Design Strategies for Optimal Multiplier Circuits

Charles Martel*
Dept. of Computer Science
University of California at Davis

Davis, CA 95616

FEmail: martel@cs.ucdavis.edu

R. Ravif
Dept. of Computer Science
Princeton University
Princeton, NJ 08544

Email: ravi@cs.princeton.edu

Abstract

We present new design and analysis techniques for
the synthesis of fast parallel multiplier circuits. In
[4], Oklobdzija, Villeger, and Lui suggested a new ap-
proach, the Three Dimensional Method (TDM), for
Partial Product Reduction Tree (PPRT) design that
produces multipliers which outperform the current best
destgns. The goal of TDM is to produce a minimum
delay PPRT using full adders. This 1s done by care-
fully modelling the relationship of the output delays to
the input delays in an adder, and then interconnect-
wng the adders in a globally optimal way. Oklobdzija,
et. al. suggested a good heuristic for finding the op-
timal PPRT, but no proofs about the performance of
this heuristic were given.

We provide a formal characterization of optimal
PPRT circuits and prove a number of properties about
them. For the problem of summing a set of input bits
within the mintmum delay, we present an algorithm
that produces a minimum delay circuit in time linear
wmn the size of the inputs. Our techniques allow us to
prove tight lower bounds on multiplier circuit delays.
These results are combined to create a program which
finds optimal TDM multiplier designs.

Keywords: Multiplier design, Partial product reduc-
tion, Algorithms, Circuit design.

1 Introduction

The design of efficient logic circuits is a fundamen-
tal problem in the design of high performance proces-
sors. The design of fast parallel multipliers is impor-

*Research supported by NSF Grant CCR-94-03651.

tMost of this work was done when this author was at the
Dept. of Computer Science, University of California at Davis
and supported by NSF Grant CCR-91-03937. The author also
acknowledges support from a DIMACS postdoctoral fellowship.

{Research supported by NSF grants CCR-94-03651 and
CCR-91-03937.

Vojin Oklobdzija
Dept. of Electrical and Computer Engineering
University of California at Davis
Davis, CA 95616

Email: vojin@ece.ucdavis.edu

Paul F. Stelling*
Dept. of Computer Science
University of California at Davis

Davis, CA 95616

Email: stelling@cs.ucdavis.edu

tant since multiplication is a commonly used and ex-
pensive operation. Designing fast parallel multipliers
is particularly critical for specialized chips which sup-
port multiplication intensive operations such as digital
signal processing and graphics. Thus there have been
many research projects and papers on the design of
fast parallel multipliers; these results are surveyed in
[1, 3, 13]. Continuing research in the area has led
to a steady improvement in the designs for Partial
Product Reduction Trees (PPRTs) for parallel multi-
plier designs as evidenced in the progression of work in
[14, 2, 12, 10, 11, 6]. However, almost all of this prior
work focused on finding good basic building blocks
(compressors) using adders which could then be con-
nected in a regular pattern to build a multiplier. In
contrast, our approach 1s to design a faster multiplier
by finding a globally optimal way of interconnecting
low-level components.

We now discuss the design problem in more detail
(a complete description is given in Section 2). Af-
ter computing the partial products, the multiplication
problem for two n-bit numbers can be reduced to two
problems. First use a PPRT to add (2n—1) columns of
bits, producing two bits for each column (carrys are
incorporated from each column to the next). Then
add the two (2n — 1)-bit numbers produced using a fi-
nal adder, which we will call a carry-propagate adder
(See Figure 1). The basic problems we address here
relate to designing fast PPRTs.

In [4] the Three Dimensional Method (TDM) for
globally designing the PPRT of a parallel multiplier
circuit is described. The goal of the TDM is to pro-
duce a minimum delay PPRT using full adders ((3,2
adders) and a small number of half adders EEQ,Q;
adders). In [4] it was shown that the TDM has the
advantages of minimizing the number of devices re-
quired for the PPRT and allowing standard ASIC
formats and utilities for generating layouts for tree-
based circuits to be used. The speed 1improvements

X

=
w="1r O O Ofr r

o r o|o ©
P ok P
o

-

o =—"o o
=

A=—r O =r

Column 6 P 0
Numbers
Partial I\
Product eoe Adde.r C§rry coo
Reduction circuit bits
Tree u/ u/ u/ u/ J/
[Carry Propogate Adder J

A

Figure 1: The basic design of the multiplier,
modelled after the long multiplication method
for multiplying two binary numbers. Column
i has weight 2'. Each column of bits is added
in a circuit that generates two sum bits and a
number of carry bits that feed into the adder
circuit for the next column. The output bits
from the columns are summed in a fast adder
to produce the final result of the multiplication.

are achieved by carefully modelling the relationships
of the output delays to the input delays in an adder,
and then interconnecting the adders in a globally op-
timal way. They describe a linear-time heuristic for
constructing PPRTs which outperform the best cur-
rent designs. However, the question of whether the al-
gorithm always derives the optimal TDM-based PPRT
was left open. In this paper we describe a number of
new techniques for designing and analyzing PPRTs.
Specifically, we describe:

(i) An optimal class of circuits which can be used in
constructing PPRTs.

