
INFORMS Journal on Computing
Vol. 20, No. 2, Spring 2008, pp. 243–254
issn 1091-9856 �eissn 1526-5528 �08 �2002 �0243

informs ®

doi 10.1287/ijoc.1070.0237
©2008 INFORMS

Solving the Capacitated Local Access
Network Design Problem

F. Sibel Salman
College of Engineering, Koç University, Istanbul 34450, Turkey, ssalman@ku.edu.tr

R. Ravi, John N. Hooker
Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

{ravi@cmu.edu, john@hooker.tepper.cmu.edu}

We propose an exact solution method for a routing and capacity installation problem in networks. Given
an input graph, the problem is to route traffic from a set of source nodes to a sink node and to install

transmission facilities on the edges of the graph to accommodate the flow at minimum cost. We give a branch-
and-bound algorithm that solves relaxations obtained by approximating the noncontinuous cost function by its
lower convex envelope. The approximations are refined by branching on the flow ranges on selected edges.
Our computational experiments indicate that this method is effective in solving moderate-size problems and
provides very good candidate solutions early in the branch-and-bound tree.

Key words : network design; routing flow; capacity installation; branch and bound
History : Accepted by Prakash Mirchandani, former Area Editor for Telecommunications and Electronic
Commerce; received August 2001; revised July 2004, February 2007; accepted June 2007. Published online in
Articles in Advance January 25, 2008.

1. Introduction
Network design problems involve connecting a given
set of locations that have traffic requirements among
them by installing transmission facilities at mini-
mum cost. These problems have applications in many
areas such as the design of telecommunication, trans-
portation, computer, and energy supply networks,
as well as production-distribution systems. We focus
on network design in telecommunications, an area
that has attracted much interest. A common practice
in telecommunication network design is to partition
the network into several local access networks (LANs)
and a backbone network. In each LAN, traffic is col-
lected at a node specified as the switching center. The
backbone network is used to route the high-volume
traffic between the switching centers. In the hierar-
chical design approach, the set of nodes are first par-
titioned into LANs, and for each partition a node is
chosen to locate the switching center. Next, the design
problem for each LAN is solved. The local access net-
work design is a single-sink multisource routing and
link-capacity assignment problem. The solution spec-
ifies a network to route traffic to the switching cen-
ter and the transmission facilities, such as fiber-optic
cables, to be installed on the edges of the network.
Then, the backbone network is designed by solving a
multicommodity flow and capacity-assignment prob-
lem. A similar problem arises when a network has to
be expanded to accommodate increased traffic. In the

LAN design problem, we are given a graph with lengths
on the edges, a set of source nodes with specified traf-
fic demands, and a sink node. A set of cable types,
each with a given cost per unit length and capacity
(bandwidth), is available for purchase and installa-
tion on the edges. However, the cost per unit capac-
ity of a thick (high-bandwidth) cable is considerably
cheaper than that of a thin (low-bandwidth) cable,
so that buying capacity in bulk becomes economical
when traffic accumulates to large volumes. The prob-
lem is to find a minimum-cost installation of cables
on the edges such that all the demand originating at
the sources can be routed simultaneously to the sink
node with the provided capacity. The backbone net-
work design problem has the same characteristics except
that traffic demands are between pairs of source-sink
nodes, hence the traffic of each source-sink pair is con-
sidered as a separate commodity.
The problem of installing capacity on the edges of

a network at minimum cost by purchasing from a set
of available transmission facilities has also been called
the network-loading problem. The study of the poly-
hedral structure of these network-design problems
where capacity is bought in modular quantities was
initiated by Magnanti et al. (1993), who introduced
the residual capacity inequalities. Magnanti and
Mirchandani (1993) considered a single-commodity
problem and introduced the cut-set inequalities. The
cut-set inequalities, which provide a lower bound on

243

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
244 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

the number of cables to be installed across a cut,
have been the basis for subsequent work. Magnanti
et al. (1995) considered the multicommodity network-
loading problem with two cable types. They strength-
ened a natural multicommodity flow formulation
with integer cable installation variables with cut-
set, 3-partition, and arc-residual-capacity inequalities.
Bienstock and Günlük (1996) generalized the cut-set
inequalities to flow-cut-set inequalities that force the
capacity on both edge sets of a bipartition of the
cut edges to be integral. Later, Atamtürk (2002) gen-
eralized these flow-cut-set inequalities by express-
ing the coefficients with a subadditive function for
the single-commodity problem. Atamtürk and Rajan
(2002) studied continuous and 0-1 knapsack sets with
a single integer variable to derive enhanced inequal-
ities for network design problems and tested their
effectiveness in a branch-and-cut algorithm for the
multicommodity network-loading problem.
Several authors have taken a different approach

and studied the polyhedron obtained by project-
ing out the flow variables (Bienstock et al. 1998,
Barahona 1996, Mirchandani 2000). The resulting
capacity formulation contains exponentially many
metric inequalities, thus only a subset of them
are generated. Bienstock and Günlük (1995) gen-
erated partition inequalities, and Barahona (1996)
generated cut-set and multicut inequalities for the
single-cable problem. For the many-cable problem,
Mirchandani (2000) characterized several classes of
facet-defining inequalities by analyzing the special
topology of the demand network. Multicommod-
ity network optimization problems with discontinu-
ous step-increasing cost functions, which include the
capacitated network-loading problems, were studied
by Gabrel and Knippel (1999), and earlier by Stoer
and Dahl (1994) in the context of survivable network
design. Gabrel and Knippel (1999) used the Benders
procedure to solve the capacity formulation and gen-
erated partition inequalities iteratively. Later, Gabrel
et al. (2003) tested a heuristic implementation of the
exact Benders-type cutting-plane-generation method
and compared it to greedy-type algorithms on ran-
domly generated instances. The authors concluded
that this Benders-type approach is promising.
A related version of the network-loading problem

was studied by Gavish and Altinkemer (1990), and
later by Amiri and Pirkul (1997), where the cost func-
tion included queueing-delay costs in addition to con-
nection costs. In both of these papers, Lagrangian
relaxation and a subgradient-optimization approach
were taken. In addition, Gavish and Altinkemer
(1990) utilized cut-set inequalities to strengthen the
lower bounds.
Chopra et al. (1998) considered the network-loading

problem with a single source-sink pair and two cable

types. They showed that even this special case is
NP-hard and obtained a stronger formulation by char-
acterizing the structure of optimal solutions. How-
ever, there is no direct generalization of their results
for the single-sink multiple-source case arising in
LAN design.
While Berger et al. (2000) proposed heuristics based

on tabu search, there has been a flurry of work on
designing approximation algorithms with provable
worst-case performance ratios for the LAN design
problem in the theoretical computer science litera-
ture. Salman et al. (1997, 2000) gave the first approx-
imation results for the LAN design problem, which
they dubbed the “single-sink buy-at-bulk network
design problem.” Consequently, Awerbuch and Azar
(1997) proved a logarithmic approximation ratio for
a broader class of this problem, including the back-
bone design problem. Gupta et al. (2003) formulated
a mixed-integer program (MIP) for a closely related
problem and rounded its LP relaxation solution to
show an integrality gap of the order of the number
of distinct cable types in the problem. An improved
LP rounding algorithm proving a constant factor inte-
grality gap for this closely related problem was given
by Talwar (2002). Meanwhile, an alternate random-
ized algorithm also giving constant-factor approxima-
tion was presented by Guha et al. (2001).
We propose an exact solution method for the LAN

