
A Linear-time Algorithm to Compute a MAD

Tree of an Interval Graph

Elias Dahlhaus

Department of Computer Science

University of Bonn

Bonn, Germany

Peter Dankelmann∗

School of Mathematical and Statistical Sciences

University of Natal

Durban, South Africa

R. Ravi†

Graduate School of Industrial Administration

Carnegie Mellon University

Pittsburg (PA), USA

Abstract

The average distance of a connected graph G is the average of the
distances between all pairs of vertices of G. We present a linear time
algorithm that determines, for a given interval graph G, a spanning tree of
G with minimum average distance (MAD tree). Such a tree is sometimes
referred to as a minimum routing cost spanning tree.

Keywords: Graph Algorithms, Interval Graphs, Spanning Tree.

1 Introduction

The average distance µ(G) of a finite, connected graph G = (V,E) is the average
over all unordered pairs of vertices of the distances,

µ(G) =

(

|V |

2

)−1
∑

{u,v}⊂V (G)

dG(u, v),

∗Financial support by the South African National Research Foundation is gratefully ac-
knowledged.

†This material is based upon work supported by the National Science Foundation under
grants CCR 0105548 and ITR 0122581 (ALADDIN Center).

where dG(u, v) denotes the distance between the vertices u and v. A minimum
average distance spanning tree of G (MAD tree in short) is a spanning tree of G

of minimum average distance. MAD trees, also referred to as minimum routing
cost spanning trees, are of interest in the design of communication networks [6].
One is interested in designing a tree subnetwork of a given network, such that
on average, one can reach every node from every other node as fast as possible.
In general, the problem of finding a MAD tree is NP-hard [6]. A polynomial-
time approximation scheme is due to [1]. Hence it is natural to ask for which
restricted graph classes a MAD tree can be found in polynomial time. In [3], an
algorithm is exhibited that computes a MAD tree of a given distance-hereditary
graph in linear time. In [5] it is shown that a MAD tree of a given outerplanar
graph can be found in polynomial time.

In this paper, we show that for a given interval graph G a MAD tree can
be computed in time O(|E|). If the interval representation of G is known and
the left and right boundaries of the intervals are ordered, then a MAD tree of
G can be found in time O(|V |). In section 2, we present some structural results
on MAD trees. In section 3, we sketch the algorithm, and in section 4, we give
some concluding remarks.

2 Structure of MAD Trees in Interval Graphs

We always assume that the graph under consideration is connected. The dis-
tance of a vertex v, dG(v), is defined as

∑

x∈V dG(v, x). The total distance of a
graph H denoted d(H) is the sum of all pairwise distances between nodes in H,
i.e. d(H) =

∑

{u,v}⊂V (H) dH(u, v).

A median vertex of G is a vertex c for which dG(c) is minimum. The eccen-
tricity of a vertex v is defined as exG(v) = maxw∈V dG(v, w).

The neighbourhood of a vertex v in G is defined in two ways: the open
version NG(v) = {u : uv ∈ E} and the closed version NG[v] = {v} ∪ NG(v).

The following lemma applies not only to interval graphs but to all connected
graphs. Part (i) improves on a result in [2], which states that, if T is a MAD
tree of a given connected graph G, then there exists a vertex c in T such that
every path in T starting at c is induced in G. We now prove that c can be
chosen to be a median vertex of T .

Lemma 1 (i) If T is a MAD tree of G and c is a median vertex of T then every
T -path starting at c is an induced path in G (i.e. has no diagonals in G).
(ii) T and c can be chosen such that there is no vertex c′ 6= c such that NG[c] is
strictly contained in NG[c′].

Proof: (i) Let P = v1, . . . , vk be a path in T with c = v1. Suppose P is not
induced in G. Then there are i and j, such that i < j − 1 and vivj ∈ E(G). Let
T1 and T2 be the connected components of T − vj−1vj containing vj−1 and vj ,
respectively. It is known (see [2]) that dT (c) ≤ dT (vi) < dT (vj−1). Since the
vertices in T2 are further away (in T) from vi than from vj−1, we obtain

dT1
(vi) < dT1

(vj−1).

2

Consider the tree
T ′ = T − vj−1vj + vivj .

Since the distances between any two vertices are the same in T and T ′, unless
one vertex is in T1 and the other vertex is in T2, we have

d(T ′) − d(T) = |V (T2)|(dT1
(vi) − dT1

(vj−1)) < 0,

contradicting the minimality of d(T). Hence P is an induced path in G.