(ii) A linear time algorithm for producing a delay-
optimal circuit which sums a set of input bits.

(iii) A program which finds optimal PPRT circuits.

Using the program we have found optimal PPRT
circuits for multiplying two numbers of size up to 40
bits. With improvements we will be able to solve
larger problems. Our results show that the heuristic in
[4] gives PPRT circuits with optimal or near-optimal
overall delay. Our program finds PPRT circuits with
better delay profiles. The techniques we developed
allow the program to sharply prune the search space
of PPRT circuits, and thus allow optimal circuits of
larger sizes to be designed.

The basic component we use in our PPRT design is
a Full Adder which takes three input bits available
at times a < b < d and produces a sum at time
s = max(b + x2,d + 23) (2 > x3 > 0) and a carry

at time ¢ = d 4+ y3 (y3 > 0). We denote such a full
adder by ¢ = (a,b,d), and use subscripting to refer to
a specific adder (e.g., ¢; = (a;,b;,d;) with sum out-
put s; and carry output ¢;). This very general model
applies to current technology and is likely to hold for
any foreseeable technologies. Except where noted, our
results hold for this general model, and in fact apply
so long as the function for ¢ 1s non-decreasing in d, and
the function for s is non-decreasing in b and also non-
decreasing in d for fixed b. Some of our results apply to
more restricted cases that reflect current technology.

Based on current technology, the time used by an
adder to generate its outputs from its inputs can be
normalized to XOR delay units, corresponding to the
number of XOR gates (or approximate equivalent) tra-
versed by the input signals. Thus, the values “z; =17
and “xz = 2”7 can be used as the delays for the sum,
corresponding to the number of XOR gates traversed
by the b and d inputs, respectively. Similarly, the value
“y3 = 1”7 can be used for the carry delay, correspond-
ing to the time needed for the d input to traverse two
NAND gates, each having delay roughly half that of
an XOR gate [3]. Under these conditions the global
optimization problem can be viewed as minimizing the
number of equivalent XOR gates on the longest path
in the PPRT circuit. Thus our results apply to any
technology as long as the number of equivalent XOR
gates on a path remains the critical delay of the cir-
cuit, and the relative delays of XOR and NAND gates
remain unchanged. Both these assumptions have con-
tinued to hold during the rapid development of logic
technologies in the past [3]. For conciseness, we will
refer to the case with the normalized values of x5 = 2,
x3 = 1, y3 = 1 as the standard problem.

Optimizing for delay using the full adder model de-
scribed above leads to improved performance in real
circuit designs. In [4] designs in 1 micron CMOS-ASIC
technology were simulated using a timing simulator
from LSI Logic [15]. The simulated delays closely
matched those predicted by using the delays of the
standard full adder model described above, and the
new design outperformed competing designs by 11-
25%. Thus the optimization problem we address here
seems to be a sound model of actual circuit delays, and
can provide substantial improvements in performance.

The PPRT designs we develop use local connections
between gates and are similar in overall structure to
classical PPRT designs. Thus there should be no spe-
cial problems in their layout or wiring.

Our work differs from that of Paterson, Pippenger,
and Zwick [7, 8, 9], who also looked at adding multiple
columns of bits down to two bits per column. How-
ever, they only considered designs where each column
uses an identical circuit, rather than designs which
optimize across all columns which is our focus. Using
global optimization, we are able to design multipli-
cation circuits whose delays beat the upper bounds
provable for their more restricted circuits.

In the next section, we describe the multiplier de-
sign problem in more detail. In Section 3 we study
properties of optimal carry vectors and present further
properties of circuits used in optimal TDM designs. In

Section 4, we study the objective of minimizing only
the delay of an output bit in designing adder circuits
and present an optimal strategy for doing this. In Sec-
tion b, we present a lower bound for the global problem
derived by analyzing a relaxed version of the prob-
lem. In Section 6 we describe our program which uses
the prior results to search for optimal PPRT circuits.
Finally, in Section 7 we present some open problems
related to this work.

2 The multiplier setting

We now give a more detailed description of the
PPRT design problem. In the long multiplication
method, we compute the product of the first num-
ber with each bit of the second and arrive at 2n — 1
addition problems (one along each column of the long
multiplication table), the result of which gives the final
value of the multiplication. We number the columns
generated in the long multiplication table right to left
(least significant to most significant) starting with 0
and ending with 2n — 2 (See Figure 1).

In constructing a PPRT for use in a mutiplier for
two n-bit numbers, we assume that all of the n? par-
tial product bits are available at time 0. The examples
given in this section will all assume the standard prob-
lem, although the principles apply generally.