design problem in §§2 and 3. In this method, the
optimal choice of cables to accommodate a given
flow value is first calculated for all possible flow val-
ues. This provides the optimal cost as a function of
flow for every edge, which is a monotonically non-
decreasing step function. For solution purposes, we
replace this function with the convex hull of its epi-
graph, which is equivalent to projecting the stan-
dard 0-1 formulation onto the continuous variables.
We then branch by dividing the interval of possible
flow values on a particular edge into subintervals.
As branching proceeds, the convex hull relaxation is
successively refined. This strategy has led to improve-
ments in both solution time and modeling conve-
nience in other studies. Ottosson et al. (2002) obtained
an order-of-magnitude speedup, relative to 0-1 mod-
eling and specially ordered sets of type 2, in a produc-
tion planning problem. Réfalo (1999) showed how to
use the relaxation in “tight cooperation” with domain
reduction to obtain maximum benefit. Hooker (2000)
provides a general discussion on this subject. Our
computational tests on solving the LAN design prob-
lem, which we present in §4, indicate that the method
is effective in solving moderate-size instances. The
proposed method can also be applied to solve the
multicommodity case arising in the backbone design
problem. Subsequent to the work presented in this
paper, Raghavan and Stanojevic (2005) provided an

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS 245

alternative way of interpreting our method as a styl-
ized branch-and-bound approach on a particular MIP
formulation of the problem. We elaborate on their
results after we present these formulations in §2,
and our algorithm in §3. The implementation details
and computational results are given in §4. We con-
clude in §5.

2. Formulations and Preliminaries
In this section, we contrast a natural MIP formu-
lation with a flow formulation that has a discon-
tinuous objective function. The latter motivates our
solution method. We are given an underlying undi-
rected graph G = �V �E�, �V � = n. The edges of G
have lengths �	 E → �+. Without loss of generality,
we assume that for every pair of nodes v�w, we can
use the shortest-path distance between v and w as the
length of the edge between these nodes. That is, we
take the metric completion of the given graph and
denote the length of edge e by le. Capacity can be
installed on the edges of the graph by purchasing
one or more copies from among a small set of cables,
where each cable type i ∈ �1� � � � � q� has capacity ui
and cost ci per unit length. The indexing of the cables
is such that u1 ≤ u2 ≤ · · · ≤ uq and c1 ≤ c2 ≤ · · · ≤ cq .
Due to economies of scale, c1/u1 > c2/u2 > · · ·> cq/uq .
Let S denote the index set of source nodes. For all
k ∈ S, source node sk has integer-valued demand dk to
be routed to the sink node t. Because demand origi-
nating at each source node shares the same destina-
tion, we can consider all of the traffic flow as a single
commodity.
Let us first consider the natural formulation with

integer cable installation variables on the edges, which
was also used by Bienstock and Günlük (1996) and
Magnanti et al. (1995) with multicommodity flows. As
mentioned before, because all flow is headed to a sin-
gle destination, we use a single-commodity formula-
tion. For each edge e= �i� j� of the input graph G, we
have directed flow variables fij and fji, which denote
the amount of flow through edge e in direction i
to j , and j to i, respectively. The integer variables ye�h
denote the number of cables of type h that need to be
installed on edge e. In the IP formulation given below,
constraints (1) are flow-balance constraints, and con-
straints (2) are capacity constraints.

IP1: min
∑
e∈E
le

q∑
h=1

chye�h

s.t.
∑
j∈V

fij −
∑
j∈V

fji

=




di if i ∈ S
−∑

k∈S
dk if i= t

0 otherwise

∀ i ∈ V � (1)

fij + fji ≤
q∑

h=1
uhye�h ∀ e= �i� j� ∈ E� (2)

y� f ≥ 0�
y integer�

The LP relaxation of IP1 has a solution that uses
only the cable type with the largest bandwidth, which
is cable type q, because this provides the cheapest cost
per capacity rate. Demand is routed through shortest
source-sink paths. If flow on a path is small compared
to the capacity of this high-bandwidth cable, only a
small fraction of the cable is purchased. Therefore,
this relaxation is known to give weak lower bounds.
Now let us consider the cable installation problem

on a single edge. Let fe indicate the total flow on edge
e= �i� j�, that is, fe = fij + fji. Then, the problem is to
purchase cables at minimum cost (per unit length) to
provide a total capacity of at least fe. This is an integer
minimum knapsack problem with formulation

C�fe�=min
q∑

h=1
chye�h

s.t.
q∑

h=1
uh ye�h ≥ fe�

ye�h ≥ 0� integer.

(3)

This problem, which is common for all edges, can
be solved in pseudo-polynomial time by a single run
of a dynamic programming algorithm for all possible
integer flow values, from zero to total demand. We
calculate the optimal cable-cost function C�f � for f =
0�1�2� � � � �

∑
k∈S dk by the following recursion, starting

with C�0�.

C�f �=




min
j=1�����q

�cj +C�f −uj�� if f > uq�

min
j=1�����k	uk−1<f≤uk

�cj +C�f −uj��
if 0< f ≤ uq�

0 if f ≤ 0�

(4)

where u0 = 0.

Proposition 1. The function C�f � for 0≤ f ≤∑
k∈S dk

has the following properties:
(1) It is a step function with finitely many points of

discontinuity.
(2) It is a nondecreasing subadditive function.
(3) C�f � ≥ �cq/uq�f for all 0 ≤ f ≤ ∑

k∈S dk, and
C�f �= k�cq� if f = k�uq� for some positive integer k.

Proof. The first property follows from the recur-
sion in (4). For the second property, it is easy to verify
from (4) that C�f2�≥ C�f1� for f2 ≥ f1 as cj take posi-
tive values and C�f1+ f2�≤ C�f1�+C�f2� for all f2, f1

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
246 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

due to economies of scale. The third property states
that C�f � lies above the line corresponding to the
cheapest cable rate. Furthermore, C�f � coincides with
this line if f = k�uq� for some positive integer k, indi-
cating that it is optimal to use k copies of cable q, the
thickest one. �

The second and third properties imply that the opti-
mal solution will have a tendency to aggregate flow
to integer multiples of the cables with higher capacity.
Because C�f � can be generated with small computa-
tional effort, we consider using the function C�fe� for
the cost of flow fe on edge e in IP1, so that we can
eliminate the integer variables and obtain the flow
formulation FP:

