On the Integrality Gap of a Natural Formulation
of the Single-Sink Buy-at-bulk Network Design
Problem *

Naveen Garg', Rohit Khandekar!, Goran Konjevod?, R. Ravi®, F.S. Salman?,
and Amitabh Sinha?

! Department of Computer Science and Engineering,
Indian Institute of Technology, New Delhi, India.
{naveen, rohitk}@cse.iitd.ernet.in
2 Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85287, USA.
goran@asu.edu
3 GSIA, Carnegie Mellon University,
Pittsburgh PA 15213-3890, USA.

{ravi, asinha}@andrew.cmu.edu
4 Krannert School of Management,

Purdue University, West Lafayette, IN 47907, USA.
salmanf@mgmt . purdue.edu

Abstract. We study two versions of the single sink buy-at-bulk network
design problem. We are given a network and a single sink, and several
sources which demand a certain amount of flow to be routed to the sink.
We are also given a finite set of cable types which have different cost
characteristics and obey the principle of economies of scale. We wish to
construct a minimum cost network to support the demands, using our
given cable types. We study a natural integer program formulation of the
problem, and show that its integrality gap is O(k), where k is the number
of cable types. As a consequence, we also provide an O(k)-approximation
algorithm.

1 Introduction

1.1 Motivation

We study two network design problems which often arise in practice. Consider
a network consisting of a single server and several clients. Each client wishes to
route a certain amount of flow to the server. The cost per unit flow along an
edge is proportional to the edge length. However, we can reduce the cost per unit
flow of routing by paying a certain fixed cost (again proportional to the length

* This research was supported by a faculty development grant awarded to R. Ravi
by the Carnegie Bosch Institute, Carnegie Mellon University, Pittsburgh PA 15213-
3890.

of the edge). We call the problem of finding a minimum cost network supporting
the required flow the deep-discount problem.

Alternatively, at each edge we might be able to pay for and install a certain
capacity selected from a set of allowable discrete capacity units, and then route
flow (up to the installed capacity) for free. The problem of finding a minimum
cost network in this scenario is called the buy-at-bulk network design problem
[14].

Both the above problems reflect economies of scale, in the cost of routing
unit flow as the installation cost increases (the deep-discount problem), and in
the cost per unit capacity as the capacity increases (the buy-at-bulk problem).

1.2 Our results

The two problems are in fact equivalent up to a small loss in the value of the
solution. In this paper, we focus on the deep-discount problem. We study the
structure of the optimum solution, and show that an optimal solution exists
which is a tree. We provide a natural IP formulation of the problem, and show
that it has an integrality gap of the order of the number of cables. We also provide
a polynomial time approximation algorithm by rounding the LP relaxation.

1.3 Previous work

Mansour and Peleg [11] gave an O(logn)-approximation for the single sink buy-
at-bulk problem with a single cable type (only one discrete unit of capacity
allowable) for a graph on n nodes. They achieved this result by using a low-
weight, low-stretch spanner construction [2].

Designing networks using facilities that provide economies of scale has at-
tracted interest in recent years. Salman et al [14] gave an O(log D) approxi-
mation algorithm for the single sink buy-at-bulk problem in Euclidean metric
spaces, where D is the total demand. Awerbuch and Azar [4] gave a random-
ized O(log® n) approximation algorithm for the buy-at-bulk problem with many
cable types and many sources and sinks, where n is the number of nodes in the
input graph. This improves to O(lognloglogn) using the improved tree metric
construction of Bartal [5]. For the single sink case with many cable types, an
O(logn) approximation was obtained by Meyerson, Munagala and Plotkin [12]
based on their work on the Cost-Distance two metric network design problem.
Salman et al also gave a constant approximation in [14] for the single cable
type case using a LAST construction [10] in place of the spanner construction
used in [11]. The approximation ratio was further improved by Hassin, Ravi and
Salman [9].

Andrews and Zhang [3] studied a special case of the single-sink buy-at-bulk
problem which they call the access network design problem and gave an O(k?)
approximation, where k is the number of cable types. As in the deep-discount
problem, they use a cost structure where each cable type has a buying and a
routing cost, but they assume that if a cable type is used, the routing cost is at
least a constant times the buying cost.