All the bits in column ¢ represent i** significant bits
in the product, and thus have weight 2°. A full adder
working on three inputs of weight 27 for any j > 0
produces a sum bit of weight 27 and a carry bit of
weight 271, Thus the carry bits from the full adders
summing the bits in column ¢ represent bits of weight
2i+1 and are fed as inputs to the addition problem in
column ¢ + 1. The sorted list of times at which the
carry bits are produced in the circuit for a column
is called the carry vector for that column. Thus the
inputs for each column consist of the partial product
bits for that column available at time zero and the
carry bits from the previous coulumn available at the
times designated in the carry vector. The TDM thus
consists of constructing the circuits for the columns in
order of increasing significance based on the derived
input times. The problem of building a fast PPRT us-
ing the TDM therefore reduces to one of finding adder
circuits for the columns that yield the two sum bits
with little delay and generate “good” carry vectors.

2.1 Two addition problems

The PPRT of a parallel multiplier adds the bits in
each column ¢ until only two bits of weight 2° remain
(as well as all the carry bits of weight 2/*1). These
bits are used to form two (2n — 1)-bit numbers X and
Y, where X; and Y;, the bits of weight 2° in X and
Y respectively are the two output bits from column .
X and Y are then fed into a carry propogate adder
that adds two (2n — 1)-bit numbers to produce the fi-
nal multiplication value (See Figure 1). In the TDM
each column circuit takes as input the partial product
bits corresponding to that column and any carry bits
generated by the previous column and adds them to
produce two sum bits and a number of carry bits for

INput=(0000 111124)

4

11
!

112
b
C

J

A: Carry vector = (123 4) B: Carry vector = (22 3 4)

Figure 2: Circuit A produces a better carry vec-
tor than circuit B while B achieves better final
delay than A in summing all the input bits to
two bits.

input to the next column. Figure 2 (A) illustrates a
circuit which takes 10 input bits of weight 2. The
circuit produces two output bits of weight 2* at times
4 and 5, and four carry bits of weight 2/*! at times
1, 2, 3, and 4. The total time to carry out the multi-
plication is the time to generate partial product bits,
complete the column additions in the PPRT, and add
the final (2n — 1)-bit numbers. Our goal in the multi-
plier design is to decrease this total time by minimiz-
ing the time when the last sum bit from any column
is produced.

2.2 Adjusting the parity

It 18 not possible to produce two sum bits from a
circuit that uses full adders alone when the number
of bits to be summed is odd. Consider, e.g., the case
when three bits are to be summed. Using a full adder
on these bits produces a single sum bit. A full adder
“consumes” three of the bits to be summed and pro-
duces one new bit to be summed, thus reducing the
number of bits to be summed by two. If we start with
an even number of bits to be summed, we can use full
adders to get down to two sum bits as required for
each column. Note that if we have 2(k + 1) bits to
be summed, we can do this using k full adders each of
which produces a carry bit. However, starting with an
odd number of bits results in a state where only one
bit remains.

We fix this parity problem using a half adder, which
takes two input bits and produces a sum and a carry
bit. We denote by (a, b) a half adder that takes in two
bits at times @ < b, and produces a sum bit at time s =
b+vy (v2 > 0) and a carry bit at time ¢ = b+ws (w2 >
0) [4]. Asin the case of full adders, for analysis relating
to current technology we use values corresponding to
normalized XOR delay units, i.e., v = 1 and wy = 0.5
(for one AND gate). Since the half adder reduces the
number of bits to be summed by one, a single half
adder fixes the parity problem when the number of bits
to be summed is odd. Following [4], we use the half
adder on the earliest two inputs in the input vector,
to change the parity of the number of bits to be even.
To add (2k + 1) bits for a column in this way, we use
a single half adder and (k — 1) full adders generating
a total of k carry bits. The number of input bits and

gates for the columns are shown in Table 1. Note that
the number of half adders and full adders used varies
only with the size of the multiplication, and not with
the manner in which they are inter-connected.

Table 1: Number of Input Bits and Gates in a
PPRT for n-bit Multiplication (2 < k < 2n — 2)

Column k: k<n—1| k=n n+1<k

0 Bits k+1 k—1 2n —k—1
Carry-In Bits k—2 k—2 2n —k —1
Total Input Bits 2k —1 2k —3 | dn — 2k — 2
Half Adders 1 1 0

Full Adders k—2 k—3 2n — k — 2
Total Half Adders n—1

Total Full Adders (n—1)(n —3)

2.3 Circuit notation and definitions

We now present a formal definition of a the TDM.

Definition. A TDM PPRT uses column circuits
to produce two sum bits for each column (except col-
umn 0). The circuit for each colum uses the mini-
mum number of full adders (plus one half adder on
the smallest inputs when the number of inputs is odd)
needed to produce the output bits from the partial
product bits for that column and the carry-out bits (if
any) from the previous column.

