proof of the lemma. O

4.2. The Maximum Degree of T. LEMMA 4.5. Az < (1 +w)bB* + [log, n]
for constants b > 1 and w.
Proof. T is a pseudo-optimal minimum-cost spanning tree with respect to cost
function ¢*” . From Theorem 2.9 we know that
AT S bA:/\B + |—10gb n] .

An application of Corollary 4.3, noting B = (1 + w)B* yields the lemma. O
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5. Conclusions.

5.1. Summary and remarks. In this paper we developed an improved ap-
proximation algorithm for the degree-bounded minimum spanning tree problem. For
a positive constant B* and an n-node graph, our method computes a spanning tree
whose cost is at most a constant factor worse than the cost of the optimum degree-B*-
bounded minimum spanning tree. Additionally, we proved that the maximum degree
of the resulting tree is O(B* +logn). Our procedure solves a Lagrangean relaxation of
the BMST integer program for slightly relaxed degree constraints ((1 + w)B* instead
of B*). We showed how this slack helps to prove low cost of the resulting tree. Our
algorithm also makes use of a local search technique from [5, 7]. We showed how a
slight strengthening of the results in [5, 7] can be used to prove low maximum degree
of the resulting tree.

As a side note, the reader should notice that in Algorithm 2 we assumed the exact
solution of (LD(B)). However, in an implementation, a reasonable approximation to
the optimum Lagrangean multipliers will most likely be sufficient. To compute such an
approximation, we could employ subgradient optimization techniques from [9, 10, 16].

5.2. Extensions and open questions. An interesting open question is whether
our results extend to the case of Steiner trees and general Steiner networks. The
central difficulty of such an extension stems from the fact that, in the Steiner case,
the subproblem that arises from dualizing the degree constraints (the minimum cost
Steiner tree problem) is A"P-hard itself.

Another avenue for extending our work is to examine if our approach capable of
handling individual node degrees? In the current version, node degrees are assumed
to be uniform. Lemma, 4.5 relies on the pseudo-optimality of tree T from Algorithm 2
and on results from [5, 7]. These results do not apply to non-uniform degrees. Is there
an extention of the known MDST algorithms to handle individual degree bounds?

We believe that the techniques used in this paper can be generalized to apply to
a broader class of multicriteria problems. A central point in the development of a
more general framework is the identification of key properties of suitable optimization
problems; in the BMST problem, the dualization of the degree constraints yields a
tractable subproblem. Furthermore, the compact form of the objective function of
this subproblem proved to be a key for the analysis.
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