An improved approximation to the problem we study was obtained simulta-
neously but independently by Guha, Meyerson and Munagala [7], who designed a
constant-factor approximation algorithm. Their algorithm is combinatorial and
is based on their prior work on the access network design problem [8], as opposed
to our focus on the LP relaxation and its integrality gap.

1.4 Outline of the paper

In the next section, we define the deep-discount problem formally and show
its relation to the k-cable buy-at-bulk problem. In Sections 3 through 6, we
introduce and study our integer program formulation and show that it has low
integrality gap. We conclude with time complexity issues and open questions in
Section 7.

2 Problem definition and inter-reductions

2.1 The deep-discount problem

Let G = (V,E) be a graph with edge-lengths [: E — IRT. Let d(u,v) denote
the length of the shortest path between vertices v and v. We are given sources
{v1,...,0m} = S which want to transport {dem,...,dem,,} units of flow re-
spectively to a common sink ¢ € V. We also have a set of k discount types
{Kko, K1, .., Kr—1} available for us to purchase and install. Each cable ; has an
associated fixed cost p; and a variable cost r;. If we install cable k; at edge e and
route f. flow through it, the contribution to our cost is l.(p; + fer;). We may
therefore view the installation of cable k; at an edge as paying a fixed cost p;l.
in order to obtain a discounted rate r; of routing along this edge. The problem of
finding an assignment of discount types to the edges and routing all the source
demands to the sink at minimum total cost is the deep discount problem with
k discount types (DD for short).

Let us order the rates as ro > ry > ... > rip_1. The rate ro = 1 and the price
po = 0 correspond to not using any discount. (It is easy to see that we may scale
our cost functions so that this is true in general.) Observe that if p; > p;11 for
some 7 then x; will never be used. Therefore, without loss of generality, we can
assume pp < p1 < ... < Pg—1-

2.2 The buy-at-bulk problem with k-cable types

In an edge-weighted undirected graph, suppose we are given a set of sources
{v1,...,Vm} which want to transport {dem, ..., dem,,} units of flow respectively
to a common sink ¢. We have available to us k different cable types, each having
capacity u; and cost ¢;. We wish to buy cables such that we have enough capacity
to support the simultaneous flow requirements. We are allowed to buy multiple
copies of a cable type. There is no flow cost; our only cost incurred is the purchase
price of cables. The problem of finding a minimum cost feasible network is the
buy-at-bulk problem with k cable types (BB for short). It is NP-Hard even when
k=1 [14].

2.3 Approximate equivalence of BB and DD

Suppose we are given a BB instance BB = (G, ¢,u) on a graph G with k cable

types having costs and capacities (1,1), (¢1,u1), .-, (¢ck—1,ur—1). We transform

it into an instance of DD by setting edge costs (fixed and per-unit) (0, 1), (c1, 3+),
oo (Ch1, 5 w—), and call this DD(BB).

Conversely, given a DD instance DD = (G,p,r) on a graph G with k dis-
count types having prices and variable costs (0,1), (p1,71), .- -, (Pk—1,Tk—1), We
transform it into a BB instance BB(DD) with cable types having costs and
capacities (1,1), (p1, 21), .., (px_1, Z=4).

It is easy to see that BB(DD(BB)) BB and DD(BB(DD)) = DD; i.e.,
the two transformations are inverses of each other. For a problem instance X,
we abuse notation to let X also denote the cost of a feasible solution to it. Let
X* denote the cost of an optimal (integer) solution to X.

Lemma 1. BB < DD*(BB)

Proof. Consider an edge e and let the flow on e in DD*(BB) be z.. If the
solution uses discount type 0 on e, then the BB solution does not pay any more
than the routing cost already paid. If it uses a discount type i > 0, we install
[ze] copies of cable type 7 at this edge. Clearly this gives us a feasible solution
to BB. For this edge DD*(BB) has routing cost Z=¢ and building cost l.c;,
hence a total cost of l.c;(1 + £=). The BB solution 'has cable cost I eCil 3] on
edge e, which is no more than the total cost incurred by edge e in DD*(BB)

Lemma 2. DD < 2BB*(DD)

Proof. We will initially allow for multiple discount types on each edge and pay
for it all. A pruned solution will satisfy all the desired properties and cost only
less. Hence let i be the number of copies of cable type i used at edge e. We
only consider edges with non-zero flow, that is, where ¢ > 0. Note that the
flow on e is at most z!p;/r;. We purchase a discount type i cable on edge e
and route the flow through it on this discounted cable. We pay no more than

pile + m;p rile < (z¢ + 1)pile, which is no more than two times the cost z%p;l,
already paid by BB(DD), since z¢ > 1.

