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Abstract

We combine the results of Bartal [Proc. 37th FOCS, 1996, pp. 184–193] on probabilistic approximation of metric spaces by
tree metrics, with those of Klein, Plotkin and Rao [Proc. 25th STOC, 1993, pp. 682–690] on decompositions of graphs without
smallKs,s minors (such as planar graphs) to show that metrics induced by such graphs (with unit lengths on the edges) can be
probabilistically approximated by tree metrics with an O(log diamG) distortion. This improves upon Bartal’s result that holds
for generaln-node metrics with a distortion of O(logn log logn). The main ingredient of our proof is thatweakprobabilistic
partitions suffice for the construction of tree metrics with low distortion, in contrast to strong partitions used by Bartal. We also
show that our result is the best possible by providing a lower bound of�(log diamG) for the distortion of any probabilistic
approximation of the square grid by tree metrics. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Metric approximations

Approximating a given metric by structurally sim-
pler metrics has been an area of much research mo-
tivated by several different perspectives such as func-
tional analysis [9], graph theory [7], distributed com-
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putation [14], approximation algorithms [12], and
computational biology [1]. A popular simple metric
used to approximate a given metric is an additive or
tree metric, represented by distances arising from a
tree containing the given points. The distances in the
additive metric must dominate the distances in the
graph but not be much greater. Thedistortion is the
maximum ratio of any distance in the simpler metric
to the original distance. However, even for the simple
metric induced by ann-cycle, if we restrict ourselves
to approximating by a tree metric, the distortion must
be at least�(n) [15].

To overcome this obstacle, Karp [10] introduced
the notion of probabilistic approximation and showed
how the cycle metric can be 2-approximated by a
uniform distribution on the path metrics obtained by
deleting an edge of the cycle. The goal is to give a
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polynomially computable probability distribution over
a set of simpler metrics each of which dominates the
given metric, and at the same time to keep the expected
distortion for any edge small. Alon et al. [2] extended
this result to show that every metric onn points can
be probabilistically approximated by tree metrics with

distortion 2O(
√

logn log logn).
Bartal [4] achieved a better distortion of O(log2n)

and improved this bound to O(logn log logn) [5].
The technique underlying his results is an efficient
computation of (strong) probabilistic partitions of the
graph, where the induced graph on each cluster of the
partition has a small diameter. The idea is to define a
distribution over the set of strong partitions such that
for every edge, the probability it is cut by a partition
is small. This notion can be extended to define weak
probabilistic partitions, where we no longer insist that
the diameters of the induced graphs on the clusters be
small, but only that any pair of nodes in a cluster are
sufficiently close in the original graph (i.e., we impose
a bound on the “weak” diameter of the clusters, hence
the name).

1.2. Our results

In this paper, we first show that weak probabilis-
tic partitions suffice to guarantee probabilistic approx-
imations byk-HSTs (see definition in Section 2) with
the same distortion of O(log2n) as in Bartal [4],
closely following his construction.

Bartal gives a lower bound of�(logn) for approx-
imating the metric of any graph, leaving a small gap
to close, as the upper bound is O(logn log logn). We
show that for any positive integers, the metric of
a graphG without aKs,s minor can be probabilis-
tically approximated by tree metrics with distortion
O(logdiamG). For example, planar graphs exclude
K3,3. We obtain this improvement by randomizing a
weak-diameter decomposition procedure due to Klein
et al. [11] to get weak probabilistic partitions, and us-
ing the previous result to build thek-HSTs.

We then show that this result is asymptotically
optimal by providing a lower bound of�(logdiamG)
for the distortion of any probabilistic approximation of
the square grid by tree metrics. Our lower bound proof
uses the easy direction of Yao’s minimax theorem [17]
and bounds the average distortion of any edge of

the square grid in any tree-metric approximation by
extending a result of Alon et al. [2].

Finally, we turn to applications of probabilistic ap-
proximation by tree metrics to network design prob-
lems [3,6,16]. In these applications, it is convenient if
the tree metric is a spanning tree of the original metric.
We give a simple “lifting” procedure to convert the ap-
proximatingk-HSTs into spanning trees of the original
metric while only doubling the expected distortion.

2. Probabilistic approximation of metrics via
weak partitions

We use the following definitions from Bartal [4].