The following definitions and notation will be used
to simplify our discussion of column circuits. (For con-
ciseness we will use circuit to mean a column circuit
in a TDM PPRT.) We denote by I the vector repre-
senting the bits input to a circuit. We use C(I) to
denote the circuit C' applied to input vector 7. The
values in I correspond to the times at which the sig-
nals are available in non-decreasing order. If C' has m
full adders and I consists of k input bits then C(I)
will produce a vector Vi of the times when the k — 2m
sum bits become available in non-decreasing order and
a similar vector V. for the m carry bits.

We use the following definition when comparing in-
put or output vectors:

Definition. For two vectors V = (v1,va, ..., vg),
U = (uy,us, ..., up), we say that V dominates U iff
v; <u; Vie{l,2,....k}. We write V< U to denote
that V dominates U. If the two vectors are unequal
then V strictly dominates U, and we can write V <
U. Two vectors are incomparable if there exists i, j
such that v; < u; and v; > u;. A vector V € S is
said to be undominated in S if no other vector in S
strictly dominates it.

For example, if U = (1,2,3), V = (2,2,3), and
W =1(1,2,4) then U <V, U < W, and V and W are
incomparable.

We also extend the definition of dominance to cir-
cuits and gates: If m-adder circuits C'(I) and C'(1)
produce vectors V, and V;, and V! and V!, respec-
tively, then C(I) dominates C'(I) iff V, < V! and

V, < V/ and we use the notation C'(I) < C'(I). C(I)

strictly dominates C'(I) if C(I) < C'(I) and V. # V/
or V; # V/, and we can write C(I) < C’(I). If no
m-adder circuit for T strictly dominates C(I), then we
say that C(I) is an undominated circuit. Note that
an undominated column circuit for input I need not
be part of an optimal PPRT since two circuits C(7)
and C’(I) may be incomparable. However, if we con-
struct a multiplier circuit by summing the bits in each
column ¢ (which are the original bits of weight 2° and
the carry bits from column ¢ — 1), it is clear that we
can always construct an optimal circuit by using an
undominated circuit for each column.

Similar to the case for circuits, we say that for two
gates ¢; and g}, g; dominates g (¢; < ¢}) if ¢; < ¢} and
s; < si. Note that in the case of gates we remove the
restriction that the inputs be the same. This leads us
immediately to the following observation:

Observation 2.1 The outputs s; and ¢; of gate g; de-
pend only on b; and d;. Therefore g; dominates g; if
bi S b]' and dz S d]'.

We now introduce notation that simplifies our anal-
ysis of circuits on the gate level. Given an input vector
I we consider strategies for constructing circuits for 7.
In our constructions it is convenient to think of the cir-
cuits as being constructed in the following way: The
first gate, g1, has all three of its inputs from Iy = 1,
we now update Iy to I; which has the three inputs to
g1 removed, but sq, the output sum bit of ¢1, is added.
We then construct g, using three inputs from Iy, and
update I; to get I5, and so on.

2.4 Trade-off between delay and good
carry vectors

We now examine the problem of designing the col-
umn circuits for the TDM PPRT. Suppose we aim to
produce the two bits from each of the columns within
delay d. Then the circuit for each column must, for
its given input vector I, produce the two sum bits in
delay d’ < d along with a “good” carry vector. An op-
timal carry vector in this case must be undominated
in the set of carry vectors for circuits C'(I) which pro-
duce their sum bits in time < d’. We now will show
that such a carry vector may not be undominated in
the set of all carry vectors generated by circuits for 7.

There is often a trade-off between making the carry
vector good in the sense that it is undominated and
minimizing the delay of the output bits in a circuit.
For example, in Figure 2 circuit A generates a carry
vector that strictly dominates the carry vector of cir-
cuit B but does not achieve as good a delay for the
two sum bits. The design of the PPRT thus involves
a judicious choice of the delay of the sum bits pro-
duced in each of the columns coupled with a strategy
for finding a circuit that achieves that delay and pro-
duces an undominated carry vector. l.e., a PPRT with
optimal delay will have column circuits each of which
produces an undominated output vector consisting of
the carry vector concatenated with the larger of the
two sum outputs.

2.5 3-greedy approach

In [4] a heuristic for TDM design is proposed that
we will call the 3-greedy approach. The 3-greedy ap-
proach is as follows: take for the inputs of each gate
g; the three smallest values in I;_;. For example, the
adder circuit shown in Figure 2 (A) is 3-greedy. Gate
g1 = (0,0,0) takes as its inputs the three smallest val-
ues in Iy = 1 =1(0,0,0,0,1,1,1,1,2,4), and generates
a sum bit at time 2. Thus I; = (0,1,1,1,1,2,2,4),
and we build gate go = (0,1,1). Similarly, I =

1a 1a 2a 2a 3a4)a g3 = (1a 1a 2)a I3 = (2a 3a 3a4)a g4 =
2,3,3),and V; = (4,5). Also, V. = (1,2, 3,

Note that the 3-greedy strategy produces undom-
inated circuits since the 3-greedy approach produces
the lexicographically smallest carry vector, but it may
be possible to produce circuits with better sum delays
using other strategies.