Together, the above two Lemmas imply that BB*(DD) < BB(DD) <
DD* < DD < 2BB*(DD), so that a p approximation algorithm for BB gives a
2p approximation algorithm for DD. Similarly, a p approximation to DD is a 2p
approximation to BB.

Given the above relations, we focus on the deep-discount formulation in this
paper. One reason for choosing to work with this version is presented in Section 3
where we show there are always acyclic optimal solutions for the deep-discount
problem, while this is not always the case for the buy-at-bulk problem (see,

, [14]). However, we continue to use the term “cable type” to refer to the
discount type used in an edge from time to time, even though a solution to the
deep-discount problem involves choices of discount types on edges rather than
installation of cables.

3 Structure of an optimum solution to the deep-discount
problem

Let us look at how an optimal solution allocates the discount types to edges and
routes the flow to the sink. Clearly an edge will use only one type of discount.
Suppose in an optimum, an edge e uses discount-i. Define a new length function
I! = r;l.. Clearly once the fixed cost for the discount is paid, the routing cost
is minimized if we route along a shortest path according to the length function
. Therefore, there is an optimum which routes along shortest paths according
to such a length function I’. As a result, we can also assume that the flow
never splits. That is, if two commodities share an edge then they share all the
subsequent edges on their paths to t. This is because we can choose a shortest
path tree in the support graph; flow along this tree to the root will never split.

The cost of routing f units of flow on an edge e using discount-i is lo (p; +7; f).
So the discount type corresponding to minimum cost depends only on f and is
given by type(f) :=minarg,{p; + r; f|0 < i < k}.

Lemma 3. The function type(f) defined above is non-decreasing in f.

Proof. Consider any two discount types, say 7 and j with i < j. We know that
r; > r; and p; < pj. As the cost functions p + rf are linear, there is a critical
value f of flow such that, p; + r;f = p; + r;f. If the flow is smaller than f,
discount-7 is better than discount-j. And if the flow is more than f, discount-j
is better than discount-i. This proves the lemma.

Suppose the optimal flow is along a path P from v; to t. As the flow never
splits, the flow along P is non-decreasing as we go from v; to t. Hence from the
above lemma, the discount type never decreases as we go from v; to . We call
this property path monotonicity.

Summarizing, we have the following.

Theorem 1. There exists an optimum solution to the deep-discount problem
which satisfies the following properties.

— The support graph of the solution is a tree.
— The discount types are non-decreasing along the path from a source to the
root.

Similar results were proved independently (but differently) in [3] and [7].
Figure 1 illustrates the structure of an optimum assuming 3 discount types.

4 Linear program formulation and rounding

4.1 Overview of the algorithm

First we formulate the deep-discount problem as an integer program. We then
take the linear relaxation of the IP, and solve it to optimality. Clearly an optimal
solution to the LP is a lower bound on the optimal solution to the IP.

discount 2

g discount 1
/\ /\ discount 0

Fig. 1. Structure of an optimum solution to the deep-discount problem with three
discount types.

We now use the LP solution to construct our solution. We have already seen
that there is an integer optimal solution which is a layered tree. We construct
such a tree in a top-down manner, starting from the sink. We iteratively augment
the tree by adding cables of the next available lower discount type. At each stage
we use an argument based on the values of the decision variables in an optimal
LP solution to charge the cost of our solution to the LP cost. We thus bound
the cost of building our tree. We next bound the routing costs by an argument
which essentially relies on the fact that the tree is layered and that distances
obey the triangle inequality.

