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iple of e
onomies of s
ale. We wish to
onstru
t a minimum 
ost network to support the demands, using ourgiven 
able types. We study a natural integer program formulation of theproblem, and show that its integrality gap is O(k), where k is the numberof 
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of the edge). We 
all the problem of �nding a minimum 
ost network supportingthe required 
ow the deep-dis
ount problem.Alternatively, at ea
h edge we might be able to pay for and install a 
ertain
apa
ity sele
ted from a set of allowable dis
rete 
apa
ity units, and then route
ow (up to the installed 
apa
ity) for free. The problem of �nding a minimum
ost network in this s
enario is 
alled the buy-at-bulk network design problem[14℄.Both the above problems re
e
t e
onomies of s
ale, in the 
ost of routingunit 
ow as the installation 
ost in
reases (the deep-dis
ount problem), and inthe 
ost per unit 
apa
ity as the 
apa
ity in
reases (the buy-at-bulk problem).1.2 Our resultsThe two problems are in fa
t equivalent up to a small loss in the value of thesolution. In this paper, we fo
us on the deep-dis
ount problem. We study thestru
ture of the optimum solution, and show that an optimal solution existswhi
h is a tree. We provide a natural IP formulation of the problem, and showthat it has an integrality gap of the order of the number of 
ables. We also providea polynomial time approximation algorithm by rounding the LP relaxation.1.3 Previous workMansour and Peleg [11℄ gave an O(log n)-approximation for the single sink buy-at-bulk problem with a single 
able type (only one dis
rete unit of 
apa
ityallowable) for a graph on n nodes. They a
hieved this result by using a low-weight, low-stret
h spanner 
onstru
tion [2℄.Designing networks using fa
ilities that provide e
onomies of s
ale has at-tra
ted interest in re
ent years. Salman et al [14℄ gave an O(logD) approxi-mation algorithm for the single sink buy-at-bulk problem in Eu
lidean metri
spa
es, where D is the total demand. Awerbu
h and Azar [4℄ gave a random-ized O(log2 n) approximation algorithm for the buy-at-bulk problem with many
able types and many sour
es and sinks, where n is the number of nodes in theinput graph. This improves to O(log n log logn) using the improved tree metri

onstru
tion of Bartal [5℄. For the single sink 
ase with many 
able types, anO(log n) approximation was obtained by Meyerson, Munagala and Plotkin [12℄based on their work on the Cost-Distan
e two metri
 network design problem.Salman et al also gave a 
onstant approximation in [14℄ for the single 
abletype 
ase using a LAST 
onstru
tion [10℄ in pla
e of the spanner 
onstru
tionused in [11℄. The approximation ratio was further improved by Hassin, Ravi andSalman [9℄.Andrews and Zhang [3℄ studied a spe
ial 
ase of the single-sink buy-at-bulkproblem whi
h they 
all the a

ess network design problem and gave an O(k2)approximation, where k is the number of 
able types. As in the deep-dis
ountproblem, they use a 
ost stru
ture where ea
h 
able type has a buying and arouting 
ost, but they assume that if a 
able type is used, the routing 
ost is atleast a 
onstant times the buying 
ost.



An improved approximation to the problem we study was obtained simulta-neously but independently by Guha, Meyerson and Munagala [7℄, who designed a
onstant-fa
tor approximation algorithm. Their algorithm is 
ombinatorial andis based on their prior work on the a