3 Optimal column-addition circuits

In this section, we consider circuits that sum a vec-
tor of input bits and produce undominated output vec-
tors. As mentioned earlier, the optimal PPRT uses a
circuit of this form to sum the bits in each column.
We show that we need only consider a restricted class
of addition circuits that have certain nice properties.

We will now discuss the 2-greedy strategy which is
defined as follows: always construct gate g; using the
two smallest values in I;_1 plus a third value in I;_;
The key fact which we will prove is that for any col-
umn circuit C'(7), there exists a 2-greedy column cir-
cuit C'(I) which dominates C(I). Thus in searching
for optimal combinations of column circuits, we can
restrict our attention to 2-greedy circuits.

3.1 The 2-greedy strategy

In this section we prove several properties of 2-
greedy circuits. We begin with a few definitions.
Definition. A lexicographic ordering of the gates
of a circuit C'(I) (or, loosely, a lexicographical ordering
of C(I)) is one in which for each pair of gates g; =
(ai,bi,d;) and g; = (a;,b;,d;), gi precedes g; in the
ordering whenever:

e a; < aj;or
e a; = a; and b; < b;; or
° ai:aj,bi:bj,anddi<dj.

If a; = a;, b; = b;, and d; = d; then the gates can
appear in either order. We assume that all the circuits
C(I) which we discuss have their gates numbered in
lexicographic order. We shall show that for any 2-
greedy circuit there always exists a construction order
which is also a lexicographic order.

The following definitions give some of the ways that
gates can be related to each other:

Definition. Gate g; is an immediate descen-
dant of gate g; if s; is an input to g;. Similarly, g; is
a descendant of g; if g; is an immediate descendant
of g; or of a gate g; that is a descendant of g;.

Definition. Two gates are said to be indepen-
dent if neither gate 1s a descendent of the other.

We begin by proving that when constructing a gate
g; we can always use three values in I;_; rather than
using an input which is the sum bit from a higher
numbered gate. A circuit i1s feedback-free iff when the
gates are numbered in lexicographic order, no gate g;
has an input which is the sum bit from g; where j > 1.

Lemma 3.1 For any circuit C(I) which is not
feedback-free, there is a feedback-free circuit C’(I) such
that C'(I) < C(I).

Proof. If C(I) is not feedback-free then there ex-
ists a gate g; with input s;, where ¢ < j. We now
show that we can restructure the circuit C'(7) to make
it feedback-free without degrading the outputs of the
circuit. By definition, a; < a; < s;. Thus s; = b; or
S5 = dz

Case 1. s; = d;.

Case la. b; <b;.

95 = (aj,b;,d;)

Cj Id]'—l—yg

s; = max(b; + x2,d; + x3)
gi = (as, bi, s5)

¢ =8+ Y3
= max(b; + x2 +y3,d; + 3+ y3)
s; = max(b; + x2,s; + r3)

(
max(b; + x2,b; + x2 + 23, d; + 223)
max(b; + z9 + 23, d; + 223)

By rearranging inputs we can get:

g :/(aiabiadj)
¢ =dj+ys
s; = max(b; + z2,d; + 23)
A :(a b 5)
g] IR R
¢ =si+uys
/ = max(b; + 22 + y3,d; + 3+ y3)
s. =
j

max(b + 2,8, + x3)
ax(b; + x2,b; + 22 + 23, d; + 223)

Thus by Observation 2.1 ¢/ dominates g; (since b; <
bj). Further, i <¢; and s} <'s; (because b; < b;), so
g} dominates ¢;. Therefore the sum and carry values
from ¢} and g} are at least as good as those for g; and
gi-

Case 1b. b; > b;. By rearranging inputs we can get
gf = (a;,b5,d;), and g} = (a],bl,sl) Now ¢} has the
same sum and carry as g;, thus s; = s;(> b;) and g}
has the same sum and carry as g¢;.

Case 2. s; = b;. In this case, we rearrange inputs to
get g; = (a;,b5,d;), and g; = (aj, si,d;). As above, g;
has the same sum and carry as g;, thus s; = s; and gé»
has the same sum and carry as g¢;.

Repeated applications of the above transformations
to the smallest (¢,) pair violating the feedback-free
property will convert C'(7) to the desired feedback-free
circuit C'(I) < C(I), proving the lemma. O

Lemma 3.2 For any feedback-free circuit C'(I) which
is not 2-greedy there is a 2-greedy circuit C’(7) such that
c'(I) < ().