4.2 Integer program formulation

We now present a natural IP formulation of the deep-discount problem. As is
usual for flow problems, we replace each undirected edge by a pair of anti-parallel
directed arcs, each having the same length as the original (undirected) edge. We
introduce a variable z{ for each e € E and for each 0 < i < k, such that, 2} =1
if we are using discount-i on edge e and 0 otherwise. The variable fgl is the flow
of commodity j on edge e using discount-i. For a vertex set S (or a singleton
vertex v), we define §t(S) to be the set of arcs leaving S. That is, §(S) =
{(u,v) € E:u € S,v ¢ S}. Analogously, 6~ (S) = {(u,v) € E:u ¢ S,v € S}.
The formulation is given in Figure 2.

The first term in the objective function is the cost of purchasing the various
discount types at each edge; we call this the building cost. The second term is
the total cost (over all vertices v;) of sending dem; amount of flow from vertex v;
to the sink; we call this the routing cost of the solution. These two components
of the cost of an optimal solution are referred to as OPTpysq and OPT,oyte
respectively.

k—1 k—1
min Z Zpizéle + Z Z Zdemjjg;i'r‘il6

e€FE i=0 v;ES e€E i=0
subject to:

k—1
(l) Z Z.fé,l >1 Yv; €S

e€s+(vj) i=0

k-1 k-1
Gy Y Y = > > f Yo e V\ {v;,t},1<j<m
e€d— (v) i=0 e€dt(v) i=0
k—1 k=1
Giey Y Y < YN 0<q<kYoeV\{v,t},
e€d (v) i=¢q e€dt(v) i=q
] . 1<j<m
() fl; <z Vee B,0<i<k
k—1
(v))z >1 Ve€ E
i=0
(vi) z, f non-negative integers

Fig. 2. Integer program formulation of the deep-discount problem.

The first set of constraints ensures that every source has an outflow of one
unit which is routed to the sink. The second is the standard flow conservation
constraints, treating each commodity separately. The third set of constraints en-
forces the path monotonicity discussed in the preceding Section, and is therefore
valid for the formulation. The fourth simply builds enough capacity, and the
fifth ensures that we install at least one cable type on each arc. Note that this
is valid and does not add to our cost since we have the default cable available
for installation at zero fixed cost.

Relaxing the integrality constraints (vi) to allow the variables to take real
non-negative values, we obtain the LP relaxation. This LP has a polynomial
number of variables and constraints, and can be therefore solved in polynomial
time. The LP relaxation gives us a lower bound which we use in our approxima-
tion algorithm.

5 The rounding algorithm

5.1 Pruning the set of available cables

We begin by pruning our set of available cables, and we show that this does not
increase the cost by more than a constant factor. This pruning is useful in the
analysis.

The following lemma shows that the cost of solution does not increase by a
large factor if we restrict ourselves to rates that are sufficiently different, that is,
they decrease by a constant factor.

Let OPT be the optimum value with rates ro,r1,...,7r_1 and corresponding
prices po,p1,...,Pk_1- Let € € (0,1) be a real number. Assume that /=1 >
rr—1 > €. Now, let us create a new instance as follows. Let the new rates be
1,¢,...,e71. For each i, let the price corresponding to € be p;, where r; is the
largest rate not bigger than €. Let OPT' be the optimum value of this new
problem.

Lemma 4. OPT] < L1O0PT,oute

oute

Proof. Consider an edge e which uses discount-j in OPT'. In the solution of the
new problem, change its discount type to €’ such that e > r; > €+1. Thus, for
this edge, the price does not increase and the routing cost increases by a factor
at most 1/e.

Since OPT},, ;14 < OPTyyitq, we have as a consequence that OPT" < %OPT.
Hereafter we assume that the rates ro,r1,...,rr—1 decrease by a factor at least
€ for some 0 < € < 1, thereby incurring an increase in cost by a factor of at most
1/e.

5.2 Building the solution: Overview

Recall that G is our input graph, and k is the number of cable types. We also
have a set of parameters {«, 3,7, d}, all of which are fixed constants and whose
effect will be studied in the analysis in Section 6.

We build our tree in a top-down manner. We begin by defining T}, to be the
singleton vertex {t}, the sink. We then successively augment this tree by adding
cables of discount type i to obtain T3, for ¢ going down k—1,k—2,...,1,0. Our
final tree Ty is the solution we output. Routing is then trivial — simply route
along the unique path from each source to the sink in the tree.