Definition 2.1. Given a metric spaceM over a finite
setV , denote the distance between two pointsx, y ∈ V

by dM(x, y). A family F of metric spaces overV ,
α-probabilistically approximatesM, if

dM(x, y)� dN(x, y), for all N ∈ F , x, y ∈ V,

and there exists a probability distributionD onF such
that

ED
[
dN(x, y)

]
� αdM(x, y),

for all x, y ∈ V , whereN ∈ F is chosen according to
the distributionD. We callα the distortion.

Definition 2.2. Let G = (V ,E,w) be a weighted
connected graph. Consider a partition of the vertex set
V = ⋃

i Vi . The subgraph ofG induced byVi , G[Vi]
is called aclusterof the partition. Thestrong diameter
of the cluster is the diameter ofG[Vi], whereas the
weak diameterof the cluster is the maximum distance
in G between two vertices ofVi .

Definition 2.3. An �-(weak) partition ofG is a parti-
tion of the vertex setV = ⋃

i Vi such that the strong
(weak) diameter ofG[Vi] is at most�, for all i.

For a probability distributionD over all�-partitions
of G, let xe denote the probability that edgee
crosses a boundary between some two clusters, i.e., its
endpoints are in different clusters.

Definition 2.4. For any 0� r � diamG, λ,ρ � 0,
an (r, ρ,λ)-(weak) probabilistic partition ofG is a
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probability distributionD over the set of(rρ)-(weak)
partitions ofG, such that

xe � λwe

r
, for all e ∈E.

Definition 2.5. Let k > 1. A k-hierarchically well-
separated tree(k-HST) is a rooted weighted tree such
that
(1) the edge lengths from any vertex to all of its

children are the same, and
(2) the length of any edge is at most 1/k times the

length of its parent edge.

Bartal uses strong probabilistic partitions of a graph
recursively to construct ak-HST that approximates the
metric of the graph.

Theorem 2.6 [4]. For all r � 0, if there is a polyno-
mially computable(r, ρ,λ)-probabilistic partition of
every subgraph ofG, thenG can beα-probabilistical-
ly approximated by a polynomially computable distri-
bution on a set ofk-HSTs each of diameterO(diamG),
for α = O(ρλk logk(diamG)).

We extend this theorem to weak probabilistic parti-
tions.

Theorem 2.7. For all r � 0, if there is a polyno-
mially computable(r, ρ,λ)-weak probabilistic parti-
tion of every subgraph ofG, thenG can beα-prob-
abilistically approximated by a polynomially com-
putable distribution on a set ofk-HSTs each of diam-
eterO(diamG), for α = O(ρλk logk(diamG)).

Proof. We follow Bartal’s construction but deviate
from it in the recursive definition of the radius bounds
on clusters to accommodate weak partitions. We first
construct the family ofk-HSTs that approximate
distances inG and then bound the expected distortion.

For i = 1, . . . , logk diamG, let ri = diamG/(ρki).
First, find an(r1, ρ,λ)-weak probabilistic partition of
G. Then, find an(r2, ρ,λ)-weak probabilistic partition
of each of the resulting subgraphs ofG. At a generic
iteration i, find an(ri , ρ,λ)-weak probabilistic parti-
tion of the current graphGi . Let C1

i+1, . . . ,C
s
i+1 be

the resulting clusters. For eachj ∈ {1, . . . , s}, recur-
sively construct thek-HST ofCj

i+1. Denote these trees

T
j
i+1 and their rootsqji+1, for j = 1, . . . , s. We con-

struct Ti by adding a root nodeqi and connecting
it to q

j

i+1, for all j = 1, . . . , s, by an edge of length
riρk/2 = diamG/(2ki−1). We stop whenGi consists
of a single vertex, thus the leaves of the tree are the ver-
tices ofG. Let T = T1. Note thatT is a k-HST with
the additional property that all the edge lengths at a
level are equal, and it has depth at most logk(diamG).

First we show by induction that the distance inT
between any pair of nodes inV (G) is at least the
distance inG. The claim holds trivially whenGi has a
single node. AssumedTi+1(u, v) � dG(u, v). If u and

v are both in clusterCj

i+1, then

dTi (u, v)= d
T
j
i+1
(u, v)� dG(u, v).

Otherwise,

dTi (u, v)� diamG/ki−1 = ρrik,

and the weak diameter of the cluster at theith level
containing bothu andv is at mostρri−1 = ρrik, hence

dTi (u, v)� dG(u, v).