ess network design problem [8℄, as opposedto our fo
us on the LP relaxation and its integrality gap.1.4 Outline of the paperIn the next se
tion, we de�ne the deep-dis
ount problem formally and showits relation to the k-
able buy-at-bulk problem. In Se
tions 3 through 6, weintrodu
e and study our integer program formulation and show that it has lowintegrality gap. We 
on
lude with time 
omplexity issues and open questions inSe
tion 7.2 Problem de�nition and inter-redu
tions2.1 The deep-dis
ount problemLet G = (V;E) be a graph with edge-lengths l : E ! IR+. Let d(u; v) denotethe length of the shortest path between verti
es u and v. We are given sour
esfv1; : : : ; vmg = S whi
h want to transport fdem1; : : : ; demmg units of 
ow re-spe
tively to a 
ommon sink t 2 V . We also have a set of k dis
ount typesf�0; �1; : : : ; �k�1g available for us to pur
hase and install. Ea
h 
able �i has anasso
iated �xed 
ost pi and a variable 
ost ri. If we install 
able �i at edge e androute fe 
ow through it, the 
ontribution to our 
ost is le(pi + feri). We maytherefore view the installation of 
able �i at an edge as paying a �xed 
ost pilein order to obtain a dis
ounted rate ri of routing along this edge. The problem of�nding an assignment of dis
ount types to the edges and routing all the sour
edemands to the sink at minimum total 
ost is the deep dis
ount problem withk dis
ount types (DD for short).Let us order the rates as r0 > r1 > : : : > rk�1. The rate r0 = 1 and the pri
ep0 = 0 
orrespond to not using any dis
ount. (It is easy to see that we may s
aleour 
ost fun
tions so that this is true in general.) Observe that if pi � pi+1 forsome i then �i will never be used. Therefore, without loss of generality, we 
anassume p0 < p1 < : : : < pk�1.2.2 The buy-at-bulk problem with k-
able typesIn an edge-weighted undire
ted graph, suppose we are given a set of sour
esfv1; : : : ; vmg whi
h want to transport fdem1; : : : ; demmg units of 
ow respe
tivelyto a 
ommon sink t. We have available to us k di�erent 
able types, ea
h having
apa
ity ui and 
ost 
i. We wish to buy 
ables su
h that we have enough 
apa
ityto support the simultaneous 
ow requirements. We are allowed to buy multiple
opies of a 
able type. There is no 
ow 
ost; our only 
ost in
urred is the pur
hasepri
e of 
ables. The problem of �nding a minimum 
ost feasible network is thebuy-at-bulk problem with k 
able types (BB for short). It isNP-Hard even whenk = 1 [14℄.



2.3 Approximate equivalen
e of BB and DDSuppose we are given a BB instan
e BB = (G; 
; u) on a graph G with k 
abletypes having 
osts and 
apa
ities (1; 1); (
1; u1); : : : ; (
k�1; uk�1). We transformit into an instan
e of DD by setting edge 
osts (�xed and per-unit) (0; 1), (
1; 
1u1 ),: : :, (
k�1; 
k�1uk�1 ), and 
all this DD(BB).Conversely, given a DD instan
e DD = (G; p; r) on a graph G with k dis-
ount types having pri
es and variable 
osts (0; 1); (p1; r1); : : : ; (pk�1; rk�1), wetransform it into a BB instan
e BB(DD) with 
able types having 
osts and
apa
ities (1; 1), (p1; p1r1 ), : : :, (pk�1; pk�1rk�1 ).It is easy to see that BB(DD(BB)) = BB and DD(BB(DD)) = DD; i.e.,the two transformations are inverses of ea
h other. For a problem instan
e X ,we abuse notation to let X also denote the 
ost of a feasible solution to it. LetX� denote the 
ost of an optimal (integer) solution to X .Lemma 1. BB � DD�(BB)Proof. Consider an edge e and let the 
ow on e in DD�(BB) be xe. If thesolution uses dis
ount type 0 on e, then the BB solution does not pay any morethan the routing 
ost already paid. If it uses a dis
ount type i > 0, we installdxeui e 
opies of 
able type i at this edge. Clearly this gives us a feasible solutionto BB. For this edge DD�(BB) has routing 
ost lexe
iui and building 
ost le
i,hen
e a total 
ost of le
i(1 + xeui ). The BB solution has 
able 
ost le
idxeui e onedge e, whi
h is no more than the total 
ost in
urred by edge e in DD�(BB).Lemma 2. DD � 2BB�(DD)Proof. We will initially allow for multiple dis
ount types on ea
h edge and payfor it all. A pruned solution will satisfy all the desired properties and 
ost onlyless. Hen
e let xie be the number of 
opies of 
able type i used at edge e. Weonly 
onsider edges with non-zero 
ow, that is, where xie > 0. Note that the
ow on e is at most xiepi=ri. We pur
hase a dis
ount type i 
able on edge eand route the 
ow through it on this dis
ounted 
able. We pay no more thanpile + xiepiri rile � (xie + 1)pile, whi
h is no more than two times the 
ost xiepilealready paid by BB(DD), sin
e xie � 1.Together, the above two Lemmas imply that BB�(DD) � BB(DD) �DD� � DD � 2BB�(DD), so that a � approximation algorithm for BB gives a2� approximation algorithm for DD. Similarly, a � approximation to DD is a 2�approximation to BB.Given the above relations, we fo
us on the deep-dis
ount formulation in thispaper. One reason for 
hoosing to work with this version is presented in Se
tion 3where we show there are always a
y
li
 optimal solutions for the deep-dis
ountproblem, while this is not always the 
ase for the buy-at-bulk problem (see,e.g., [14℄). However, we 
ontinue to use the term \
able type" to refer to thedis
ount type used in an edge from time to time, even though a solution to thedeep-dis
ount problem involves 
hoi
es of dis
ount types on edges rather thaninstallation of 
ables.



