
Re
onstru
ting edge-disjoint pathsM. Conforti� R. Hassiny R. RavizAbstra
tFor an undire
ted graph G = (V;E), the edge 
onne
tivity values between everypair of nodes of G 
an be su

in
tly re
orded in a 
ow-equivalent tree that 
ontainsthe edge 
onne
tivity value for a linear number of pairs of nodes. We generalizethis result to show how we 
an eÆ
iently re
over a maximum set of disjoint pathsbetween any pair of nodes of G by storing su
h sets for a linear number of pairs ofnodes. At the heart of our result is an observation that 
ombining two 
ow solutionsof the same value, one between nodes s and r and the se
ond between nodes r and t,into a feasible 
ow solution of value f between nodes s and t, is equivalent to solvinga stable mat
hing problem on a bipartite multigraph.Our observation, 
ombined with an observation of Chazelle, leads to a datastru
ture, whi
h takes O(n3:5) time to generate, that 
an 
onstru
t the maximumnumber �(u; v) of edge-disjoint paths between any pair (u; v) of nodes in timeO(�(n; n)�(u; v)n) time.1 Introdu
tionGiven an undire
ted graph G = (V;E) with jV j = n, let �(s; t) be the st-edge 
onne
tivityof G, i.e., the maximum number of edge-disjoint st-paths. Gomory and Hu [5℄ showed thatthe edge 
onne
tivity fun
tion � = f�(s; t) : s; t 2 V g has a 
ompa
t tree representation,i.e., there exists a weighted spanning tree on V su
h that for every pair of nodes s; t 2 V�(s; t) is the minimum weight of an edge on the (unique) st-path in this tree. This tree isknown as a 
ow-equivalent tree of G.Suppose that a set of �(s; t) edge disjoint st-paths are given for every edge (s; t) ofthe jV j � 1 edges of the 
ow equivalent tree: Can we eÆ
iently 
onstru
t �(u; v) edgedisjoint uv-paths for an arbitrary pair u; v 2 V ? Su
h a question may potentially arise inappli
ations that need to 
ompute the maximum 
ow, or alternately the maximum numberof edge-disjoint paths, between arbitrary pairs of verti
es at several points in the 
ourse ofits exe
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In this paper we des
ribe a 
ompa
t representation of the sets of the �(u; v) edgedisjoint paths for every pair u; v 2 V . This representation 
onsists of a graph with nodeset V and O(n) edges, where n = jV j. Ea
h edge (s; t) in this graph is asso
iated with�(s; t) edge disjoint st-paths. This data stru
ture 
an be 
omputed in a prepro
essing stepthat takes time O(n3:5) and O(n3) spa
e. We then show how to 
onstru
t �(u; v) edgedisjoint uv-paths for an arbitrary pair u; v 2 V in O(�(n; n)�(u; v)n) time, where �(n; n)is the inverse A
kermann fun
tion.2 Stable Mat
hingsLet G = (P;Q;E), jP j = jQj, be a bipartite multigraph whi
h is 
omplete, i.e. every pairof nodes in P and Q are adja
ent. Assume further that every node p 2 P ranks the edgeshaving p as end node a

ording to its preferen
e and every node q 2 Q also ranks theedges having q as end node, so that every edge is ranked twi
e, at both end nodes. Aperfe
t mat
hing M of G is stable if for every edge e in E nM with end nodes p and q,either in the p-ranking, e is less desirable than the edge ep 2M that saturates p, or in theq-ranking, e is less desirable than the edge eq 2 M that saturates q. Gale and Shapleyin their seminal paper [3℄ (see also [4℄), show that every 
omplete bipartite simple graphhas a stable mat
hing. Their proof is algorithmi
 and we give below a straightforwardadaptation to the multigraph 
ase.StableMat
h(bipartite multigraph)1. Start withM = ;. Initially, all nodes in P are exposed and all edges are unexplored.2. While a node p 2 P is exposed, explore the unexplored edge e that has highestp-ranking. Let q be the other end node of e.If q is exposed,Then set M =M [ feg.Else if the edge eq 2 M that saturates q is less preferable than e in the q-ranking,set M = M [ feg n feqg.The mat
hing M is stable upon termination of the algorithm. At the end, M is aperfe
t mat
hing. For, assume not: then all the edges in
ident to p are explored, for someexposed node p. Note that when an edge is explored, its end node in Q is saturated andremains saturated throughout the algorithm. So when the least desirable edge in the p-ranking is explored and its end node in Q is saturated, all nodes in Q are saturated. Thisis impossible sin
e jP j = jQj and p is exposed.Finally, an edge is explored at most on
e in the algorithm, so its 
omplexity is O(jEj).We remark that the above problem 
an be interpreted as a multi ethni
 marriageproblem, in whi
h P represents the set of suitors, Q the set of brides, and the edges withend nodes p and q represent the set of possible marriage 
eremonies that 
an unite p andq. A perfe
t mat
hing that is stable 
orresponds to a set of 
eremonies C that unites all2