We will now show that the expected distortion
of distances inT is O(λρk logk(diamG)). The main
deviation from Bartal’s proof is that we always relate
distances inT to those in the original graph, as our
probabilistic partitions are weak.

First, we relate the diameter ofTi to that ofG. Let
Ti denote a subtree ofT whose root is a vertex at the
ith level ofT and letγ (Ti) denote the maximal length
of a root-leaf path inTi . We prove by induction that
γ (Ti)� 1/2(1+1/(k−1))diamG/ki−1. Assume the
claim holds fori + 1. Then,

γ (Ti) = max
j

γ
(
T
j

i+1

) + 1

2

diamG

ki−1

� 1

2

(
1+ 1

k − 1

)
diamG

ki

+ 1

2

diamG

ki−1

1

2

diamG

ki−1

(
1+ 1

k − 1

)
.

Hence,

diamTi �
(

1+ 1

k − 1

)
diamG

ki−1
. (1)

Bartal’s proof of the upper bound on the ex-
pected distance inT carries over almost directly. The
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proof shows by induction oni that for someh �
logk(diamG),

E
[
dTi (u, v)

]
� λρk

(
1+ 1

k − 1

)
(h− i)dGi (u, v).

Assume the claim holds fori + 1. Let Ai be the
event that a shortestu–v path is within some cluster
C
j

i+1 produced at iterationi. Then,

E
[
dTi (u, v)|Ai

]
= E

[
d
T
j
i+1
(u, v)

]

� λρk

(
1+ 1

k − 1

)
(h− i − 1)d

C
j
i+1
(u, v) (2)

= λρk

(
1+ 1

k − 1

)
(h− i − 1)dGi (u, v). (3)

Let xi(u, v) be the probability that some shortest
u–v path crosses between some clusters produced at
iterationi. Then,

E
[
dTi (u, v)

]
� xi(u, v)diamTi + (

1− xi(u, v)
)
E
[
dTi (u, v)|Ai

]
� λ

dGi (u, v)

ri
diamTi + E

[
dTi (u, v)|Ai

]

� λ
dGi (u, v)

diamG
ρki

(
1+ 1

k − 1

)
diamG

ki−1

+λρk

(
1+ 1

k − 1

)
(h− i − 1)dGi (u, v)

= λρk

(
1+ 1

k − 1

)
dGi (u, v)

+λρk

(
1+ 1

k − 1

)
(h− i − 1)dGi (u, v)

= λρk

(
1+ 1

k − 1

)
(h− i)dGi (u, v).

The first inequality is derived by examining whether
the shortestu–v path crosses cluster boundaries. The
second inequality follows since in an(ri , ρ,λ)-weak
probabilistic partition,xi(u, v) �

∑
e∈P xe, and thus

xe � λwe/ri implies xi(u, v) � λ · dGi (u, v)/ri . The
third inequality uses (1), the definition ofri and (2).

Finally, since h � logk(diamG), E[dT (u, v)] �
λρk(1+ 1

k−1) logk(diamG)dG(u, v). ✷
Remark. Bartal (personal communication, 1997) has
pointed out that the diamG bound in the above proof

can be replaced byn by using the idea of1
n
-forcing

weak partitions as in [4].

3. Probabilistic partition of graphs without Ks,s

minors

In this section we randomize the decomposition of
Klein et al. [11] to show that given a graphG and
parametersδ ands, eitherG has aKs,s minor, or there
is a (δ,O(s2), s)-weak probabilistic partition of any
subgraph ofG. This result together with Theorem 2.7
yields a family of k-HSTs that O(s3k logk diamG)-
probabilistically approximates the metric ofG.

We first describe their decomposition procedure.
Let δ > 0 be given. Find a breadth-first-search tree of
G starting from any vertex as the root. If the depth
of the tree is less thanδ, stop. Otherwise choose
η ∈ {1,2, . . . , δ}, and divideV into clusters of vertices
whose distance from the root is betweenη + iδ and
η + (i + 1)δ − 1, for i = 0,1, . . . , by deleting edges
that cross the clusters. Recursively apply the same
procedure to each cluster. The depth of the recursion
is s, if G has noKs,s minor (thus,s = 3 for a planar
graph). In [11],η is chosen to minimize the number of
edges removed. Using this decomposition, Klein et al.
show the following:

Theorem 3.1. A graphG without aKs,s minor can
be decomposed into subgraphs of weak diameter4δs2

by removing a constant(s/δ) fraction of edges, where
s < δ < diamG.