FP: min
∑
e∈E
C�fe� le

s.t.
∑
j∈V
fij−

∑
j∈V
fji=




di if i∈S
−∑
k∈S
dk if i= t

0 otherwise

∀i∈V ,

fij + fji = fe ∀ e= �i� j� ∈ E�
fij� fji� fe ≥ 0 ∀ e= �i� j� ∈ E�

This formulation is equivalent to projecting IP1 into
the space of the continuous flow variables. Now we
have a convex solution set but the objective function
is a step function with finitely many discontinuity
points as implied by Proposition 1. We investigate two
approaches to solve this problem. The first and more
direct one is to represent the pieces of the step func-
tion by 0-1 variables and to solve the resulting MIP by
branch and bound. In the second approach, we avoid
introducing 0-1 variables, but instead give a stylized
branch-and-bound algorithm that solves relaxations
by convexifying the objective function. This algorithm
is presented in §3.
We next give two formulations for the first direct

approach, differing in their use of the binary vari-
ables. We use the following notation to represent
C�f �, which is common for all edges. Let bk be the
flow values at which a jump occurs in C�f �, with ak =
C�bk� for k = 1� � � � � p defining p pieces. In addition,
b0 = 0 and a0 = 0. Let rk = bk−bk−1 be the range of flow
and gk be the incremental cost for the kth piece. Also,
r0 = 0 and g0 = 0. Then, ak =

∑k
j=0 gj is the optimal cost

value for any flow in the range �bk−1 =
∑k−1

j=0 rj� bk =∑k
j=1 rj ' as illustrated in Figure 1.
We obtain the incremental cost formulation if we

define a binary variable for each piece and each edge
as follows. Let xke be a 0-1 variable such that if fe ∈
�bk−1� bk', then each of x1e� � � � � xke equals one and
each of xk+1� e� � � � � xpe equals zero. If fe = 0, then all

C(f)

f
b0 b1 b2

g2

r2

b3 bp

a3

a2

a1

a0

ap
gp

Figure 1 Representation of the Step Function C�f �

of x1e� � � � � xpe take the value zero. To ensure these con-
ditions, we use constraints (5) and (6) given below, in
the resulting formulation IP2:

IP2: min
∑
e∈E

(
le

p∑
k=1

gk xke

)

s.t.
∑
j∈V

fij −
∑
j∈V

fji

=




di if i ∈ S
−∑

k∈S
dk if i= t

0 otherwise

∀ i ∈ V �

fij + fji ≤
p∑
k=1
rk xke ∀ e ∈ E� (5)

xke ≥ x�k+1�e k= 1� � � � � p− 1 ∀ e ∈ E� (6)

xke ∈ �0�1� k= 1� � � � � p ∀ e ∈ E�
fij� fji ≥ 0 ∀ e= �i� j� ∈ E�

A slightly different formulation is obtained by de-
fining the binary variable xke to represent whether
piece k determines the optimal cable cost for edge e.
In addition, x0e is defined to represent the zero-flow
case. Then, exactly one of the xke, k= 0� � � � � p has to be
one. The resulting multiple-choice formulation IP3 is
as follows:

IP3: min
∑
e∈E

(
le

p∑
k=1

ak xke

)

s.t.
∑
j∈V

fij −
∑
j∈V

fji

=




di if i ∈ S
−∑

k∈S
dk if i= t

0 otherwise

∀ i ∈ V �

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS 247

fij + fji ≤
p∑
k=1
bk xke ∀ e ∈ E�

p∑
k=0
xke = 1 ∀ e ∈ E� (7)

xke ∈ �0�1� k= 0� � � � � p ∀ e ∈ E�
fij� fji ≥ 0 ∀ e= �i� j� ∈ E�

IP3 has almost the same number of variables as IP2
but fewer constraints because (6) is replaced by (7).
Because of this, the LP relaxation of IP3 has an opti-
mal solution in which, for each edge e, at most two
of the xke are nonzero. Due to this property, we may
expect IP3 to perform better than IP2 in a branch-
and-bound algorithm. Here we note that the LP relax-
ations of IP2 and IP3 have the same value as implied
by the results of Keha et al. (2004) and Croxton et al.
(2003) on piecewise-linear cost-minimization prob-
lems. Furthermore, they approximate the objective
function of the flow problem FP with its lower convex
envelope. This was also proven later on by Raghavan
and Stanojevic (2005) for the LP relaxation of IP3
using duality and geometrical arguments. Raghavan
and Stanojevic (2005) pointed out that if we consider
each piece of C�f � as a facility consisting of a com-
bination of cables, this formulation corresponds to
a network-loading problem where only one type of
facility can be installed per edge.

3. Search by Objective Relaxation:
A Branch-and-Bound Algorithm

In this section, we give a branch-and-bound algo-
rithm to solve the flow formulation FP, in which the
objective function is a linear combination of the dis-
continuous flow costs C�fe� defined in (3). We obtain a
relaxation to FP by taking the lower envelope of C�fe�
over its domain for all e ∈ E. This relaxation, which we
refer to as the convex hull relaxation, is a multisource
single-sink flow problem with a piecewise-linear con-
vex objective function, which underestimates the
actual costs. Its optimal objective-function value is
equal to that of the LP relaxations of IP2 and IP3.
However, the convex hull relaxation can be solved
efficiently by utilizing a combinatorial minimum-cost
network-flow algorithm. Furthermore, the obtained
lower bound can be strengthened by branching on
the range of flow on a selected edge. Each flow range
defines a new domain for the cable-cost function of
that edge. Taking the lower convex envelope over the
new domain refines the function approximation and
yields a new relaxation subproblem, which is again a
flow problem with a different piecewise-linear convex
objective function. Interestingly, the solution to any
relaxation subproblem is a feasible flow for the LAN

design problem. Therefore, the optimal cable cost cor-
responding to this flow solution is an upper bound to
our problem. This leads to a branch-and-bound algo-
rithm, in which the lower bounds are obtained by
solving flow problems with approximate costs, and
upper bounds are obtained at each branch-and-bound
node with minimal effort from the relaxation solu-
tion f by replacing the approximate costs with the
actual costs C�fe� for each edge e.

3.1. Approximating the Cost Function
Given an edge e and a flow range)l�u', we approx-
imate C�f � by a function h�f � with the follow-
ing simple procedure, adapted from the well-known
monotone-chain algorithm for two-dimensional con-
vex hulls given points sorted along an axis (as we
have here) due to Andrew (1979). Initially, set h�f � to
the linear function interpolating C�l� and C�u� so that
C�l�= h�l� and C�u�= h�u�. Recall that bk denotes the
flow values at which a jump occurs in C�f � for k =
1� � � � � p. For every breakpoint bk in)l�u', starting with
the smallest one, check if C�bk� < h�bk�. If so, update
h�f � to the linear function interpolating C�l� and C�bk�
for all f ∈)l�u'. Suppose that bi is the last breakpoint
at which h was updated. Fix h�f � to the current linear
function for f ∈)l� bi'. Recursively repeat the proce-
dure for)bi�u'. We illustrate the approximation proce-
dure by an example in Figure 2. When the procedure

1

1

3

3

2

h(f)

h(f)

C (f)

C (f)

f

f

u

(b)

(a)

b1 b2 b3 b4 b5

4

1 ub1 b2 b3 b4 b5

Figure 2 Approximation of the Step Function C�f � by Its Convex
Envelope h�f �

Notes. Initially, h�f � is set to linear function 1. Then it is replaced by 2 at b3,
and 3 at b4. After checking b5, 3 is fixed for �l	 b4
. For �b4	 u
, it is set to the
linear piece 4 shown in (b).