(ii) If there is a vertex c′ with NG[c] ⊂ NG[c′] and NG[c] 6= NG[c′], then
joining all T -neighbours of c to c′ instead of c yields a spanning tree T ′ with
d(T ′) ≤ d(T), in which c is an end vertex and c′ is a median vertex. QED

From now on we assume that G is an interval graph. Each vertex v cor-
responds to an interval I(v) = [l(v), r(v)], such that two vertices v and w are
adjacent if and only if I(v) ∩ I(w) 6= ∅.

Proposition 1 Let v0, . . . , vk be an induced path of the interval graph G. Then

1. l(v1) < l(v2) < . . . < l(vk) and r(v0) < . . . < r(vk−1) or

2. r(v1) > . . . > r(vk) and l(v0) > . . . > l(vk−1).

In the first case, we call such a path an R-path, in the second case, we call
it an L-path.

Consequently, each path of the MAD tree T of G starting at a median vertex
c of T is an L-path or an R-path.

For a vertex v of G let h(v) be a neighbour x of v such that r(x) is maximum;
If r(v) = maxw∈V r(w), we say h(v) is undefined. Similarly, let k(v) be a
neighbour y of v such that l(y) is minimum. Again, if l(v) = minw∈V l(w), we
say that k(v) is undefined. We also define h0(v) = k0(v) = v for all v. For i ≥ 2,
hi(v) is defined as h(hi−1(v)). Analogously, we define ki(v).

A component of a graph is trivial if it contains only one vertex, otherwise it
is called nontrivial.

For a given vertex v of G and an integer i ≥ 2 let V R
i (v) (V L

i (v)) be the set
of all vertices at distance i from v, whose intervals lie completely to the right
(left) of the interval of v. We also let V R

1 (v) = V L
1 (v) = NG(v).

Theorem 1 If G is an interval graph then there is a MAD tree T of G with a
median vertex c, such that for each i, 1 ≤ i ≤ exG(c),

(∗)

{

each v ∈ V R
i (c) is adjacent in T to hi−1(c)

each v ∈ V L
i (c) is adjacent in T to ki−1(c).

Proof. Let T be a MAD tree of G and let c be a median vertex of T , where
c is chosen according to Lemma 1(ii).
By Lemma 1(i), each G-neighbour v of c is also in T adjacent to c, since otherwise
the c − v path in T would have a diagonal. Hence (∗) holds for i = 1.

3

Suppose that (∗) does not hold for some i. Let i be the smallest such number.
For the rest of this proof, we omit the reference to the median vertex c in the
notation for V R’s.

We first show that only one vertex in V R
i−1 has T -neighbours in V R

i . Sup-
pose that there exist vertices vi, v

′
i ∈ V R

i , vi−1 6= v′
i−1 ∈ V R

i−1 such that
vivi−1, v

′
iv

′
i−1 ∈ E(T). Since, by the minimality of i, vi−1 and v′

i−1 are ad-
jacent in T to hi−2(c), we have vi 6= v′

i (Else there would be a cycle in T).
Without loss of generality, we may assume that r(vi−1) ≥ r(v′

i−1). Let B be
the component of T − vi−1vi not containing c and let B′ be the component of
T − hi−2(c)v′

i−1 not containing c. Moreover let

child(v′
i−1) = {w ∈ B′ | v′

i−1w ∈ ET }.

Note that child(v′
i−1) is exactly the set of children of v′

i−1 when T is rooted at
c. Now child(v′

i−1) ⊆ NG(vi−1) since every child of v′
i−1 is on an R-path from

c and r(vi−1) ≥ r(v′
i−1). Therefore,

T ′ = T − {v′
i−1w |w ∈ child(v′

i−1)} + {vi−1w |w ∈ child(v′
i−1)}

is a spanning tree of G. Since the distance between any two vertices are the
same in T and T ′, unless one of the vertices is in B and the other one is in B′,
the difference between the total distances is

d(T ′) − d(T) = −2|V (B)|(|V (B′)| − 1) < 0

contradicting the minimality of d(T). Hence at most one vertex v in V R
i−1 has

T -neighbours in V R
i . Hence only one vertex in V R

i−1 has T -neighbours in V R
i .