3 Stru
ture of an optimum solution to the deep-dis
ountproblemLet us look at how an optimal solution allo
ates the dis
ount types to edges androutes the 
ow to the sink. Clearly an edge will use only one type of dis
ount.Suppose in an optimum, an edge e uses dis
ount-i. De�ne a new length fun
tionl0e := rile. Clearly on
e the �xed 
ost for the dis
ount is paid, the routing 
ostis minimized if we route along a shortest path a

ording to the length fun
tionl0. Therefore, there is an optimum whi
h routes along shortest paths a

ordingto su
h a length fun
tion l0. As a result, we 
an also assume that the 
ownever splits. That is, if two 
ommodities share an edge then they share all thesubsequent edges on their paths to t. This is be
ause we 
an 
hoose a shortestpath tree in the support graph; 
ow along this tree to the root will never split.The 
ost of routing f units of 
ow on an edge e using dis
ount-i is le(pi+rif).So the dis
ount type 
orresponding to minimum 
ost depends only on f and isgiven by type(f) := minargifpi + rif j0 � i < kg.Lemma 3. The fun
tion type(f) de�ned above is non-de
reasing in f .Proof. Consider any two dis
ount types, say i and j with i < j. We know thatri > rj and pi < pj . As the 
ost fun
tions p + rf are linear, there is a 
riti
alvalue f of 
ow su
h that, pi + rif = pj + rjf . If the 
ow is smaller than f ,dis
ount-i is better than dis
ount-j. And if the 
ow is more than f , dis
ount-jis better than dis
ount-i. This proves the lemma.Suppose the optimal 
ow is along a path P from vj to t. As the 
ow neversplits, the 
ow along P is non-de
reasing as we go from vj to t. Hen
e from theabove lemma, the dis
ount type never de
reases as we go from vj to t. We 
allthis property path monotoni
ity.Summarizing, we have the following.Theorem 1. There exists an optimum solution to the deep-dis
ount problemwhi
h satis�es the following properties.{ The support graph of the solution is a tree.{ The dis
ount types are non-de
reasing along the path from a sour
e to theroot.Similar results were proved independently (but di�erently) in [3℄ and [7℄.Figure 1 illustrates the stru
ture of an optimum assuming 3 dis
ount types.4 Linear program formulation and rounding4.1 Overview of the algorithmFirst we formulate the deep-dis
ount problem as an integer program. We thentake the linear relaxation of the IP, and solve it to optimality. Clearly an optimalsolution to the LP is a lower bound on the optimal solution to the IP.
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discount 1