the suitors to all the brides so that no suitor p and bride q would both prefer a 
eremonynot in C (possibly with other partners).3 Composing 
ow solutionsLet P = fp1; : : : ; pfg be a set of f edge disjoint sr-paths and Q = fq1; : : : ; qfg be a set off edge disjoint rt-paths. Sin
e ea
h 
ow path has at most n edges, it is straightforwardto �nd a set of f edge-disjoint st-paths in the graph formed by the union of the sr- andrt-paths having O(fn) edges. Using a 
lassi
al 
ow-augmenting algorithm to �nd su
h ade
omposition takes O(f 2n) time [1℄. Using a method of Karger and Levine [6℄, this 
anbe a

omplished in time O(f 32n).Theorem 3.1 Let P = fp1; : : : ; pfg be a set of f edge disjoint sr-paths andQ = fq1; : : : ; qfg,a set of f edge disjoint rt-paths where ea
h 
ow path has at most n edges. Then, there exists aset of f edge disjoint st-paths su
h that ea
h path in this set is the 
on
atenation of a \pre�x"of a path in P and a \suÆx" of a path in Q. Moreover, this set 
an be 
omputed in O(fn)time.Proof: Constru
t the following 
omplete bipartite multigraph B = (P;Q;E): The nodesets P and Q represent the paths in P = fp1; : : : ; pfg and Q = fq1; : : : ; qfg. For everyedge g that is 
ommon to paths pi and qj, B 
ontains an edge e with end nodes pi and qj.If, after adding all these edges the resulting bipartite multigraph is not 
omplete, add a\dummy" edge between ea
h pair of nonadja
ent nodes in P and Q, to make it 
omplete.The priority (from most desirable to least desirable) of the edges of B having pi as endnode, is given by the order in whi
h the edges are en
ountered when traversing path pifrom s to r. The \dummy" edges re
eive the lowest possible priority (the ranking amongthem is immaterial). The priority of the edges of B having qj as end node is given by theorder in whi
h the edges are en
ountered when traversing path qj from t to r. Again, the\dummy" edges re
eive the lowest possible priority.From a stable perfe
t mat
hing M of B one 
an 
onstru
t the desired st-paths asfollows: For every edge e in M with end nodes pi and qj whi
h is not a dummy edge,traverse path pi starting from s until e is met and then 
ontinue on qj to t. (Edge e mayor may not belong to the path thus 
onstru
ted.) For every edge e in M with end nodespi and qj whi
h is a dummy edge, traverse path pi starting from s to r and then traverseqj from r to t.The fa
t that the mat
hing M is stable on B insures that the f st-paths thus 
on-stru
ted are edge disjoint. Indeed, suppose for a 
ontradi
tion that an edge g is used intwo of these 
on
atenated paths, whi
h are represented by two edges in the stable mat
h-ing, say (p1; q1) and (p2; q2). These edges are witnessed by the fa
t that there are edgesg1 
ommon to p1 and q1 and g2 
ommon to p2 and q2. Sin
e p1 and p2 are disjoint, theedge g must o

ur in only one of them, so assume that g o

urs in p1 and q2. Sin
e g isin the 
on
atenated path from p1 and q1, it must be the 
ase that g o

urs before g1 in p1going from s to r: This means that an edge between p1 and q2 in the auxiliary bipartitemultigraph has higher priority than the edge (p1; q1) witnessed by g1 in the P -ranking.3