Since each vertex in V R
i that is adjacent in G to a vertex v in Vi−1 is also ad-

jacent in G to hi−1(c), we can join each vertex in V R
i not to v, but to hi−1(c)

without increasing the total distance of T . Analogously, we can achieve that
each vertex in V L

i is adjacent in T to ki−1(c). Hence T satisfies condition (∗).
QED

Theorem 1 suggests the following polynomial time algorithm. Fix a vertex
c of G, determine hi(c) and ki(c) for i = 1, 2, . . . and construct a spanning tree
of G in which each vertex in V R

i (c) is adjacent to hi−1(c) and each vertex in
V L

i (c) is adjacent to ki−1(c) for i ≥ 1. Construct such a tree for each c ∈ V (G).
Among those n trees select a tree with minimum total distance. By Theorem
1, this tree is a MAD tree of G.

Theorem 2 A MAD tree of an interval graph can be determined in polynomial
time.

A set of intervals and the corresponding interval graph G is shown below.
The vertices c, hi(c) and ki(c), i = 1, 2, are labelled. Thick lines indicate the
edges of a MAD tree T satisfying the condition (∗) of Theorem 1.

4

v

k2(c)

v

v

k(c)

v

v

c

v

h(c)

v

v

v

h2(c)

�
�
�

HHHHHH

HHHHHH

S
S

S
S

SS

S
S

S
S

SS�
�
�
�
��

�
�

�
�

�
�

�
�

@
@
@

@
@
@

@
@
@

@
@
@�

�
�
�
��

�
�
�
�
��

�
�
�

������

������

@
@
@

3 Linear-time Computation of a MAD Tree

We assume that an interval representation of G = (V,E) is known and that the
left borders l(v) and right borders r(v), v ∈ V are sorted. As in the previous
section, we assume that h(v) is a neighbour x of v, such that r(x) is maximum
and that k(v) is a neighbour y of v, such that l(y) is minimum. In [7] it is shown
that h and k can be determined in time linear in the number of vertices (even
in logarithmic time in parallel with a linear workload).

We consider any vertex v and assume that the median vertex c is left (right)
of v, i.e., that r(c) ≤ r(v) (l(c) ≥ l(v)).

Let T be a MAD tree according to Theorem 1 rooted at c and let v 6= c

be a vertex, v ∈ V R
i (c), say. Consider Tv, the subtree of T rooted at v. Then

either v is a leaf of T and Tv is trivial, or v = hi(c) for some i. In that case, Tv

contains some G-neighbours of v, in particular h(v) = hi+1(c), and all vertices in
V R

i+2(c) = V R
2 (v) (which are in T adjacent to hi+1(c) = h(v)), V R

i+3(c) = V R
3 (v)

(which are in T adjacent to hi+2(c) = h2(v)), and so on, as long as they are
defined. The fact that the main part of Tv, namely Th(v), only depends on
whether v is to the left or right of c, but not on the actual choice of c, is the
key to our algorithm.

Definition 1 Let G be a connected interval graph with h and k as defined above,
and v ∈ V (G). If h(v) (k(v)) is not defined then let TR

v (TL
v) be the empty tree.

If h(v) is defined then let TR
v be the tree with vertex set {h(v)} ∪

⋃

j≥2 V R
j (v),

where a vertex x ∈ V R
j (v) is adjacent to hj−1(v). Analogously, if k(v) is defined

then let TL
v be the tree with vertex set {k(v)} ∪

⋃

j≥2 V L
j (v), where a vertex

x ∈ V L
j (v) is adjacent to kj−1(v). Note that both TR

v and TL
v do not contain v!

5

Hence the tree T = Tc consists of c as root, the neighbours of c in the
original graph G as neighbours in Tc, and TL

c and TR
c appended on k(c) and h(c)

respectively. We do not determine these trees TR
v and TL

v explicitly. Instead,
we compute the following quantities.

1. the number of neighbours numR(v) (numL(v)) of h(v) (k(v)) that are not
neighbours of v, i.e. the number of children of h(v) (k(v)) in TR

v (TL(v)),

2. |TR
v | (|TL

v |), the number of vertices of the tree TR
v (TL

v),

3. the total distance tR(v) (tL(v)) of TR
v (TL

v), and

4. the distance dR(v) (dL(v)) of h(v) (k(v)) in TR
v (TL

v).

The numbers numL(v) and numR(v) can be determined overall in O(n) time
(see, e.g. [7]). For any particular v, dR(v) can be determined in O(1) time if
dR(h(v)) and numR(v) are known. Also tR(v) can be determined in O(1) time
if dR(v), numR(v) and tR(h(v)) are known. Analogous statements hold for the
left counterparts.

In more detail, we proceed as follows.