discount 0Fig. 1. Stru
ture of an optimum solution to the deep-dis
ount problem with threedis
ount types.We now use the LP solution to 
onstru
t our solution. We have already seenthat there is an integer optimal solution whi
h is a layered tree. We 
onstru
tsu
h a tree in a top-down manner, starting from the sink. We iteratively augmentthe tree by adding 
ables of the next available lower dis
ount type. At ea
h stagewe use an argument based on the values of the de
ision variables in an optimalLP solution to 
harge the 
ost of our solution to the LP 
ost. We thus boundthe 
ost of building our tree. We next bound the routing 
osts by an argumentwhi
h essentially relies on the fa
t that the tree is layered and that distan
esobey the triangle inequality.4.2 Integer program formulationWe now present a natural IP formulation of the deep-dis
ount problem. As isusual for 
ow problems, we repla
e ea
h undire
ted edge by a pair of anti-paralleldire
ted ar
s, ea
h having the same length as the original (undire
ted) edge. Weintrodu
e a variable zie for ea
h e 2 E and for ea
h 0 � i < k, su
h that, zie = 1if we are using dis
ount-i on edge e and 0 otherwise. The variable f je;i is the 
owof 
ommodity j on edge e using dis
ount-i. For a vertex set S (or a singletonvertex v), we de�ne Æ+(S) to be the set of ar
s leaving S. That is, Æ+(S) =f(u; v) 2 E : u 2 S; v =2 Sg. Analogously, Æ�(S) = f(u; v) 2 E : u =2 S; v 2 Sg.The formulation is given in Figure 2.The �rst term in the obje
tive fun
tion is the 
ost of pur
hasing the variousdis
ount types at ea
h edge; we 
all this the building 
ost. The se
ond term isthe total 
ost (over all verti
es vj) of sending demj amount of 
ow from vertex vjto the sink; we 
all this the routing 
ost of the solution. These two 
omponentsof the 
ost of an optimal solution are referred to as OPTbuild and OPTrouterespe
tively.



minXe2E k�1Xi=0 piziele +Xvj2SXe2E k�1Xi=0 demjf je;irilesubje
t to:(i) Xe2Æ+(vj ) k�1Xi=0 f je;i � 1 8vj 2 S(ii) Xe2Æ�(v) k�1Xi=0 f je;i = Xe2Æ+(v) k�1Xi=0 f je;i 8v 2 V n fvj ; tg; 1 � j � m(iii) Xe2Æ�(v) k�1Xi=q f je;i � Xe2Æ+(v) k�1Xi=q f je;i 0 � q < k; 8v 2 V n fvj ; tg;1 � j � m(iv) f je;i � zie 8e 2 E; 0 � i < k(v) k�1Xi=0 zie � 1 8e 2 E(vi) z; f non-negative integersFig. 2. Integer program formulation of the deep-dis
ount problem.The �rst set of 
onstraints ensures that every sour
e has an out
ow of oneunit whi
h is routed to the sink. The se
ond is the standard 
ow 
onservation
onstraints, treating ea
h 
ommodity separately. The third set of 
onstraints en-for
es the path monotoni
ity dis
ussed in the pre
eding Se
tion, and is thereforevalid for the formulation. The fourth simply builds enough 
apa
ity, and the�fth ensures that we install at least one 
able type on ea
h ar
. Note that thisis valid and does not add to our 
ost sin
e we have the default 
able availablefor installation at zero �xed 
ost.Relaxing the integrality 
onstraints (vi) to allow the variables to take realnon-negative values, we obtain the LP relaxation. This LP has a polynomialnumber of variables and 
onstraints, and 
an be therefore solved in polynomialtime. The LP relaxation gives us a lower bound whi
h we use in our approxima-tion algorithm.5 The rounding algorithm5.1 Pruning the set of available 
ablesWe begin by pruning our set of available 
ables, and we show that this does notin
rease the 
ost by more than a 
onstant fa
tor. This pruning is useful in theanalysis.



The following lemma shows that the 
ost of solution does not in
rease by alarge fa
tor if we restri
t ourselves to rates that are suÆ
iently di�erent, that is,they de
rease by a 
onstant fa
tor.Let OPT be the optimum value with rates r0; r1; : : : ; rk�1 and 
orrespondingpri
es p0; p1; : : : ; pk�1. Let � 2 (0; 1) be a real number. Assume that �l�1 �rk�1 > �l. Now, let us 
reate a new instan
e as follows. Let the new rates be1; �; : : : ; �l�1. For ea
h i, let the pri
e 
orresponding to �i be pj , where rj is thelargest rate not bigger than �i. Let OPT 0 be the optimum value of this newproblem.Lemma 4. OPT 0route � 1�OPTrouteProof. Consider an edge e whi
h uses dis
ount-j in OPT . In the solution of thenew problem, 
hange its dis
ount type to �i su
h that �i � rj > �i+1. Thus, forthis edge, the pri
e does not in
rease and the routing 
ost in
reases by a fa
torat most 1=�.Sin
e OPT 0build � OPTbuild, we have as a 
onsequen
e that OPT 0 � 1�OPT .Hereafter we assume that the rates r0; r1; : : : ; rk�1 de
rease by a fa
tor at least� for some 0 < � < 1, thereby in
urring an in
rease in 
ost by a fa
tor of at most1=�.5.2 Building the solution: OverviewRe
all that G is our input graph, and k is the number of 
able types. We alsohave a set of parameters f�; �; 
; Æg, all of whi
h are �xed 
onstants and whosee�e
t will be studied in the analysis in Se
tion 6.We build our tree in a top-down manner. We begin by de�ning Tk to be thesingleton vertex ftg, the sink. We then su