Similarly, sin
e the edge g o

urs in the 
on
atenated path from p2 and q2, it must be the
ase that g o

urs before g2 in q2 going from t to r: This means that the edge between p1and q2 in the auxiliary bipartite multigraph has higher priority than (p2; q2) witnessed byg2 in the Q-ranking. Thus, this unmat
hed edge (p1; q2) violates the de�nition of stabilityof the mat
hing found, a 
ontradi
tion.Noti
e however, that the 
on
atenated paths 
onstru
ted as above, while being edgedisjoint, may not be simple, in whi
h 
ase we 
an delete 
y
les without destroying the`pre�x-suÆx' property. This 
lean-up step takes time proportional to the size of the paths.We �nally remark that every stable mat
hing problem in a 
omplete bipartite multi-graph 
an be 
onverted into a path-pairing problem of the above type between f edgedisjoint sr-paths and f edge disjoint rt-paths.4 Augmenting 
ow-equivalent treesGiven the above method for 
omposing a pair of edge-disjoint path solutions, we nowshow how we 
an maintain the maximum edge-disjoint paths solution for O(n) pairs ofnodes in an n-node undire
ted graph, so that the maximum edge-disjoint paths solutionfor any arbitrary pair of nodes s and t, 
an be re
overed by applying the stable mat
hingpro
edure O(�(n; n)) times. We exploit the natural 
onne
tion that the maximum numberof edge-disjoint paths in unit 
apa
ity undire
ted graph between a pair of nodes is equalto the value of the maximum 
ow between them [1℄, and use the 
ow-equivalent tree asour starting point.Consider a pair of nodes s and t separated by k edges in a given 
ow-equivalent tree.To 
ompute the maximum 
ow between them using the above pro
edure, we must use kappli
ations of the pro
edure. The key to speeding this up is to add O(n) additional 
owsolutions in su
h a way that for any pair of nodes, there always exists a small number ofpairs of nodes 
onne
ting them from whi
h we 
an 
ompose the required 
ow. Noti
e thatfor any pair of nodes, the 
ow de
omposition of a maximum 
ow (say f) solution 
an be
omputed as mentioned above in time O(f 1:5n) = O(n2:5) time. This will lead to a totaltime 
omplexity of O(n3:5) for this prepro
essing step sin
e we need to do this for O(n)pairs. In the unit 
apa
ity 
ase, every pair of nodes 
an have O(n) paths in their max-
owde
omposition leading to a spa
e requirement of O(n3) for this data stru
ture. Next, wedes
ribe how to spe
ify these pairs.To do this, we use a method due to Chazelle [2℄: Given a n-node edge-weighted tree,he provides an algorithm to 
hoose O(n) short
ut edges with weights on them su
h thatfor any path in the given tree, it is possible to 
ompute the partial sum of the weightsin the path using O(�(n; n)) summations involving the original and added edges (seeTheorem 2 in [2℄). More formally, Chazelle proved the following under the RAM model of
omputation.Theorem 4.1 [2℄ Let T be a free tree with n weighted edges. There exists a 
onstant 
 > 1su
h that, for any integer m > 
n, it is possible to sum up weights along an arbitrary query4



path of T in time O(�(m;n)). The data stru
ture is of size at most m and 
an be 
onstru
tedin time O(m).Chazelle's result is framed in a more general setting where the weight fun
tion mapsthe edges to a semigroup, and the partial sum in the above theorem 
an be repla
edwith the semigroup operation. We use this generalization and observe that (Z+;min) is asemigroup, and hen
e Chazelle's 
onstru
tion applies to deriving the minimum-weight edgealong a tree path (rather than the sum) using short
ut edges. In fa
t, this is a

omplishedby weighting every short
ut edge with the minimum weight of an edge along the tree-pathbetween its endpoints. We also maintain a maximum 
ow de
omposition between pairs ofnodes 
onne
ted by short
ut edges. This enables us to re
onstru
t the maximum 
ow forany pair of nodes using O(�(n; n)) 
ow 
ompositions. Ea
h 
ow 
omposition was arguedearlier to take timeO(fn) for a 
ow of value f giving the 
laimed time ofO(�(n; n)�(u; v)n)time to re
onstru
t the maximum number of 
ow paths �(u; v) between any pair of nodes(u; v). We thus have our main theorem.Theorem 4.2 Given an undire
ted unit 
apa
ity graph on n nodes, in time O(n3:5), a datastru
ture using spa
e O(n3) 
an be 
onstru
ted that, given any pair of nodes, 
an 
ompute themaximum number f of edge-disjoint paths between them in time O(�(n; n)fn) where �(n; n)is the inverse A
kermann fun
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