Our basic strategy for constructing the tree T; from T;_; is to first identify a
subset of demand sources that are not yet included in T;_; by using information
from their contributions to the routing cost portion of the LP relaxation. In
particular, we order these candidate nodes in non-decreasing order of the radius
of a ball that is defined based on the routing cost contribution of the center of
the ball. We then choose a maximal set of non-overlapping balls going forward
in this order. This intuitively ensures that any ball that was not chosen can be
charged for their routing via the smaller radius ball that overlapped with it that
is included in the current level of the tree. After choosing such a subset of as yet
unconnected nodes, we build an approximately minimum building cost Steiner
tree with these nodes as terminals and the (contracted) tree T;_; as the root.
The balls used to identify this subset now also serve a second purpose of relating
the building cost of the Steiner tree to the fractional optimum. Finally, in a third
step, we convert the approximate Steiner tree rooted at the contracted T;_1 to

a LAST (light approximate shortest-path tree [10]) which intuitively ensures
that all nodes in the tree are within a constant factor of their distance from
the root T;—1 in this LAST without increasing the total length (and hence the
building cost) of the tree by more than a constant factor. This step is essential
to guarantee that the routing cost via this level of the tree does not involve long
paths and thus can be charged to within a constant factor of the appropriate LP
routing cost bound.

5.3 Building the solution: Details

The details of the algorithm are presented in Figure 3. Let C’} denote the fraction
of the routing cost for routing unit flow from v; to ¢ corresponding to discount-,
that is, Ct = 3, f1,ril.. Hence 2 o<i<k C! is the total routing cost for vertex
v;j. For a vertex v and a positive number R, let B(v,R) = {u € V : d(u,v) < R}
denote the ball of radius R centered at vertex v.

Selecting vertices for inclusion in the current level. The bulk of the work
is done in Step 4. We first choose a certain set of vertices (S; at level 7), and then
build a Steiner tree connecting the chosen vertices to the root component (T;41).
We note that this step is somewhat similar to the “tour ball” construction in
[13].

Building the Steiner tree. We build balls B(v;,dR?) around each selected
vertex v;. We note that we will choose § < «, where v is the dilation parame-
ter for the radius of the balls used in the vertex selection step. We then build
an approximately minimum Steiner tree which connects these selected balls to
Ti+1- More formally, we contract each ball and introduce a new node for it. We
also contract T;41 and introduce a node for it. Then we run an approximation
algorithm to find a Steiner tree connecting all the selected nodes that has cost at
most twice the value of a fractional Steiner tree, i.e., within twice the cost of an
LP relaxation for the Steiner tree problem on these nodes (See, e.g., [1]). Then
we un-contract the balls and extend the edges of the resulting forest incident on
the boundary of B(v;,dR%) with direct edges to the center v;. Thus we have a
tree connecting all the selected vertices v; to Tjy 1.

Converting the Steiner tree to a LAST. The Steiner tree constructed so
far may have a very large diameter, since we have not taken the routing into
consideration so far. Hence it may lead to very high routing costs in the solution.
To get around this, we use a construction due to Khuller, Raghavachari and
Young [10] which achieves short paths from a root node while being light.

Definition 1 (Light approximate shortest-path tree). Let G = (V, E) be
a graph with a length function | : E — IR and let t € V be a root vertex. Let
a, 3 > 1 be real numbers. An (a, 8)-LAST rooted at t is a tree T in G such that

Algorithm Deep-discount(G, K, a, 3,7, 0)
G: input graph
K: set of cables
a, 3,7, d: parameters (fixed constants)
1. Prune the set of available cables as described in 5.1.
2. Solve the LP relaxation of the IP described in 4.2.