essively augment this tree by adding
ables of dis
ount type i to obtain Ti, for i going down k� 1; k� 2; : : : ; 1; 0. Our�nal tree T0 is the solution we output. Routing is then trivial { simply routealong the unique path from ea
h sour
e to the sink in the tree.Our basi
 strategy for 
onstru
ting the tree Ti from Ti�1 is to �rst identify asubset of demand sour
es that are not yet in
luded in Ti�1 by using informationfrom their 
ontributions to the routing 
ost portion of the LP relaxation. Inparti
ular, we order these 
andidate nodes in non-de
reasing order of the radiusof a ball that is de�ned based on the routing 
ost 
ontribution of the 
enter ofthe ball. We then 
hoose a maximal set of non-overlapping balls going forwardin this order. This intuitively ensures that any ball that was not 
hosen 
an be
harged for their routing via the smaller radius ball that overlapped with it thatis in
luded in the 
urrent level of the tree. After 
hoosing su
h a subset of as yetun
onne
ted nodes, we build an approximately minimum building 
ost Steinertree with these nodes as terminals and the (
ontra
ted) tree Ti�1 as the root.The balls used to identify this subset now also serve a se
ond purpose of relatingthe building 
ost of the Steiner tree to the fra
tional optimum. Finally, in a thirdstep, we 
onvert the approximate Steiner tree rooted at the 
ontra
ted Ti�1 to



a LAST (light approximate shortest-path tree [10℄) whi
h intuitively ensuresthat all nodes in the tree are within a 
onstant fa
tor of their distan
e fromthe root Ti�1 in this LAST without in
reasing the total length (and hen
e thebuilding 
ost) of the tree by more than a 
onstant fa
tor. This step is essentialto guarantee that the routing 
ost via this level of the tree does not involve longpaths and thus 
an be 
harged to within a 
onstant fa
tor of the appropriate LProuting 
ost bound.5.3 Building the solution: DetailsThe details of the algorithm are presented in Figure 3. Let Cij denote the fra
tionof the routing 
ost for routing unit 
ow from vj to t 
orresponding to dis
ount-i,that is, Cij = Pe f je;irile. Hen
e P0�i<k Cij is the total routing 
ost for vertexvj . For a vertex v and a positive number R, let B(v;R) = fu 2 V : d(u; v) � Rgdenote the ball of radius R 
entered at vertex v.Sele
ting verti
es for in
lusion in the 
urrent level. The bulk of the workis done in Step 4. We �rst 
hoose a 
ertain set of verti
es (Si at level i), and thenbuild a Steiner tree 
onne
ting the 
hosen verti
es to the root 
omponent (Ti+1).We note that this step is somewhat similar to the \tour ball" 
onstru
tion in[13℄.Building the Steiner tree. We build balls B(vj ; ÆRij) around ea
h sele
tedvertex vj . We note that we will 
hoose Æ < 
, where 
 is the dilation parame-ter for the radius of the balls used in the vertex sele
tion step. We then buildan approximately minimum Steiner tree whi
h 
onne
ts these sele
ted balls toTi+1. More formally, we 
ontra
t ea
h ball and introdu
e a new node for it. Wealso 
ontra
t Ti+1 and introdu
e a node for it. Then we run an approximationalgorithm to �nd a Steiner tree 
onne
ting all the sele
ted nodes that has 
ost atmost twi
e the value of a fra
tional Steiner tree, i.e., within twi
e the 
ost of anLP relaxation for the Steiner tree problem on these nodes (See, e.g., [1℄). Thenwe un-
ontra
t the balls and extend the edges of the resulting forest in
ident onthe boundary of B(vj ; ÆRij) with dire
t edges to the 
enter vj . Thus we have atree 
onne
ting all the sele
ted verti
es vj to Ti+1.Converting the Steiner tree to a LAST. The Steiner tree 
onstru
ted sofar may have a very large diameter, sin
e we have not taken the routing into
onsideration so far. Hen
e it may lead to very high routing 
osts in the solution.To get around this, we use a 
onstru
tion due to Khuller, Raghava
hari andYoung [10℄ whi
h a
hieves short paths from a root node while being light.De�nition 1 (Light approximate shortest-path tree). Let G = (V;E) bea graph with a length fun
tion l : E ! IR+ and let t 2 V be a root vertex. Let�; � > 1 be real numbers. An (�; �)-LAST rooted at t is a tree T in G su
h that