Proof. Similar to the proof of Lemma 3.1, and omit-
ted. O

The prior two lemmas show that given any circuit
C(I) we can convert it to a circuit C'(I) < C(I) such
that if the gates of C’(I) are numbered lexicograph-
ically, each gate g; in C’(I) has as inputs the two
smallest values in [;_; plus a third input from [;_,,
i.e., C'(I) can be constructed using the 2-greedy strat-

egy.

Observation 3.3 Let C be a circuit constructible in
lexicographic order using a 2-greedy approach. If g; ap-
pears before g; in the lexicographic ordering of C' then
g; is created before g; in a 2-greedy lexicographic con-
struction of C' and as a result, a; <b; < a; <b;.

3.2 Other constraints on undominated
circuits

The following lemmas provide rules for minimizing
the number of circuits that need to be constructed for
an input vector I when attempting to find all undom-
inated circuits C(7). In particular, Corollary 3.8 en-
sures that we can restrict our search to certain “regu-
lar” circuits for I. The proofs for the following use sim-
ilar techniques to the proofs for Lemmas 3.1 and 3.2
and are omitted.

Lemma 3.4 Let C(I) be a 2-greedy circuit. Then there
is a 2-greedy circuit C'(7) < C(I) in which for each pair
of gates g; and g;, if ¢ < j and d; <b;, then d; < a;.

Corollary 3.5 Let C/(I) be a 2-greedy circuit. Then
there is a 2-greedy circuit C'(I) < C'(I) in which for
each pair of gates ¢; and g;, if ¢ < j and d; = b; then
a; = b]' = dz

Lemma 3.6 Let C(]) be a 2-greedy circuit. Then there
is a 2-greedy circuit C'(7) < C(I) in which for each pair
of gates ¢; and g;, if + < j then d; < d;.

Lemma 3.7 Let C'(I) be a 2-greedy circuit, and let
22 < 2x3. Then there is a 2-greedy circuit C'(I) < C(I)
such that for each pair of gates g; and g;, if ¢ < j and
b; < d; <dj then d; < d; + 22 — x3.

Note that Lemma 3.7 applies to the standard prob-
lem as described earlier, 1.e., 9 = 2, 3 = 1, y5 = 1.
When z5 < 23 we define the following class of circuits:

Definition: A 2-greedy circuit C for a vector V
that has no pairs of gates of the form excluded by
Lemma 3.1, Lemma 3.2, Lemma 3.4, Lemma 3.6, and
Lemma 3.7 is said to be in regular form, or, loosely,
simply said to be regular.

Corollary 3.8 If x5 < 23, then for any circuit C(I),
there is a regular circuit C'(1) < C(I).

The above lemmas can be used to severely limit
an exhaustive search for an optimal solution to the
standard problem, since they allow us to restrict the
search to regular circuits for each input /.

4 Optimal delay circuits

In this section we consider the problem of finding
for a given vector I the minimum delay circuit C'(7)
that outputs a single sum bit (we will ignore the carry
vector). We assume the standard problem previously
described, where x5 = 2 and 3 = 1. We define a
canonical circuit for each value of delay that can sum
the maximum number of input bits for this delay, and
show that a fitting strategy that attempts to greedily
fit the input delays into the canonical circuit can be
used to determine an optimal delay circuit for this
set of inputs. Though we describe our strategy for
the problem of summing a set of input bits down to
a single bit within minimum delay, our method and
analysis directly extend to the case when the input
bits must be combined in full adders and reduced to
some specified number of bits (possibly greater than
one) within minimum delay.

4.1 Canonical circuits for a given delay

We define S(¢) as the maximum number of bits
available at time zero, which can be added with full
adders to produce a single sum by time ¢. We can
write a simple recurrence for S(¢) as follows.

S(0) = S(1)=1
S@t) = St—1)+25(t—-2) t>1

The recurrence follows from the observation that the
best way to accommodate the most inputs completing
in delay t 1s to have the last adder with output ¢ from
this circuit be (t — 2,¢ — 2,¢t — 1). Each of the three
inputs to the last adder in this circuit is the output of a
circuit of delay ¢t —2 or t — 1 which sums the maximum
possible number of inputs *. This observation can also
be used to easily infer that the circuit which sums S(2)
input bits available at time zero with delay ¢ is unique.
This unique circuit is termed the Canonical circuit
for delay t and is denoted C(¢). Note that C'(¢) can
accommodate several inputs available at time 1, and
that these 1 inputs feed adders of exactly two types:
(0,0,1) and (1,1,2). Furthermore, all inputs with delay
d for d > 1 feed into gates of the type (d —1,d —1,d)
or (d,d,d+1). An illustration of C'(4) is in Figure 3.

Note that if our goal is to produce k sum bits within
delay t, then at most k£S(¢) bits can be summed. We
define the weight of a vector V of input delays as
W(V) = S(Ul) + S(Uz) + ...+ S(Uk)

Theorem 4.1 If W (V) > k- S(t), then inputs with
delay V' cannot be summed to k bits in delay d < ¢.