Determine numR(v): If h(v) is not defined then numR(v) = 0. Otherwise,
numR(v) is the number of vertices w, such that rv < lw ≤ rh(v). This can
be determined in overall linear time.

Determine |TR
v |: If h(v) is not defined, |TR

v | = 0. Otherwise,

|TR
v | = |TR

h(v)| + numR(v).

Determine dR(v): If h(v) is not defined then dR(v) = 0. Otherwise

dR(v) = dR(h(v)) + |TR
h(v)| + numR(v) − 1.

Determine the distance tR(v): If h(v) is not defined then tR(v) = 0. Oth-
erwise

tR(v) = tR(h(v)) + dR(v)

+(numR(v) − 1)
(

(numR(v) − 2) + 2|TR(h(v))| + dR(h(v))
)

.

Determine the total distance of Tc: First we determine the degree δ(c) of
c. This can be done in overall time O(n), for all c (One has to count the
number of right borders between the left border lc and the right border
rc of c and the number of intervals passing the right border of c).Then we
define n(c) to be the total number of neighbours of c excluding itself as
well as h(c) and k(c) if they are defined.

The total distance of Tc is

(n(c))2 + tL(c) + tR(c) + (1 + 2n(c) + dL(c))|TR(c)|

+(1 + 2n(c) + dR(c))|TL(c)| + 2|TL
c ||TR

c | + (dL(c) + dR(c))(1 + n(c)).

6

Thus we compute the numbers tR(v) (tL(v)), dR(v) (dL(v)), |TL
v | (|TR

v |),
and numR(v) (numL(v)) in overall linear time.

We obtain the total distances and thus the average distances of the trees
Tc with assumed median vertices c in overall linear time, and we only have to
select one Tc with minimum average distance. We determine this particular Tc

explicitly using Theorem 1. Also this can be done in linear time.

Theorem 3 If an interval representation of an interval graph G with n vertices
is given and the left and the right boundaries l(v) and r(v) are sorted then a
MAD tree of G can be determined in O(n) time.

4 Conclusions

It remains an open problem to decide whether there exists a polynomial time
algorithm to find a MAD tree of a vertex weighted interval graph. If w is a real
valued weight function on the vertex set of G, then the average distance of G

with respect to w is defined (see [4]) as

(

w(V)

2

)−1
∑

{u,v}⊂V (G)

w(u)w(v)dG(x, y),

where w(V) is the total weight of the vertices in G.
Theorem 1 does not hold (and hence the algorithm presented above does not
work) if there is a weight function on the vertices of G. To see this, consider
the path with four vertices v1, . . . , v4 of weight 1, 2, 1, 5 together with a vertex
v5 of weight 0, that is adjacent to v1, . . . , v4. An interval representation of this
graph is as follows: v1 : [0, 1], v2 : [0, 3], v3 : [2, 5], v4 : [4, 5], v5 : [0, 5]. This
graph has a unique MAD tree, the path v1, v2, v3, v4, v5. It is easy to check that
T does not contain a vertex satisfying the conclusion of Theorem 1.

New techniques seem necessary to solve the edge-weighted counterpart of
the MAD tree problem for Interval graphs. It would also be interesting to know
whether our algorithm can be extended to the class of strongly chordal graphs.

References

[1] Bang Ye Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, Chuang Yi Tang,
A polynomial time approximation scheme for minimum routing cost span-
ning trees. SIAM Journal on Computing, Vol. 29, No. 3, pp. 761-778 (1999).

[2] C.A. Barefoot, R.C. Entringer, L.A. Szekély, Extremal Values of Distances
in Trees. Discrete Applied Mathematics 80 (1997), pp. 37-56.

[3] E. Dahlhaus, P. Dankelmann, W. Goddard, H.C. Swart, MAD trees and
distance-hereditary graphs. Discrete Applied Mathematics 131 (2003), pp.
151-167.

7

[4] P. Dankelmann, Computing the average distance of an interval graph. Inf.
Process. Lett. 48 (1993), pp. 311-314.

[5] P. Dankelmann, P. Slater, Average distance in outerplanar graphs. Preprint.

[6] D.S. Johnson, J.K. Lenstra and A.H.G. Rinnooy-Kan, The complexity of
the network design problem. Networks 8(1978), pp. 279–285.

[7] S. Olariu, J. Schwing, J. Zhang, Optimal Parallel Algorithms for Problems
Modeled by a Family of Intervals. IEEE Transactions on Parallel and Dis-
tributed Systems 3 (1992), pp. 364-374.

8