3. T, = {t}.
4. Fori=k—-1,k—2,...,1:
Define S; :=
VU]‘ ¢ Ti+1:)
R C?+...+C; 1-
J i1

If Tip1 N B(vj, YR}) # 0, ,
proxy,(v;):= any (arbitrary) vertex in T;+1 N B(vj, vR;)
Si =S U{v;}.
Order the remaining vertices L; = V' \ (T;41 U S;) in nondecreasing
order of their corresponding ball radii.
While L; # 0:
Let B(v;,VR}) be the smallest radius ball in L.
Vu € LN B(vj,vR;):
proxy, (u) = v;

L:=L\ {u}
L=\ {n)
S; =S U{v;}

Comment: S; is the set of sources chosen to be connected at this level.
Contract Ti41 to a singleton node #;41.
Build a Steiner tree ST; with S; U {t;+1} as terminals (Elaborated in
the text below — the parameter ¢ is used here).
Use discount type 7 for these edges.
Convert ST; into an («a, 8)-LAST rooted at t;+1, denoted LAST;.
Define T; := T;41 U LAST;.
5. For every source vertex v; ¢ T':
Compute a shortest path P from v; to any node in T7.
Augment T1 by including the edges in P.
Use cable type 0 on the edges in P.
To :=Th.
6. Route along shortest paths in Tp. This is the solution we output.

Fig. 3. The algorithm

the total length of T is at most a times the length of an MST of G, and for any
vertexr v € V, the length of the (v,t) path along T is at most 5 times the length
of a shortest (v,t) path in G.

The Steiner tree constructed can now be transformed into an (a, 5)-LAST
rooted at ;11 (the contracted version of T;; 1) for some constants «, 8 > 1 using
the algorithm of [10]. The edges in the LAST will use discount-i. We then un-
contract the root component. This breaks up the LAST into a forest where each
subtree is rooted at some vertex in the un-contracted tree T; 1. Define T; to be
the union of T;;; and this forest.

In the last stage, we connect each source v; not in T to Ty by a shortest path,
using discount-0, thereby extending 77 to include all remaining source vertices
in To.

6 Analysis

We use the LP optimum OPT as a lower bound on the integer optimum. Let
OPTyuia =Y., Y.; pizile denote the total price paid for purchasing cables of all
discount types in an LP optimum. Similarly, let OPT}.oute = Zvj > .2 dem; fg;iml6
be the total routing cost paid in that optimum. Thus OPT = OPTyuiqa +
OPTyoute is a lower bound on the total cost. In this section, we prove that,
for our algorithm, the total building cost is O(k - OPTpyi14) and the total rout-
ing cost is O(k -+ OPTyoute)- Thus we establish that the integrality gap of the
formulation is no more than O(k).

6.1 Building cost

We analyze the total price paid for installing discount-i cables when we augment,
the tree T;4+1 to T;.

Note that in building an («, §)-LAST from the tree, we incur a factor of at
most « in the building cost. We argue that the cost of building the tree at the
current stage is O(OPTyyi14)- Then, summing over all k stages, we get that the
total building cost is O(k - OPTpyi1a)-

For any source vertex v, the following Lemma proves that there is sufficient
fractional z-value crossing a ball around v to allow us to pay for an edge crossing
the ball. Since the LP optimum pays for this z, we can charge the cost of our
edge to this fractional z and hence obtain our approximation guarantee.

Lemma 5. Let S C V' be a set of vertices such that t ¢ S and B(vj,(sRé) cSs.
Then,

k—1 1
Z Z ngI—g.

=i e€dt(S)

Proof. Assume for the sake of contradiction that the sum is less than 1—1/4. So
the total flow starting from the source v; which crosses S using discount types
smaller than ¢ is more than 1/4. As it pays at least r;_; per unit distance per
unit flow, the total routing cost is more than

ORir; y C94 ...+ 0!)
(e I =CY4 ... +C!
5 Ti1 J J

This is a contradiction, as the total cost spent in discount types smaller than
i is exactly C9 +... + C’]’.*l.

We built a LAST which used discount-i. So the building cost of the LAST
is p; times the length of the LAST. The following Lemma gives a bound on this
cost.