This theorem is useful for proving lower bounds on
multiplier circuits since it bounds the delay for a col-
umn given a carry vector.

ot+1

t
IThe recurrence solves to S(t) = % for t > 0.

C(4) f L L
2 2

4

Figure 3: The canonical circuit for delay four.

4.2 The fitting strategy

We can now describe a fitting strategy to determine,
given an input vector I, whether I can be summed to
a single bit using a circuit of full adders in delay ¢.
For technical reasons we assume that the input vector
has an odd number of bits to be summed 2. We use
the canonical circuit C(¢), and try to fit the input sig-
nals in nonincreasing order of delays into appropriate
positions in C'(¢). Thus we work on the larger inputs
earlier and fit an input with delay ¢’ into a canonical
subcircuit for delay ¢ in C(¢). After fitting a signal,
we mark the whole fitted subcircuit and proceed to
fit the remaining inputs in the unmarked portions of
C(t). (Input bits of time 0 can be fit into unmarked 1’s
in the canonical circuit). If we succeed in fitting all the
input signals, it 1s easy to derive a circuit that sums
all these inputs in delay . In the case when all the
input delays cannot be fitted in C(2), we demonstrate
that there is no circuit for these inputs completing in
delay t.

Before we prove the correctness of the fitting strat-
egy, we show that any delay optimal circuit can be put
in a normal form that resembles the canonical circuits.
Le., that any circuit C' of delay ¢ can be modified into
a circuit all of whose adders are drawn from the set

(k,k,k+ 1) where 0 < k <t —2.

Lemma 4.2 Suppose C is a circuit that sums a vector
V of inputs within delay . We can convert C'to a circuit
which sums the vector V' (augmented possibly with many
zeros and ones) within delay ¢, such that every adder in
the modified circuit is of the form (k, k, &+ 1) for some
k> 0.

Proof sketch. The idea is to show that whenever an
adder 1s not of the required form, we can modify the
inputs to that adder by expanding it with canonical
subcircuits and possibly accommodating a few extra
0’s to be summed, but not increasing the delay of the
final sum bit. O

2When the number of bits is even, we assume that we sum
the least two bits in a half adder as in the strategy in [4] and
thus produce an odd number of bits to sum.

Next we prove the correctness of the fitting strategy.

Lemma 4.3 Consider the fitting strategy working on
a canonical circuit C/(t) and a (sorted) vector V' whose
elements lie in the range {t—1,..., ¢~} forsomei > 0.
Suppose the strategy successfully fits V'into C(t). After
fitting V', let N be the maximum number of additional
inputs of delay ¢ — 7 that can be fitted into the current
circuit C'. Then the vector V' augmented with N + 1 or
more (¢ — ¢)'s cannot be summed in delay .

We can use Lemma 4.3 to show the correctness of
the fitting strategy.

Theorem 4.4 The fitting strategy finds a delay ¢ cir-
cuit for the input vector V' if one exists.

The following theorem shows that the fitting strat-
egy can be implemented efficiently.

Theorem 4.5 Given a sorted input vector, the fitting
strategy can be implemented to run in time linear in the
size of the input vector.

5 A lower bound

Consider the design of the multiplier circuit with
a full adder that, for inputs a < b < d, produces a
sum at time s = d + x3 and a carry at time ¢ =
d + y3. Note that we do not claim that such a full
adder can be built, but simply use this as a relaxed
version of the original problem. Using techniques as in
Lemma 3.2, we can show that for this relaxed problem,
the 3-greedy approach described in Section 2.5 (i.e.,
repeatedly putting the three earliest bits into a full
adder) is globally optimal for both sum and carry 3
Note that the 3-greedy strategy can also be considered
carry-greedy, since this choice of inputs reflects a local
minimization of the carry vector generated.

The optimality of the 3-greedy strategy for the re-
laxed problem motivates the following lower bound for
the original problem. Since the relaxed problem is a
less constrained problem than the original, the opti-
mal delay of a multiplier for the relaxed problem is
a lower bound on the delay of the multiplier for the
original problem. Furthermore, if we determine using
other techniques a lower bound on the carry vector
being input into a certain column in the multiplier,
we can apply the 3-greedy strategy to the remaining
columns under the relaxed sum output model to de-
rive a lower bound for the original problem. In this
way, a partial lower bound computation (using, e.g.,
arguments as in Lemmas 3.2 to 3.4) can be effectively
completed using this strategy on a relaxed model of
the adder gates.