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
248 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

stops, the function h�f � is the lower convex envelope
of C�f � over f ∈)l�u' by construction. It is piece-
wise linear and the slope of every piece increases as f
increases.

3.2. Obtaining Lower and Upper Bounds
At a given node of the branch-and-bound tree, for
every edge e, a range �Le�Ue' has been specified
on flow fe, such that flow on this edge should be
at least Le and at most Ue. Let he be the approxi-
mate cost function for edge e over the given range.
A lower bound on the problem is obtained by solving
a minimum-cost-flow problem defined by the approx-
imate cost functions he. Due to the special structure
of the he, the relaxation can be solved as follows.
For each linear piece 1� � � � � p in he, we divide fe into
variables fe�1� � � � � fe�p and add the constraint fe =
fe�1+· · ·+ fe�p. Let piece k have range rk and slope ,k
as shown in Figure 3. Then, fe�k takes values between
zero and rk, and has objective function coefficient ,k.
The relaxation has the form

RP: min
∑
e∈E
le

(p∑
k=1
,kfe�k+C�Le�

)

s.t.
∑
j∈V

fij −
∑
j∈V

fji

=




di if i ∈ S
−∑

k∈S
dk if i= t

0 otherwise

∀ i ∈ V �

p∑
k=1
fe�k+Le = fij + fji ∀ e= �i� j� ∈ E�

0≤ fe�k ≤ rk k= 1� � � � � p ∀ e ∈ E�
fij� fji ≥ 0 ∀ e= �i� j� ∈ E�

Le r3r2r1 Ue

δ2

δ3

δ1

he

Figure 3 Convex Hull Approximation he

Note that C�Le� in the objective function is constant.
For any edge e, the approximate function he has linear
pieces with increasing slopes. Therefore, an optimal
solution will assign flow starting from the leftmost
piece so that fe�k will be positive only if fe�k−1 = rk−1.
As a result, the optimal objective-function value of RP
gives a lower bound to the subproblem at the given
node of the branch-and-bound tree. At the root node
of the branch-and-bound tree, RP is defined by Le = 0,
Ue =

∑
k∈S dk for each edge e. Also, note that the lower

bound obtained by solving RP at the root node has
the same value as that of the LP relaxations of IP2
or IP3.
At a given node of the branch-and-bound tree, let f̄

be an optimal solution to the relaxation RP. Because f̄
is a feasible flow solution, when it is augmented with
the optimal cable choice for each edge, we obtain the
upper bound

∑
e∈E leC�f̄e� for our problem. We keep

the best upper bound over all nodes of the branch-
and-bound tree.

3.3. Fathoming
There are three fathoming rules. The first is by com-
paring the lower bound at a node with the global
upper bound UB. If the lower bound at a node is
at least UB, then this node is fathomed. The second
is by comparing the lower bound and upper bound
obtained at a node. After the relaxation solution f̄ is
obtained, for each edge e, we calculate C�f̄e�− h�f̄e�.
If the difference is zero (or smaller than a precision
parameter) for all edges, then we fathom this node.
Third, if the relaxation is infeasible at a node, then the
node is fathomed.

3.4. Branching
We pick an edge according to one of three rules, and
branch on the flow range for this edge. In the first
rule, we pick the edge that has the most potential
improvement in the cost approximation. That is, we
pick the edge with maximum cost deviation �C�f̄e�−
h�f̄e��le. In the second rule, we aim at improving the
cost approximation for a large flow range. We pick
the edge whose flow f̄e has the largest range in C, i.e.,
the range of the piece with value C�f̄e�. In the third
rule, we simply pick an edge with maximum flow.
Suppose that edge e∗ is picked. Consider the piece

of C with value C�f̄e∗�, where bk ≤ f̄e∗ ≤ bk+1. Branch
into three problems by forcing three ranges on fe∗ :
(1) bk < fe∗ ≤ bk+1, (2) Le ≤ fe∗ ≤ bk, and (3) bk+1 <
fe∗ ≤ Ue. In the first problem, the cost of fe∗ is
taken as the constant C�f̄e∗�. For the other two prob-
lems, the cost function needs to be approximated
again with the new ranges. This will lead to bet-
ter approximations and strengthen the lower bound.
Note that if bk = fe∗ , then we have a degenerate
case and branch into two. Alternatively, one can also

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS 249

choose to branch into two problems instead of three:
(1) Le ≤ fe∗ ≤ f̄e∗ , and (2) f̄e∗ < fe∗ ≤ Ue. Then, for
both problems the cost function is reapproximated
within the new ranges. We refer to this branch-and-
bound method as search by objective relaxation (SOR).
Achim et al. (1975) gave a branch-and-bound algo-
rithm for solving general concave-cost network flow
problems that is also based on relaxing the objective
function. Their algorithm uses a linear cost approxi-
mation to obtain lower bounds and bisects the flow
interval for branching, whereas SOR uses the con-
vex envelope for lower bounds. As mentioned in §1,
Raghavan and Stanojevic (2005) showed that the SOR
method can be reinterpreted as a stylized branch-
and-bound solution strategy on IP3. While SOR cal-
culates the lower convex envelope and solves the
network-flow problem RP at each node of the branch-
and-bound tree, their procedure solves the LP relax-
ation of IP3 with additional constraints to impose
the branching. In addition to bounds on flow vari-
ables specifying the flow range for that node, they
add constraints, setting the xke variables to zero for
pieces of C�fe� that are outside the flow range. In
this way, they avoid explicitly calculating the lower
convex envelope, and it becomes possible to uti-
lize the branch-and-bound algorithm of a commer-
cial MIP solver with callback functions for branching.
On the contrary, our SOR implementation manages
the branch-and-bound tree itself as explained in the
next section. Raghavan and Stanojevic (2005) indepen-
dently proved (this also follows from earlier results of
Croxton et al. 2003 and Keha et al. 2004) that the LP
relaxation of the restricted problems on which they
branch have exactly the same value as calculated by
our lower convex relaxation RP. They used this to
argue that their branching strategy directly mimics
the SOR method.

4. Computational Study
To test the effectiveness of the SOR method, we per-
formed computational tests. We compared the perfor-
mance of SOR to the three alternate formulations, IP1,
IP2, and IP3, solved by a general-purpose MIP solver
(CPLEX 9.1). We used a test bed consisting of LAN
design instances that are either randomly generated
according to the characteristics of real-life instances
or selected from instances available in the literature.
In the following, we first describe the data generation
and implementation. Next, we present the computa-
tional results.