Our key observation is that the bound on the weak
diameter is independent of the choice of the root or the
choice ofη at any level of the recursion. We simply
pick the root andη uniformly at random from the set
of all available vertices and{1, . . . , δ}, respectively.

Theorem 3.2. If a graphG does not contain aKs,s

minor, then the decomposition procedure outputs a
(δ,4s2, s)-weak probabilistic partition ofG.

Proof. By Theorem 3.1, the weak diameter of the
clusters is at most 4δs2. Therefore, each of the par-
titions that may result as a consequence of particular
choices of the cutting parameterη is a 4δs2-weak par-
tition of G. Sinceη and the root are chosen uniformly
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at random, the probability that a given edge will be
deleted is at most 1/δ at every level of the recursion.
Since the recursion terminates after at mosts levels,
the union bound givesxe �wes/δ. ✷

The following result easily follows from Theo-
rems 2.7 and 3.2.

Corollary 3.3. Let G be a weighted graph without
a Ks,s minor. ThenG can beα-probabilistically ap-
proximated by a polynomially computable distribution
on a set ofk-HSTs, forα = O(s3k logk(diamG)).

4. Lower bounds

In this section we show that the metric of a 2-di-
mensionaln × n grid, which we denote byG(n,2),
cannot beα-probabilistically approximated by a tree
for any α = o(logn). The result is an extension of a
theorem of Alon et al. [2].

An often used method of proving lower bounds for
(the running time or the performance guarantee of)
randomized algorithms is that of Yao [17,13], based
on the minimax principle of linear programming.
Consider a randomized algorithm as a distributionp

on a set of deterministic algorithmsA ∈ A. If q is any
distribution on the set of inputsI ∈ I, then

min
A∈A

Eq

[
cost(I,A)

]
� Ep

[
max
I∈I

cost(I,A)
]
. (4)

Definition 4.1. Let T be a spanning tree of the graph
G. The distortion of an edgee with respect toT is the
length of the unique path inT between the endpoints
of e. We denote this by distT (e).

Alon et al. [2] prove the following lower bound on
the expected distortion.

Theorem 4.2. Let T be a spanning tree ofG(n,2). If
q is the uniform distribution on the edges ofG(n,2),
then

Eq

[
distT (e)

]
� 1

2048
lnn− O(1).

Note that from (4) it follows that a lower bound for
expected distortion of an edge (like the one in Theo-
rem 4.2) translates to the same lower bound for proba-
bilistic approximation by spanning trees. Thus we only

need to show that the proof from [2] can be extended
to the more general notion of probabilistic approxima-
tion by trees that are not necessarily subgraphs of the
original graph.

First of all, we may assume that all the grid vertices
are the leaves of the tree we consider (otherwise,
add edges of length zero and make the grid vertices
leaves). Further, we can reduce the maximum degree
of the tree to 4 by splitting any vertex of degree
greater than 4 into two vertices (dividing the neighbors
between the two vertices) and connecting them by
edges of length 0.

Definition 4.3. We call a treeT asuper-spanning tree
of the gridG=G(n,2), if
(1) dT (x, y)� dG(x, y) ∀x, y ∈ V (G),
(2) every vertex ofG is a leaf ofT , and
(3) degree of every vertex ofT is at most 4.

Note that a super-spanning tree of a grid need not
be a spanning tree. However, the only obstacle is
the requirement (2) which can be satisfied by adding
edges of cost 0. Thus it is sufficient to generalize
Theorem 4.2 to super-spanning trees.

Lemma 4.4 [2]. If A is a set of at leastα2 vertices
of G(n,2), and |A| � n2/2, then there are at leastα
rows or at leastα columns thatA intersects but does
not fill.

Lemma 4.5 (variant of Lemma 6.4 of [2]).Let T ′ be
a subtree of a super-spanning tree ofG(n,2), andA
be the set of leaves ofT ′. If A contains at leastα2

vertices(ofG(n,2)), where|A| � n2/2, andB is a set
of at most four vertices inT ′, then there are at least
α/2 vertices inA that have neighbors outsideA and
have distance at leastα/16 from each vertex ofB.