Algorithm Deep-dis
ount(G; K; �; �; 
; Æ)G: input graphK: set of 
ables�; �; 
; Æ: parameters (�xed 
onstants)1. Prune the set of available 
ables as des
ribed in 5.1.2. Solve the LP relaxation of the IP des
ribed in 4.2.3. Tk = ftg.4. For i = k � 1; k � 2; : : : ; 1:De�ne Si := ;8vj =2 Ti+1:Rij = C0j+:::+Ci�1jri�1 .If Ti+1 \B(vj ; 
Rij) 6= ;;proxyi(vj):= any (arbitrary) vertex in Ti+1 \B(vj ; 
Rij)Si := Si [ fvjg.Order the remaining verti
es Li = V n (Ti+1 [ Si) in nonde
reasingorder of their 
orresponding ball radii.While Li 6= ;:Let B(vj ; 
Rij) be the smallest radius ball in L.8u 2 L \B(vj ; 
Rij):proxyi(u) := vjL := L n fugL := L n fvjgSi := Si [ fvjgComment: Si is the set of sour
es 
hosen to be 
onne
ted at this level.Contra
t Ti+1 to a singleton node ti+1.Build a Steiner tree STi with Si [ fti+1g as terminals (Elaborated inthe text below { the parameter Æ is used here).Use dis
ount type i for these edges.Convert STi into an (�; �)-LAST rooted at ti+1, denoted LASTi.De�ne Ti := Ti+1 [ LASTi.5. For every sour
e vertex vj =2 T1:Compute a shortest path P from vj to any node in T1.Augment T1 by in
luding the edges in P .Use 
able type 0 on the edges in P .T0 := T1.6. Route along shortest paths in T0. This is the solution we output.Fig. 3. The algorithm



the total length of T is at most � times the length of an MST of G, and for anyvertex v 2 V , the length of the (v; t) path along T is at most � times the lengthof a shortest (v; t) path in G.The Steiner tree 
onstru
ted 
an now be transformed into an (�; �)-LASTrooted at ti+1 (the 
ontra
ted version of Ti+1) for some 
onstants �; � > 1 usingthe algorithm of [10℄. The edges in the LAST will use dis
ount-i. We then un-
ontra
t the root 
omponent. This breaks up the LAST into a forest where ea
hsubtree is rooted at some vertex in the un-
ontra
ted tree Ti+1. De�ne Ti to bethe union of Ti+1 and this forest.In the last stage, we 
onne
t ea
h sour
e vj not in T1 to T1 by a shortest path,using dis
ount-0, thereby extending T1 to in
lude all remaining sour
e verti
esin T0.6 AnalysisWe use the LP optimum OPT as a lower bound on the integer optimum. LetOPTbuild =PePi piziele denote the total pri
e paid for pur
hasing 
ables of alldis
ount types in an LP optimum. Similarly, letOPTroute =PvjPePi demjf je;irilebe the total routing 
ost paid in that optimum. Thus OPT = OPTbuild +OPTroute is a lower bound on the total 
ost. In this se
tion, we prove that,for our algorithm, the total building 
ost is O(k � OPTbuild) and the total rout-ing 
ost is O(k � OPTroute). Thus we establish that the integrality gap of theformulation is no more than O(k).6.1 Building 
ostWe analyze the total pri
e paid for installing dis
ount-i 
ables when we augmentthe tree Ti+1 to Ti.Note that in building an (�; �)-LAST from the tree, we in
ur a fa
tor of atmost � in the building 
ost. We argue that the 
ost of building the tree at the
urrent stage is O(OPTbuild). Then, summing over all k stages, we get that thetotal building 
ost is O(k � OPTbuild).For any sour
e vertex v, the following Lemma proves that there is suÆ
ientfra
tional z-value 
rossing a ball around v to allow us to pay for an edge 
rossingthe ball. Sin
e the LP optimum pays for this z, we 
an 
harge the 
ost of ouredge to this fra
tional z and hen
e obtain our approximation guarantee.Lemma 5. Let S � V be a set of verti
es su
h that t 62 S and B(vj ; ÆRij) � S.Then, k�1Xq=i Xe2Æ+(S) zqe � 1� 1Æ :