Lemma 6. The cost of the LAST built at any stage is O(OPTyyi1d)-

Proof. If we scale up the z-values in the optimum by a factor /(6 — 1), Lemma
5 indicates that we have sufficient z-value of types i or higher to build a Steiner
tree connecting the balls B(v;, §R%) to Tjy 1. If we use the primal dual method [1],
we incur an additional factor of 2 in the cost of the Steiner tree as against the
LP solution z-values. Thus, its cost will be at most

k—1
26%51172' Z »oal< 26i—10PTbuild-
q=t e
After un-contracting the balls, we extended the forest to centers v; by direct
edges between the boundaries of forest edges in B(v,dR}) and v;. We can ac-
count, for this extension by using the following observation. For a center v;, the
cost of extension is at most %6 times the cost of the forest inside B(v;,yR}).
Furthermore, during the selection of the vertices, we ensured that for any two
selected vertices v; and v, the balls B(v;, yR{) and B(v;,yR?) are disjoint. Thus
the total cost of the extended tree is at most 1+% times the cost of the previous

forest. Hence cost of the Steiner tree built is at most 22~~~ O PT}yirq. Subse-
y—6 6—1

quently, the cost of the LAST built from this tree is at most 2(1% %OPT;,“M
[10]. For fixed constants a,d,v with v > §, this is O(OPTpyuqq) and completes

the proof.

The total building cost is the sum of building costs at each stage, and we
have k such stages. Thus, we have the following,.

Lemma 7. The total building cost is O(k - OPTyyi1q)-

6.2 Routing cost

After constructing the tree, for each source vertex v;, we route the corresponding
commodity along the unique (vj,t) path on the tree. Let OPT; = 3, C} denote

proxy,,(v) proxy, (v)

Fig. 4. Analysis for routing cost.

the routing cost per unit flow for v; in the optimum. We prove that the routing
cost for a source v; is O(k) times OPT);. Thus the total routing cost is O(k -
OPTroute)-

Refer to Figure 4 for the following analysis.

Lemma 8. For any source vertex vj, the cost of routing unit amount of its
corresponding commodity is O(k - OPT}).

Proof. Let the (v;,t) path along Ty be v; = uo,u1,...,ur = t such that the
sub-path (u;,u;4+1) uses discount-i for 0 < i < k. Note that if discount-i is not
used, then u; = u;r1. Let dr(u;, ui1) be the distance between w; and w1 in
the tree Tp. Then, for v;, the routing cost per unit flow is >, ridr(u;, wit1).
For 1 < < k, let proxy,(v;) denote the proxy of v; in stage k —i. Moreover,
CP+.-+Ci <

ri —_—

for all j, define proxy, (v;) = t. We have d(vj;, proxy; , (vj)) < 2y
2701:_Tj. We also know that r;dr(ui,uiy1) < B - rid(u;, proxy, ,(vs)) because
when we constructed the LAST in stage k — i, d(u;,u;4+1) was at most § times
the shortest path connecting wu; to T;y1. Also this shortest path is shorter than
d(ui, proxy; ,(vj)), as proxy;_ ,(v;) was in Tji;.

By induction on i we prove that, r;dr(u;, ui+1) < M-OPT; for some constant
M.

For the base case when ¢ = 0, v; was connected by a shortest path to 7.
0
Hence rodr(ug,u1) < rod(vj,proxy, (v;)) < ro - 27%' < 2790OPT; < M - OPT;
for sufficiently large M.
Now assume r;dr(ur, wi1) < M-OPT) for all | < i. Using triangle inequality
and the induction hypothesis, we get

i - dr(ug, uipr) < Bori - d(ug, proxy; (vj))
i—1

<B-r Z d(ug,uqy1) + B - i - d(ug, proxy; (v;))
q=0

i—1
ri
= ﬁz r_- rq - d(ug,ugy1) + B -ri - d(vj, proxy, (v;))
q=0 1

i—1

<BY €71 M-OPT; + 8- 2y0OPT;
q=0
Be

< (1—_€M +2B7)OPT;

< M - OPT;

for M > % This completes the induction. Summing over all edges in

the path from v; to ¢, we get the statement of the lemma.

Summing the routing cost bound over all source vertices v;, we obtain that
the total routing cost is no more than O(k - OPTyoute)-

7 Conclusion

The exact approximation factor of our algorithm depends on the parameters. If
we set (a, 8,7,0,€) to be (7, %, 3,2, %) respectively, we obtain an approximation
factor of 60k for both components of the cost function. The running time of our
algorithm is dominated by the time to solve an LP with O(mnk) constraints and

variables.