Proof. By the previous lemma there is a setS of
at leastα vertices inA that are in distinct rows (or
columns), and have neighbors outsideA (henceT ′, as
well). Because distances inT overestimate distances
in G, any vertex ofB can be withinα/16 of at most
α/8 vertices ofS in T ′. So, at leastα/2 vertices ofS
are more thanα/16 away from any vertex ofB. ✷
Lemma 4.6 (variant of Lemma 6.5 of [2]).If T is
a super-spanning tree ofG(n,2) and 1 � α � n/16,
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then there are at leastn2/(64α) edgese such that
distT (e)� α/16.

Proof. Any tree onm > 1 vertices with maximum
degree 4 can be split in two smaller subtrees, each
of which has at least(m2 − 1)/4 � m2/8 leaves
by deleting a single edge. We use this observation
starting withT , and repeatedly delete an edge from the
biggest remaining component so that this component
is split as evenly as possible. In this way, we delete
�n2/(8α2)� − 1 edges. The average number of leaves
in a component is 8α2, and each of the�n2/(8α2)�
components has at leastα2 leaves.

The average number of deleted edges incident with
a component is less than 2, so at least half the
components are incident with at most 4 deleted edges.
LetD be the set of such components and letT ′ be one
of the components inD. Let A be the set of leaves
of T ′ andB be the set of vertices inT ′ incident on
the deleted edges. Then, by Lemma 4.5 there are at
leastα/2 leaves inT ′ that are at distance at leastα/16
from each vertex ofB, and that have neighbors outside
A. The paths inT from any of theseα/2 vertices
in A to their neighbors outsideA must go through
a vertex ofB. Applying the same reasoning to each
of the n2/(16α2) components inD, and taking into
account double-counting, we get a total ofn2/(64α)
edges whose distortion inT is more thanα/16. ✷
Theorem 4.7 (Theorem 6.6 in [2]).If T is a super-
spanning tree ofG = G(n,2), and an edge is chosen
uniformly at random fromE(G), then

E
[
distT (e)

]
� 1

2048
lnn− O(1).

The proof uses Lemma 4.6 and is otherwise identi-
cal to that in [2].

5. Obtaining a spanning tree of the original metric

Many recent network design approximation algo-
rithms use probabilistic approximations by tree met-
rics, e.g., the buy-at-bulk network design problems [3],
the group Steiner tree problem [6], and the communi-
cation cost spanning tree problem [16]. The key idea is
that the expected cost of an optimal solution in the tree
metrics is at most O(log2n) times the optimum and

furthermore, it is easy to find the minimum or near-
minimum cost network in a tree metric. To transform
the solution in the tree metric to one in the original
metric, it is convenient if the tree is a spanning tree of
the original metric, so the solution edges form a sub-
forest of this spanning tree. However, this is not the
case in thek-HST construction due to the addition of
new internal nodes.

We show that HSTs can be made spanning trees
of the original metric (not necessarily of the original
graph) while doubling the expected distortion. This
is similar to a lifting procedure of Jiang, Lawler
and Wang [8]. The resulting spanning trees are not
guaranteed to be hierarchically well-separated, but this
is not a concern in the mentioned network design
applications.

Theorem 5.1. Any k-HST T ′ resulting from weak
or strong probabilistic partitions as described in the
proof of Theorem2.7 can be replaced by a treeT
whose vertex set isV (G), such that

dG(u, v)� dT (u, v)� 2dT ′(u, v)k/(k − 1)

for anyu,v ∈ V (G).

Proof. By construction ofT ′ described in the proof of
Theorem 2.7, the set of leaves ofT ′ is exactly the set
of vertices ofG. Also,dG(u, v)� dT ′(u, v).

Let v be an arbitrary vertex ofG in T ′ such that the
parentw of v is not a vertex ofG. Shrink the edgewv
and identifyv with w. Repeat this until all the vertices
of the tree are vertices of the original graphG. Finally,
multiply the length of every edge by 2k/(k − 1). Let
T denote the resulting tree.

Clearly,dT (u, v)� 2dT ′(u, v)k/(k − 1), as the dis-
tance could only have decreased in the shrinking
process. To prove the lower bound, letu and v be
leaves ofT ′ and w be their least common ances-
tor. Let lw be the length of the edges fromw to
its children. From the definition of ak-HST, it fol-
lows thatdT ′(u, v) � 2lwk/(k − 1). Thus,dT (u, v) �
2lwk/(k − 1)� dT ′(u, v)� dG(u, v). ✷

Note that at the end of the shrinking algorithm,
a spanning tree of the metric is obtained and we
may replace the updated edge weights by the original
weights in the metric without increasing the distortion.
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