Proof. Assume for the sake of 
ontradi
tion that the sum is less than 1�1=Æ. Sothe total 
ow starting from the sour
e vj whi
h 
rosses S using dis
ount typessmaller than i is more than 1=Æ. As it pays at least ri�1 per unit distan
e perunit 
ow, the total routing 
ost is more thanÆRijri�1Æ = C0j + : : :+ Ci�1jri�1 ri�1 = C0j + : : :+ Ci�1jThis is a 
ontradi
tion, as the total 
ost spent in dis
ount types smaller thani is exa
tly C0j + : : :+ Ci�1j .We built a LAST whi
h used dis
ount-i. So the building 
ost of the LASTis pi times the length of the LAST. The following Lemma gives a bound on this
ost.Lemma 6. The 
ost of the LAST built at any stage is O(OPTbuild).Proof. If we s
ale up the z-values in the optimum by a fa
tor Æ=(Æ� 1), Lemma5 indi
ates that we have suÆ
ient z-value of types i or higher to build a Steinertree 
onne
ting the balls B(vj ; ÆRij) to Ti+1. If we use the primal dual method [1℄,we in
ur an additional fa
tor of 2 in the 
ost of the Steiner tree as against theLP solution z-values. Thus, its 
ost will be at most2 ÆÆ � 1pi k�1Xq=iXe zqe � 2 ÆÆ � 1OPTbuild:After un-
ontra
ting the balls, we extended the forest to 
enters vl by dire
tedges between the boundaries of forest edges in B(vl; ÆRil) and vl. We 
an a
-
ount for this extension by using the following observation. For a 
enter vl, the
ost of extension is at most Æ
�Æ times the 
ost of the forest inside B(vl; 
Ril).Furthermore, during the sele
tion of the verti
es, we ensured that for any twosele
ted verti
es vl and vj , the balls B(vl; 
Ril) and B(vj ; 
Rij) are disjoint. Thusthe total 
ost of the extended tree is at most 1+ Æ
�Æ times the 
ost of the previousforest. Hen
e 
ost of the Steiner tree built is at most 2 

�Æ ÆÆ�1OPTbuild. Subse-quently, the 
ost of the LAST built from this tree is at most 2� 

�Æ ÆÆ�1OPTbuild[10℄. For �xed 
onstants �; Æ; 
 with 
 > Æ, this is O(OPTbuild) and 
ompletesthe proof.The total building 
ost is the sum of building 
osts at ea
h stage, and wehave k su
h stages. Thus, we have the following.Lemma 7. The total building 
ost is O(k �OPTbuild).6.2 Routing 
ostAfter 
onstru
ting the tree, for ea
h sour
e vertex vj , we route the 
orresponding
ommodity along the unique (vj ; t) path on the tree. Let OPTj =Pi Cij denote
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proxy (v)Fig. 4. Analysis for routing 
ost.the routing 
ost per unit 
ow for vj in the optimum. We prove that the routing
ost for a sour
e vj is O(k) times OPTj . Thus the total routing 
ost is O(k �OPTroute).Refer to Figure 4 for the following analysis.Lemma 8. For any sour
e vertex vj , the 
ost of routing unit amount of its
orresponding 
ommodity is O(k � OPTj).Proof. Let the (vj ; t) path along T0 be vj = u0; u1; : : : ; uk = t su
h that thesub-path (ui; ui+1) uses dis
ount-i for 0 � i < k. Note that if dis
ount-i is notused, then ui = ui+1. Let dT (ui; ui+1) be the distan
e between ui and ui+1 inthe tree T0. Then, for vj , the routing 
ost per unit 
ow is Pi ridT (ui; ui+1).For 1 � i < k, let proxyi(vj) denote the proxy of vj in stage k� i. Moreover,for all j, de�ne proxyk(vj) = t. We have d(vj ; proxyi+1(vj)) � 2
C0j+:::+Cijri �2
OPTjri . We also know that ridT (ui; ui+1) � � � rid(ui; proxyi+1(vj)) be
ausewhen we 
onstru
ted the LAST in stage k � i, d(ui; ui+1) was at most � timesthe shortest path 
onne
ting ui to Ti+1. Also this shortest path is shorter thand(ui; proxyi+1(vj)), as proxyi+1(vj) was in Ti+1.By indu
tion on i we prove that, ridT (ui; ui+1) �M �OPTj for some 
onstantM . For the base 
ase when i = 0, vj was 
onne
ted by a shortest path to T1.Hen
e r0dT (u0; u1) � r0d(vj ; proxy1(vj)) � r0 � 2
C0jr0 � 2
OPTj � M � OPTjfor suÆ
iently large M .Now assume rldT (ul; ul+1) �M �OPTj for all l < i. Using triangle inequalityand the indu
tion hypothesis, we getri � dT (ui; ui+1) � � � ri � d(ui; proxyi+1(vj))� � � ri i�1Xq=0 d(uq ; uq+1) + � � ri � d(u0; proxyi+1(vj))= � i�1Xq=0 rirq � rq � d(uq ; uq+1) + � � ri � d(vj ; proxyi+1(vj))