4.1. Input Data
From our interactions with a telecommunication com-
pany, we learned that (1) real-life instances have input
graphs that are very close to Euclidean graphs with
low edge density, and (2) the link between two nodes

cannot be very long because the quality of transmis-
sion degrades by distance. Based on this information
and similar work in the literature (Berger et al. 2000,
Magnanti et al. 1995), we generated random instances
with varying size and parameters as follows.
We generated problems with n = 20, 30, and 40

nodes. We generated the coordinates of the nodes uni-
formly on an R × R region in the Euclidean plane,
where R= 30, 40, and 50, respectively, for n= 20, 30,
and 40. We randomly chose a target degree for each
node. We picked a target degree of 1 or 2 with proba-
bility 0.1 each, and one of 3, 4, 5, and 6 with probabil-
ity 0.2 each. We set the upper bound on the length of
an edge to be 15. We connected each node to the node
closest to it until its degree requirement was satisfied,
or there were no more nodes within distance 15 of it.
If in the end, the total number of edges was less than
2�n − 1� or greater than n�n − 1�/4, we rejected the
graph due to the extreme density levels and repeated
the process. Finally, if the graph was not connected,
we discarded it and constructed a new one. We had to
repeat the procedure only a few times to obtain each
instance.
The choice of the sink node was made in two ways.

In the first case, the sink was chosen uniformly among
all nodes. In the second case, we picked the cen-
ter node, i.e., a node that has the minimum value
of the maximum distance to any node. We chose
each of the remaining nodes independently to be
a source node with probability 0.5. We generated
two levels of demand data with integer demands. In
the low-demand case, we chose the demand of each
source node uniformly between 1 and 30. In the high-
demand case, demand was chosen between 1 and 60.
We named these randomly generated problems

e�n��c/r��l/h�, where n is the number of nodes,
c refers to the sink node being the “center” node,
and r refers to the sink node being chosen randomly;
l refers to a low-demand case and h to a high-demand
case. There are a total of 12 types of problems and
we generated five instances of each type. We report
the average performance of the methods over these
instances. We selected four more instances based on
the graphs named ARPA, OCT, USA, and RING used
by Gavish and Altinkemer (1990), which were also
used later by Amiri and Pirkul (1997), with random
demand data. The problem size for these instances
and the rounded average sizes of the 12 types are
given in Table 1.
We used the same cable data as Berger et al. (2000),

which is based on the cable types available in the mar-
ket. The data consist of nine cable types, with costs
and capacities given in Table 2. We used different sub-
sets of the cable types to test the performance of SOR
under different cost structures. We solved each prob-
lem twice, once using all the available cable types,

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
250 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

Table 1 Problem Size of the Instances

Problem Nodes (n) Edges (m) Sources (k)

e20ch 20 40 9
e20cl 20 40 9
e20rh 20 40 9
e20rl 20 40 10

e30ch 30 58 16
e30cl 30 58 16
e30rh 30 59 12
e30rl 30 59 14

e40ch 40 80 19
e40cl 40 80 19
e40rh 40 81 18
e40rl 40 81 21

ARPA 21 26 12
OCT 25 29 14
USA 26 39 16
RING 32 60 17

and once using cable types 1, 3, 5, and 7. The optimal
cost as a function of flow on an edge, C�f �, is plotted
for both cases in Figure 4. The cost function for cable
types 1� � � � �9 has more pieces, but the jumps between
the steps are larger in the cost function for cable types
1, 3, 5, and 7.

4.2. Implementation of SOR
We implemented SOR with Microsoft Visual C++
and represented some of our data structures using
the library LEDA (Library of Efficient Data types and
Algorithms). We note that the implementation could
be enhanced with better handling of data structures
and better memory management. To obtain a lower
bound at each branch-and-bound node, we need to
solve a relaxation in the form of a minimum-cost
network flow problem. In our implementation, we
solved the relaxations RP by calling the minimum-
cost flow function of LEDA 3.7, which is based on
the Edmonds and Karp (1972) capacity-scaling and
successive shortest-path algorithm, and has running
time O�m logD�m + n logn��, where D is the total
demand, m is the number of edges, and n is the num-
ber of nodes in the input graph. To use this function,

Cost function using cable types 1, ..., 9

0

2

4

6

8

10

0 50 100 150 200
Demand

C
o

st
/le

n
g

th

Cost function using cable types 1, 3, 5, 7

0

2

4

6

8

10

0 50 100 150 200
Demand

C
o

st
/le

n
g

th

Figure 4 Optimal Cable Cost Per Unit Length as a Function of Flow Using Cables 1, 3, 5, 7 and 1,� � �,9

Table 2 Capacity and Per-Unit Length Cost of Available Cable Types

Cable type Capacity Cost/length Cost/cap. length

1 6 0�55 0�092
2 12 0�73 0�061
3 24 1�03 0�043
4 36 1�39 0�039
5 48 1�67 0�035
6 72 2�31 0�032
7 96 3�03 0�031
8 144 4�37 0�030
9 216 6�33 0�029

we created parallel edges for each piece of the approx-
imate function h�f � in the relaxed problem RP. As
mentioned earlier, the convex cost structure on these
parallel edges ensures that their utilization is in the
intended order in the optimal solution.

4.3. Branching and Search Rules
The effectiveness of a branch-and-bound procedure
depends largely on the strategies used for branch-
ing and searching the tree. We implemented sev-
eral branching and search rules and compared them
with tests to select suitable rules for all experiments.
We first compared the three branching rules given
in §3 in terms of choosing the edge on which to
branch. The branching rule that selects the edge with
maximum difference of approximate and actual costs
outperformed the others by a large margin. There-
fore, we used this rule throughout the experiments.
We repeated all of the SOR runs by branching into
two and three subproblems as defined in §3. We use
SORb2 and SORb3 to indicate the corresponding ver-
sions of SOR. We compared various rules to pick
the next node to be processed, including depth-first
search and breadth-first search, and decided to select
the node with the minimum lower bound. This rule
minimizes the number of branch-and-bound nodes
processed and makes good progress in improving the
global lower bound. However, the number of active
branch-and-bound nodes grows rapidly by iterations,
hence increasing the memory allocated to the tree.

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS 251

Table 3 Closeness of the Initial Upper Bound to the Optimal Solution
on the Selected Instances

Cable types 1, 3, 5, 7 Cable types 1 	 � � � 	9

Problem UB LB %Difference UB LB %Difference

ARPA 2	714�33 2	714�33 0�00 2	604�85 2	571�36 1�30
OCT 2	684�72 2	639�75 1�70 2	473�19 2	432�32 1�68
USA 2	444�84 2	273�80 7�52 2	239�80 2	125�57 5�37
RING 1	511�10 1	379�07 9�57 1	428�19 1	314�90 8�62

Note. Column UB gives the upper bound at the first node of the branch-and-
bound tree. LB is the global lower bound when SOR terminates. %Difference
equals (UB− LB)/LB in percentage.