6 Program and results

The results in the last three sections provide a
strong set of tools for searching for a minimum delay
multiplication circuit. We have developed a program

3If the number of inputs is even, then we assume as before
that the two smallest are fed into a half adder.

which does a search over TDM PPRT circuits. The
program restricts its search to regular circuits (as de-
scribed in Section 3). For each column it considers
all carry-vectors which could be input to the column,
and for each such input generates all the regular cir-
cuits. This set of regular circuits is then pruned to
contain only those circuits with undominated carry
vectors and sum delays. The carry vectors from these
circuits are used as inputs to the next column. We
can also use the lower bounding techniques from Sec-
tions 4 and b to prune those carry vectors which must
produce delays at least as large as our best solution
to date. Using this program we showed that the 3-
greedy method gives the optimal maximum delay for
most problem sizes up to 44 bits. Further, it is within
one of the optimal in those cases where it is not opti-
mal. Our results are summarized in Table 2.

Table 2: 3-greedy vs. Optimal Delays for PPRT
in Normalized XOR Delays (Standard Prob-
lem)

Max Delay Program
Bit Size || 3-G] Opt CPU Time
7-8 5 5
9-10 6 6
11-12 7 7
13 7.5 7
14-16 8 8
17 9 8
18-20 9 9
21 9.5 9
22 10 9 < 3.3 sec
23-26 10 10 < 39 sec
27-28 11 10 < 1 min 6 sec
29-35 11 11 < 2 min 37 sec
36 12 11 | < 3 hours 19 min
37-44 12 12 < 6 hours
45-57 13 77 > 2 months
58 13.5 77
59-76 14 77
77-98 15 77
99-128 16 77

The current version of the program solves a problem
of size 16 in a few seconds, but requires hours to solve
a 39 bit problem. Further refinements will need to be
made before we can solve larger problems of size 64
bits or larger.

7 Conclusions

We have presented several techniques for analyz-
ing the optimality of PPRTs designed using full adder
cells. Many interesting issues remain open. We plan to
do a simulation of a full design using the circuits pro-
duced by our program to validate that our abstract
model of delay results in good performance in prac-
tice. We also plan to improve our search program to
solve larger problems, and are investigating parallel
solutions to help speed up the search. Another inter-

esting issue is to optimize the final carry-propagate
adder used by taking into account that the input bits
arrive at different times. Preliminary work on this is
in [5]. Note that our results on the optimality of reg-
ular circuits apply to both the sum and carry vectors
produced. Thus a search over regular circuits is suf-
ficient to find optimal PPRT circuits for feeding the
final carry-propagate adder. A final topic is to con-
sider optimizing over a broader class of design strate-
gies which allow other uses of half adders and even
new components.

References
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms, McGraw Hill, 1990.

[2] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta
Frequenza, Vol. 34, pp. 349-356, March 1965.

[3] K. Hwang, Computer Arithmetic: Principles, Architec-
ture and Design, John Wiley and Sons, 1979.

[4] V. G. Oklobdzija, D. Villeger, S. S. Liu, “A method for
speed optimized partial product reduction and generation
of fast parallel multipliers using an algorithmic approach,”
in press IEEE Transaction on Computers, 1995.

[5] V. G. Oklobdzijaand D. Villeger, “Optimization and anal-
ysis of a carry-propagate adder under the non-uniform sig-
nal arrival profile,” in preparation.

[6] V. G. Oklobdzija and D. Villeger, “Improving Multiplier
Design by Using Improved Column Compression Tree and
Optimized Final Adder in CMOS Technology”, in press,
IEEE Transactions on VLSI, 1995.

[7] M. S. Paterson, N. Pippenger and U. Zwick, “Faster cir-
cuits and shorter formulae for multiple addition, multipli-
cation and symmetric Boolean functions,” Proceedings of
the 31st Foundations of Computer Science (1990), 642-
650.

[8] M. S. Paterson, N. Pippenger and U. Zwick, ”Optimal
carry save networks,” Boolean functional complexity: Se-
lected papers from the LMS symposium, Durham 1990,
Cambridge University Press (1992).

[9] M. S. Paterson and U. Zwick, “Shallow multiplication cir-
cuits and wise financial investments,” Proceedings of the
24th Symposium on the Theory of Computing (1992), 429-
437.

[10] M.R. Santoro, “Design and clocking of VLSI multipliers,”
Ph. D. dissertation, Technical report No. CSL-TR-89-397,
October 1989.

[11] P. Song, G. De Michelli, “Circuit and architecture trade-
offs for high speed multiplication,” IEEE Journal of Solid
State Circuits, Vol,. 26, No. 9, September 1991.

[12] W. J. Stenzel, “A compact high speed parallel multiplica-
tion scheme,” IEEE Trans. on Computers, Vol C-26, pp.
948-957, February 1977.

[13] E. Swartzlander, Computer Arithmetic, Vol. 1&2, IEEE
Computer Society Press, 1990.

[14] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEFE
Transaction on Computers, Vol. EC 13, pp. 14-17, Febru-
ary 1964.

[15] 1.0-Micron Array-Based Products Databook, LSI Logic
Corporation, September 1991.