� � i�1Xq=0 �i�q �M �OPTj + � � 2
OPTj� ( ��1� �M + 2�
)OPTj�M � OPTjfor M � 2�
(1��)1��(1+�) . This 
ompletes the indu
tion. Summing over all edges inthe path from vj to t, we get the statement of the lemma.Summing the routing 
ost bound over all sour
e verti
es vj , we obtain thatthe total routing 
ost is no more than O(k �OPTroute).7 Con
lusionThe exa
t approximation fa
tor of our algorithm depends on the parameters. Ifwe set (�; �; 
; Æ; �) to be (7; 43 ; 3; 2; 15 ) respe
tively, we obtain an approximationfa
tor of 60k for both 
omponents of the 
ost fun
tion. The running time of ouralgorithm is dominated by the time to solve an LP with O(mnk) 
onstraints andvariables.7.1 Re
ent workThe work of Guha et al [7℄ is 
ombinatorial, and they build their tree in a bottomup manner. Their approa
h is to gather demand from nodes by means of Steinertrees until it is more pro�table to use the next higher type of 
able available.They then 
onne
t su
h trees using shortest path trees that gather suÆ
ientdemand to use the next 
able type. They iteratively do this until all nodes are
onne
ted to the sink. Their algorithm being purely 
ombinatorial has a mu
hbetter running time. However, their approximation ratio is a large 
onstant,roughly 2000. We 
an 
ontrast this with our approximation fa
tor, whi
h is 60kwith k being the number of 
ables after pruning.After learning about their work, we have been able to tighten the ratio of thebuilding 
ost 
omponent of our solution to the analogous 
omponent in the LPrelaxation (OPTbuild) to a 
onstant. We show how to do this in the extendedversion of our paper [6℄. Essentially, we prune the set of available 
ables so asto get a suÆ
ient (geometri
) in
rease in the �xed 
ost of higher index 
ables.Subsequently, if our LP has pur
hased a 
ertain amount of a 
ertain 
able, weallow ourselves to pur
hase the same amount of all 
ables of lower index. Giventhe geometri
 
osts, this only results in a 
onstant fa
tor dilation of the LP lowerbound. We show that this solution is near-optimal, and we 
ompare ourselvesagainst it. Our algorithm 
an then 
harge the building 
ost of 
able type i towhat the augmented LP paid for 
able type i only, instead of the entire building
ost of the LP. This enables us to prove that the integrality gap of the building
ost 
omponent is low. However, we do not see yet how to improve the routing
ost 
omponent of our solution.



7.2 Open questionsThe main open question from our work is the exa
t integrality gap of this prob-lem, whether it is a 
onstant, O(k), or something in between. The question ofgetting even better approximation ratios for this problem remains open. Theproblem 
an be generalized to allow di�erent sour
e-sink pairs; for this problemthe 
urrent state of the art is a polylogarithmi
 approximation [4℄.Referen
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