4.4. Progress of the SOR Algorithm
We observed that the SOR procedure rapidly gen-
erates high-quality upper bounds for the problem.
Much of the progress in closing the gap between the
lower and upper bounds is made to improve the
lower bound. The improvement in the lower bound
gets considerably smaller as the iterations progress.
In our experiments, the upper bound found by the
SOR method at the first node of the branch-and-bound
tree was already fairly close to the optimal solution.
In Table 3, we report the gap between the initial
upper bound and the global lower bound found when
the SORb2 algorithm terminates, as a percentage of
the global lower bound for the selected instances. The
largest gap in the table is 9.57% for problem RING
with cable types 1, 3, 5, and 7. The average of all gaps
reported is 4.47%.

4.5. Computational Comparison of SOR and
the MIP Formulations

We solved the three MIP formulations, IP1, IP2, and
IP3 using ILOG CPLEX 9.1.0 with the default settings,
allowing it to generate cuts as needed. We ran both
CPLEX and our SOR code on a PC with an Intel Pen-
tium D 3.0 GHz processor and 2 GB of RAM operat-
ing under Windows XP. We set a time limit of 5,400
seconds for each instance. For all the instances that
could not be solved to optimality because this limit
was reached, we report the gap between the best solu-
tion and the best lower bound obtained, and the num-
ber of branch-and-bound nodes processed so far. For
instances solved to optimality, the number of pro-
cessed branch-and-bound nodes is a better indicator
than is the CPU time elapsed. As a commercial code,
CPLEX can process nodes much faster and manage
the search tree much more efficiently. In fact, on aver-
age, CPLEX processes nodes around 10 times faster
than does our code.
We solved each randomly generated and selected

instance with two different cost functions; once with
cable types 1, 3, 5, and 7 (four cable types) and once
with all of the nine cable types available. Tables 4
and 5 show the size of the various formulations for
these two types of problems. Here, NV denotes the

Table 4 Average Formulation Sizes on Randomly Generated Problems

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method NV NIV NC NCN NV NIV NC NCN

e20h IP1 241 160 61 561 441 360 61 961
IP2 927 846 866 2	697 1	099 1	018 1	038 3	209
IP3 967 886 101 2	778 1	139 1	058 101 3	294

e20l IP1 241 160 61 561 441 360 61 961
IP2 497 419 437 1	409 594 513 533 1	698
IP3 537 456 101 1	490 634 553 101 1	779

e30h IP1 353 235 90 823 648 530 90 1	413
IP2 2	084 1	966 1	896 6	131 2	489 2	370 2	400 7	346
IP3 2	143 2	024 149 6	250 2	536 2	441 149 7	465

e30l IP1 353 235 90 823 648 530 90 1	413
IP2 1	236 1	117 1	147 3	587 1	483 1	364 1	394 4	327
IP3 1	295 1	176 149 3	705 1	541 1	423 149 4	446

e40h IP1 483 321 122 1	125 885 723 122 1	928
IP2 3	336 3	174 3	214 9	843 4	002 3	841 3	881 11	843
IP3 3	416 3	254 202 10	005 4	083 3	921 202 12	022

e40l IP1 483 321 122 1	125 885 723 122 1	928
IP2 2	105 1	944 1	984 6	152 2	522 2	361 2	401 7	404
IP3 2	186 2	024 202 6	314 2	603 2	441 202 7	565

total number of variables in the model, NIV denotes
the number of integer/binary variables in the model,
NC denotes the number of constraints in the model,
and NCN denotes the number of constraint nonzeros
in the model.
We summarize the performance of the various

methods (including the two- and three-way branch-
ing versions of SOR indicated by SORb2 and SORb3)
on randomly generated and specific instances in
Tables 6–9.
Overall, in terms of the gap closed, IP1 has the over-

all best performance, while IP2 and IP3 still perform
better than does the SOR method. The overhead of
the LEDA calls and managing the search tree typically
make the running time per call to compute each node
of the SOR method about 10 times more than that for
the IP solver, as can be seen from the number of nodes
explored by both types of methods. The superiority
of IP1 might stem from the higher effectiveness of the

Table 5 Formulation Sizes on Selected Instances

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method NV NIV NC NCN NV NIV NC NCN

ARPA IP1 156 104 48 365 286 234 48 625
IP2 780 728 749 2	288 962 910 931 2	834
IP3 806 754 74 2	341 988 936 74 2	887

OCT IP1 174 116 55 407 319 261 55 697
IP2 1	015 957 982 2	987 1	189 1	131 1	156 3	509
IP3 1	044 986 84 3	046 1	218 1	160 84 3	568

USA IP1 234 156 66 547 429 351 66 937
IP2 1	482 1	404 1	430 4	368 1	794 1	716 1	742 5	304
IP3 1	521 1	443 105 4	447 1	833 1	755 105 5	383

RING IP1 360 240 93 841 660 540 93 1441
IP2 2	460 2	341 2	372 7	260 2	940 2	820 2	852 8	700
IP3 2	520 2	400 153 7	381 3	000 2	880 153 8	821

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
252 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

Table 6 Number of Nodes Explored and Gap Closed for Random
Instances on 20 Nodes

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method Gap BB nodes Gap BB nodes

e20ch IP1 0�00 24	291 0�00 171	490
IP2 0�00 62	771 0�00 68	874
IP3 0�00 2	145	070 0�00 522	628

SORb2 0�86 208	026 0�70 280	439
SORb3 1�36 205	636 1�90 258	755

e20cl IP1 0�00 4	108 0�00 13	576
IP2 0�00 5	261 0�00 7	024
IP3 0�00 10	103 0�00 7	524

SORb2 0�23 126	833 0�00 89	333
SORb3 0�46 116	805 0�83 154	770

e20rh IP1 0�00 35	745 0�00 1	994	178
IP2 0�00 114	746 0�00 23	865
IP3 0�01 769	040 0�00 302	764

SORb2 1�47 284	113 0�97 264	907
SORb3 1�48 255	787 2�05 283	576

e20rl IP1 0�00 188	158 0�18 1	565	700
IP2 0�00 595	501 0�60 945	680
IP3 0�00 1	553	857 0�26 1	981	946

SORb2 3�84 338	819 1�91 353	827
SORb3 4�19 378	604 4�36 375	517

default cut-generation methods on this formulation
compared to the others. We observed that CPLEX 9.1
utilizes many mixed-integer rounding cuts in solving
IP1, in addition to fractional Gomory cuts. On the
other hand, flow cuts, flow-path cuts, and fractional
Gomory cuts are generated to solve IP2, while only
flow cuts are utilized to solve IP3. The effectiveness of

Table 7 Number of Nodes Explored and Gap Closed for Random
Instances on 30 Nodes

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method Gap BB nodes Gap BB nodes

e30ch IP1 0�43 2	018	486 1�47 6	141	812
IP2 1�28 979	855 1�70 1	194	326
IP3 3�54 5	417	557 3�76 5	351	024

SORb2 5�10 411	795 6�15 398	974
SORb3 5�36 417	486 8�21 407	280

e30cl IP1 0�80 2	193	000 1�54 2	720	303
IP2 1�88 1	332	672 1�68 1	311	462
IP3 2�59 3903886 3�21 3	735	251