7.1 Recent work

The work of Guha et al [7] is combinatorial, and they build their tree in a bottom
up manner. Their approach is to gather demand from nodes by means of Steiner
trees until it is more profitable to use the next higher type of cable available.
They then connect such trees using shortest path trees that gather sufficient
demand to use the next cable type. They iteratively do this until all nodes are
connected to the sink. Their algorithm being purely combinatorial has a much
better running time. However, their approximation ratio is a large constant,
roughly 2000. We can contrast this with our approximation factor, which is 60k
with k& being the number of cables after pruning.

After learning about their work, we have been able to tighten the ratio of the
building cost component of our solution to the analogous component in the LP
relaxation (OPTpyi4) to a constant. We show how to do this in the extended
version of our paper [6]. Essentially, we prune the set of available cables so as
to get a sufficient (geometric) increase in the fixed cost of higher index cables.
Subsequently, if our LP has purchased a certain amount of a certain cable, we
allow ourselves to purchase the same amount of all cables of lower index. Given
the geometric costs, this only results in a constant factor dilation of the LP lower
bound. We show that this solution is near-optimal, and we compare ourselves
against it. Our algorithm can then charge the building cost of cable type i to
what the augmented LP paid for cable type i only, instead of the entire building
cost of the LP. This enables us to prove that the integrality gap of the building
cost component is low. However, we do not see yet how to improve the routing
cost, component of our solution.

7.2 Open questions

The main open question from our work is the exact integrality gap of this prob-
lem, whether it is a constant, O(k), or something in between. The question of
getting even better approximation ratios for this problem remains open. The
problem can be generalized to allow different source-sink pairs; for this problem
the current state of the art is a polylogarithmic approximation [4].

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation al-
gorithm for the generalized Steiner problem on networks. SIAM Journal of
Computing,24(3):440-456, 1995.

2. Althofer, 1., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete and Computational Geometry, 9:81-100, 1993.

3. Andrews, M., Zhang, L.: The access network design problem. Proc. of the 39th Ann.
IEEE Symp. on Foundations of Computer Science, 42-49, October 1998.

4. Awerbuch, B., Azar, Y.: Buy at bulk network design. Proc. 38th Ann. IEEE Sym-
posium on Foundations of Computer Science, 542-547, 1997.

5. Bartal, Y.: On approximating arbitrary metrics by tree metrics. Proc. 30th Ann.
ACM Symposium on Theory of Computing, 1998.

6. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: A math-
ematical formulation of a transportation problem with economies of scale. Carnegie
Bosch Institute Working Paper 01-1, 2001.

7. Guha, S., Meyerson, A., Munagala, K.: Improved combinatorial algorithms for single
sink edge installation problems. To appear in Proc. 33rd Ann. ACM Symposium on
Theory of Computing, 2001.

8. Guha, S., Meyerson, A., Munagala, K.: Heirarchical placement and network design
problems. Proc. 41st Ann. IEEE Symposium on Foundations of Computer Sciece,
2000.

9. Hassin, R., Ravi, R., Salman, F.S.: Approximation algorithms for a capacitated
network design problem. Proc. of the APPROX 2000, 167-176, 2000.

10. Khuller, S., Raghavachari, B., Young, N.E.: Balancing minimum spanning and
shortest path trees. Algorithmica, 14, 305-322, 1993.

11. Mansour, Y., Peleg, D.: An approximation algorithm for minimum-cost network
design. The Weizman Institute of Science, Rehovot, 76100 Israel, Tech. Report CS94-
22, 1994; Also presented at the DIMACS workshop on Robust Communication Net-
works, 1998.

12. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: Two metric network de-
sign. Proc. 41st Ann. IEEE Symposium on Foundations of Computer Science, 2000.

13. Ravi, R., Salman, F.S.: Approximation algorithms for the traveling purchaser prob-
lem and its variants in network design. Proc. of the European Symposium on Algo-
rithms, 29-40, 1999.

14. Salman, F.S., Cheriyan, J., Ravi R., Subramanian, S.: Approximating the single-
sink link-installation problem in network design. STAM Journal of Optimization
11(3):595-610, 2000.