SORb2 8�74 435	870 7�07 436	302
SORb3 8�82 437	850 8�38 424	108

e30rh IP1 0�52 1	719	622 1�46 3	907	437
IP2 1�17 1	274	260 1�24 1	142	406
IP3 2�34 4	936	039 2�91 5	750	762

SORb2 4�70 421	013 4�53 422	675
SORb3 5�16 413	102 5�39 417	002

e30rl IP1 1�25 2	290	804 1�41 2	308	493
IP2 1�86 1	292	462 0�86 1	619	925
IP3 3�43 4	334	304 1�77 3	180	826

SORb2 8�07 430	614 7�59 436	131
SORb3 9�11 427	236 9�20 420	581

Table 8 Number of Nodes Explored and Gap Closed for Random
Instances on 40 Nodes

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method Gap BB nodes Gap BB nodes

e40ch IP1 1�92 4	701	213 2�55 3	341	192
IP2 4�32 847	753 3�79 891	703
IP3 6�65 4	014	209 6�65 3	727	009

SORb2 7�97 394	058 7�87 386	911
SORb3 8�77 402	400 8�79 402	003

e40cl IP1 2�55 3	599	122 2�59 3	577	142
IP2 5�79 1	392	361 6�24 1	497	733
IP3 6�16 4	418	148 8�33 4	521	243

SORb2 14�14 424	275 14�65 426	575
SORb3 15�02 418	073 15�58 412	895

e40rh IP1 1�67 3	647	909 1�63 2	819	516
IP2 3�47 1	063	011 3�25 967	777
IP3 5�54 4	024	210 4�86 3	549	717

SORb2 6�54 393	132 6�32 386	114
SORb3 6�91 398	989 7�18 384	165

e40rl IP1 1�87 4	191	998 3�05 3	205	997
IP2 4�29 1	325	119 4�77 1	204	428
IP3 6�20 4	567	211 6�30 4	340	000

SORb2 10�17 414	606 10�38 343	215
SORb3 10�68 412	810 11�57 330	611

the latter two formulations may, however, improve if
we make use of the special constraints on the ordered
set of choice variables using the SOS options in the IP
solver, which we did not investigate.
As the problem size scales, SOR is able to find solu-

tions with reasonable gaps with substantially fewer
nodes, suggesting more promise for this method on

Table 9 Number of Nodes Explored and Gap Closed for Selected
Instances

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Problem Method Gap BB nodes Gap BB nodes

ARPA IP1 0�00 30	230 0�00 342	171
IP2 0�00 4	461 0�00 11	183
IP3 0�00 84	807 0�00 401	857

SORb2 0�00 31	139 0�00 52	511
SORb3 0�00 16	254 0�00 63	716

OCT IP1 0�00 129	569 0�00 10	881
IP2 0�00 65	898 0�00 9	284
IP3 0�00 193	385 0�00 29	607

SORb2 0�00 406	611 0�00 102	573
SORb3 0�00 312	357 0�00 155	471

USA IP1 0�00 523	272 1�72 6	191	421
IP2 0�00 213	098 0�00 1	347	575
IP3 2�29 7	221	023 1�38 6	701	171

SORb2 3�84 424	109 4�82 410	393
SORb3 4�05 420	709 6�28 403	522

RING IP1 0�00 892	771 1�64 3	720	450
IP2 0�95 1	008	977 3�27 892	675
IP3 3�90 5	019	263 3�27 4	714	931

SORb2 5�88 425	887 6�49 407	253
SORb3 6�00 423	775 6�55 404	389

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS 253

Table 10 Number of Nodes Explored Until the Gap Was Reduced to 2%
for ARPA and OCT, and 7% for USA and RING

Cable types 1, 3, 5, 7 Cable types 1	 � � � 	9

Target Total Target Total
Problem Method nodes nodes nodes nodes

ARPA IP1 3	662 30	230 26	105 342	171
IP2 2	933 4	461 6	257 11	183
IP3 50	410 84	807 147	278 401	857

SORb2 12	660 31	139 22	318 52	511
SORb3 12	003 16	254 29	973 63	716

OCT IP1 35	302 129	569 6	955 10	881
IP2 32	520 65	898 1	395 9	284
IP3 73	544 193	385 15	868 29	607

SORb2 171	530 406	611 47	190 102	573
SORb3 161	379 312	357 82	753 155	471

USA IP1 6	718 523	272 3	917 6	191	421
IP2 1	042 213	098 2	875 1	347	575
IP3 38	840 7	221	023 30	539 6	701	171

SORb2 17	908 424	109 47	052 410	393
SORb3 23	602 420	709 184	292 403	522

RING IP1 9	639 892	771 6	435 3	720	450
IP2 8	350 1	008	977 27	269 892	675
IP3 468	606 5	019	263 539	976 4	714	931

SORb2 153	756 425	887 237	686 407	253
SORb3 156	078 423	775 243	000 404	389

even larger instances. A similar pattern is detected
by examining its performance on the larger selected
instances in Table 9.
Among the two branching strategies for SOR, our

experiments also indicate that the two-way branching
strategy is somewhat more effective in closing the
gap owing to its ability to explore more nodes and
also more diverse parts of the solution space com-
pared to its three-way branching counterpart. We also
examined the number of nodes required by each of
the methods in the selected instances to reach a cer-
tain gap, to make a comparison that is not affected
by the speed of solving the nodes. The results given
in Table 10 suggest that SOR as a strategy is more
effective than only IP3 solved by default settings of
CPLEX in this dimension. When we examine the per-
formance of SOR on the different types of randomly
generated instances in Tables 6–8, we see that SOR is
more effective when the demand range is higher and
more cable types are available. Naturally, instances
with nine cable types are harder for IP1 compared
to ones with four cable types as the number of inte-
ger variables increases (Table 4). On the other hand,
IP2, IP3, and SOR all use the pregenerated cost func-
tion C�f �, and thus the performance of these meth-
ods is not sensitive to the number of cables. This
suggests that generating the optimal cable-cost func-
tion first is advantageous when the number of cables
is large. Note that SOR avoids defining binary vari-
ables, as opposed to IP2 and IP3. This seems to be an
advantage when the demand range is high because

the number of binary variables in IP2 and IP3 almost
doubles in high demand instances as seen in Table 4.
We have also observed that instances in which the
sink node is in the center are typically harder than
their counterparts.

4.6. Conclusions from Computational Tests
The computational results indicate that the SOR
method is promising in solving the local access net-
work design problem. The SOR method, while unable
to solve many instances with 30 or more nodes to
optimality, was able to reduce the integrality gap by
exploring a small number of nodes. It also shows
good scaling properties in large instances, as com-
pared to the IP formulations. The two-way branching
variant seems to be more effective than the three-way
branching strategy in almost all instances examined.

5. Summary and Conclusions
We presented an exact solution method, namely,
the SOR branch-and-bound algorithm, for the single-
source multiple-sink routing and link-capacity in-
stallation problem with multiple facilities with
applications in network design.
The SOR algorithm solves relaxations obtained by

approximating the noncontinuous cost function by its
convex envelope. The approximations are refined by
branching on the flow ranges on selected edges. We
compared the performance of this method to three
MIP formulations on generated and widely available
LAN design instances. In our experiments, SOR man-
aged to approximate the cable-cost function closely
by the piecewise-linear convex hull and outperformed
the three formulations solved by CPLEX, especially in
larger instances.
An investigation of the progress of the SOR method

indicated that the method finds very strong upper
bounds early in the branch-and-bound procedure.
This suggests that the early termination of the SOR
method could serve as an effective heuristic.
Finally, we note that the SOR method is applica-

ble to the backbone network design problem where
flow is sent from multiple sources to multiple sinks.
When the backbone network design problem is solved
using the SOR approach, the objective function and
its representation is the same, hence the branching
will be the same. The only difference will be that the
relaxation problems are in the form of multicommod-
ity-flow problems as opposed to single-commodity
minimum-cost flow problems. Hence, the relaxation
solution is likely to take more computation time. This
method remains to be investigated in future work.

Acknowledgments
The authors thank three anonymous referees and Prakash
Mirchandani for valuable comments and suggestions, in

Salman, Ravi, and Hooker: Solving the Capacitated Local Access Network Design Problem
254 INFORMS Journal on Computing 20(2), pp. 243–254, © 2008 INFORMS

particular for suggesting the use of IP3. The second author
was supported in part by National Science Foundation
(NSF) Career Grant CCR-9625297.

References
Achim, C., M. Florian, P. Robillard. 1975. Experiments in Solving Con-

cave Cost Network Flow Problems. Department d’informatique,
Université de Montréal, Montréal.

Amiri, A., H. Pirkul. 1997. Routing and capacity assignment in
backbone communication networks. Comput. Oper. Res. 24
175–287.

Andrew, A. M. 1979. Another efficient algorithm for convex hulls
in two dimensions. Inform. Processing Lett. 9 216–219.

Atamtürk, A. 2002. On capacitated network design cut-set polyhe-
dra. Math. Programming 92 425–437.

Atamtürk, A., D. Rajan. 2002. On splittable and unsplittable flow
capacitated network design arc-set polyhedra. Math. Program-
ming 92 315–333.

Awerbuch, B., Y. Azar. 1997. Buy-at-bulk network design. Proc.
38th Annual Sympos. Foundations Comput. Society �FOCS�, Miami
Beach, FL, 542–547.

Barahona, F. 1996. Network design using cut inequalities. SIAM
J. Optim. 6 823–837.

Berger, D., B. Gendron, J. Potvin, S. Raghavan, P. Soriano. 2000.
Tabu search for a network loading problem with multiple facil-
ities. J. Heuristics 6 253–267.

Bienstock, D., O. Günlük. 1995. Computational experience with a
difficult multicommodity flow problem. Math. Programming 11
213–237.

Bienstock, D., O. Günlük. 1996. Capacitated network design—
Polyhedral structure and computation. INFORMS J. Comput. 8
243–259.

Bienstock, D., S. Chopra, O. Günlük, C.-Y. Tsai. 1998. Minimum cost
capacity installation for multicommodity network flows. Math.
Programming 81 177–199.

Chopra, S., I. Gilboa, S. T. Sastry. 1998. Source sink flows with
capacity installation in batches. Discrete Appl. Math. 85 165–192.

Croxton, K. L., B. Gendron, T. L. Magnanti. 2003. A comparison
of mixed-integer programming models for non-convex piece-
wise linear cost minimization problems. Management Sci. 49
1268–1273.

Edmonds, J., R. M. Karp. 1972. Theoretical improvements in algo-
rithmic efficiency for network flow problems. J. ACM 19(2)
248–264.

Gabrel, V., A. Knippel. 1999. Exact solution of multicommodity net-
work optimization problems with general step cost functions.
Oper. Res. Lett. 25 15–23.

Gabrel, V., A. Knippel, M. Minoux. 2003. A comparison of heuris-
tics for the discrete cost multicommodity network optimization
problem. J. Heuristics 9(5) 429–445.

Gavish, B., K. Altinkemer. 1990. Backbone network design tools
with economic tradeoffs. ORSA J. Comput. 2 236–252.

Guha, S., A. Meyerson, K. Munagala. 2001. A constant factor
approximation for the single sink edge installation problems.
Proc. ACM Sympos. Theory Comput., Heraklion, Crete, Greece,
383–388.

Gupta, A., A. Kumar, T. Roughgarden. 2003. Simpler and better
approximation algorithms for network design. Proc. ACM Sym-
pos. Theory Comput., San Diego, 365–372.

Hooker, J. N. 2000. Logic-Based Methods for Optimization: Combin-
ing Optimization and Constraint Satisfaction. John Wiley & Sons,
New York.

Keha, A. B., I. R. de Farias Jr., G. L. Nemhauser. 2004. Models for
representing piecewise linear cost functions. Oper. Res. Lett. 32
44–48.

Magnanti, T. L., P. Mirchandani. 1993. Shortest paths, single
origin-destination network design and associated polyhedra.
Networks 23 103–121.

Magnanti, T. L., P. Mirchandani, R. Vachani. 1993. The convex hull
of two core capacitated network design problems. Math. Pro-
gramming: Ser. A 60 233–250.

Magnanti, T. L., P. Mirchandani, R. Vachani. 1995. Modeling and
solving the two-facility capacitated network loading problem.
Oper. Res. 43 142–157.

Mirchandani, P. 2000. Projections of the capacitated network load-
ing problem. Eur. J. Oper. Res. 122 534–560.

Ottosson, G., E. Thorsteinsson, J. N. Hooker. 2002. Mixed global
constraints and inference in hybrid CLP-IP solvers. Ann. Math.
AI 34 271–290.

Raghavan, S., D. Stanojevic. 2005. A note on search by
objective relaxation. S. Raghavan, G. Anandalingam,
eds. Telecommunications Planning: Innovations in Pricing,
Network Design and Management. Springer, New York,
181–202.

Réfalo, P. 1999. Tight cooperation and its application in piecewise
linear optimization. J. Jaffar, ed. Principles and Practice of Con-
straint Programming. Lecture Notes in Computer Science, Vol. 1713.
Springer, Berlin, 373–389.

Salman, F. S., J. Cheriyan, R. Ravi, S. Subramanian. 1997. Buy-
at-bulk network design: Approximating the single-sink edge
installation problem. Proc. ACM-SIAM Sympos. Discrete Algo-
rithms, New Orleans, 619–628.

Salman, F. S., J. Cheriyan, R. Ravi, S. Subramanian. 2000. Approx-
imating the single-sink link-installation problem in network
design. SIAM J. Optim. 11 595–610.

Stoer, M., G. Dahl. 1994. A polyhedral approach to multicom-
modity survivable network design. Numerische Mathematik 68
149–167.

Talwar, K. 2002. The single-sink buy-at-bulk LP has constant inte-
grality gap. Proc. Conf. Integer Programming and Combin. Optim.,
Lecture Notes in Computer Science, Vol. 2337. Cambridge, MA,
475–486.

