
On the Integrality Gap of a Natural Formulationof the Single-Sink Buy-at-bulk Network DesignProblem ?Naveen Garg1, Rohit Khandekar1, Goran Konjevod2, R. Ravi3, F.S. Salman4,and Amitabh Sinha31 Department of Computer S
ien
e and Engineering,Indian Institute of Te
hnology, New Delhi, India.fnaveen, rohitkg�
se.iitd.ernet.in2 Department of Computer S
ien
e and Engineering,Arizona State University, Tempe, AZ 85287, USA.goran�asu.edu3 GSIA, Carnegie Mellon University,Pittsburgh PA 15213-3890, USA.fravi, asinhag�andrew.
mu.edu4 Krannert S
hool of Management,Purdue University, West Lafayette, IN 47907, USA.salmanf�mgmt.purdue.eduAbstra
t. We study two versions of the single sink buy-at-bulk networkdesign problem. We are given a network and a single sink, and severalsour
es whi
h demand a
ertain amount of
ow to be routed to the sink.We are also given a �nite set of
able types whi
h have di�erent
ost
hara
teristi
s and obey the prin
iple of e
onomies of s
ale. We wish to
onstru
t a minimum
ost network to support the demands, using ourgiven
able types. We study a natural integer program formulation of theproblem, and show that its integrality gap is O(k), where k is the numberof
able types. As a
onsequen
e, we also provide an O(k)-approximationalgorithm.1 Introdu
tion1.1 MotivationWe study two network design problems whi
h often arise in pra
ti
e. Considera network
onsisting of a single server and several
lients. Ea
h
lient wishes toroute a
ertain amount of
ow to the server. The
ost per unit
ow along anedge is proportional to the edge length. However, we
an redu
e the
ost per unit
ow of routing by paying a
ertain �xed
ost (again proportional to the length? This resear
h was supported by a fa
ulty development grant awarded to R. Raviby the Carnegie Bos
h Institute, Carnegie Mellon University, Pittsburgh PA 15213-3890.

of the edge). We
all the problem of �nding a minimum
ost network supportingthe required
ow the deep-dis
ount problem.Alternatively, at ea
h edge we might be able to pay for and install a
ertain
apa
ity sele
ted from a set of allowable dis
rete
apa
ity units, and then route
ow (up to the installed
apa
ity) for free. The problem of �nding a minimum
ost network in this s
enario is
alled the buy-at-bulk network design problem[14℄.Both the above problems re
e
t e
onomies of s
ale, in the
ost of routingunit
ow as the installation
ost in
reases (the deep-dis
ount problem), and inthe
ost per unit
apa
ity as the
apa
ity in
reases (the buy-at-bulk problem).1.2 Our resultsThe two problems are in fa
t equivalent up to a small loss in the value of thesolution. In this paper, we fo
us on the deep-dis
ount problem. We study thestru
ture of the optimum solution, and show that an optimal solution existswhi
h is a tree. We provide a natural IP formulation of the problem, and showthat it has an integrality gap of the order of the number of
ables. We also providea polynomial time approximation algorithm by rounding the LP relaxation.1.3 Previous workMansour and Peleg [11℄ gave an O(log n)-approximation for the single sink buy-at-bulk problem with a single
able type (only one dis
rete unit of
apa
ityallowable) for a graph on n nodes. They a
hieved this result by using a low-weight, low-stret
h spanner
onstru
tion [2℄.Designing networks using fa
ilities that provide e
onomies of s
ale has at-tra
ted interest in re
ent years. Salman et al [14℄ gave an O(logD) approxi-mation algorithm for the single sink buy-at-bulk problem in Eu
lidean metri
spa
es, where D is the total demand. Awerbu
h and Azar [4℄ gave a random-ized O(log2 n) approximation algorithm for the buy-at-bulk problem with many
able types and many sour
es and sinks, where n is the number of nodes in theinput graph. This improves to O(log n log logn) using the improved tree metri

onstru
tion of Bartal [5℄. For the single sink
ase with many
able types, anO(log n) approximation was obtained by Meyerson, Munagala and Plotkin [12℄based on their work on the Cost-Distan
e two metri
 network design problem.Salman et al also gave a
onstant approximation in [14℄ for the single
abletype
ase using a LAST
onstru
tion [10℄ in pla
e of the spanner
onstru
tionused in [11℄. The approximation ratio was further improved by Hassin, Ravi andSalman [9℄.Andrews and Zhang [3℄ studied a spe
ial
ase of the single-sink buy-at-bulkproblem whi
h they
all the a

ess network design problem and gave an O(k2)approximation, where k is the number of
able types. As in the deep-dis
ountproblem, they use a
ost stru
ture where ea
h
able type has a buying and arouting
ost, but they assume that if a
able type is used, the routing
ost is atleast a
onstant times the buying
ost.

An improved approximation to the problem we study was obtained simulta-neously but independently by Guha, Meyerson and Munagala [7℄, who designed a
onstant-fa
tor approximation algorithm. Their algorithm is
ombinatorial andis based on their prior work on the a

ess network design problem [8℄, as opposedto our fo
us on the LP relaxation and its integrality gap.1.4 Outline of the paperIn the next se
tion, we de�ne the deep-dis
ount problem formally and showits relation to the k-
able buy-at-bulk problem. In Se
tions 3 through 6, weintrodu
e and study our integer program formulation and show that it has lowintegrality gap. We
on
lude with time
omplexity issues and open questions inSe
tion 7.2 Problem de�nition and inter-redu
tions2.1 The deep-dis
ount problemLet G = (V;E) be a graph with edge-lengths l : E ! IR+. Let d(u; v) denotethe length of the shortest path between verti
es u and v. We are given sour
esfv1; : : : ; vmg = S whi
h want to transport fdem1; : : : ; demmg units of
ow re-spe
tively to a
ommon sink t 2 V . We also have a set of k dis
ount typesf�0; �1; : : : ; �k�1g available for us to pur
hase and install. Ea
h
able �i has anasso
iated �xed
ost pi and a variable
ost ri. If we install
able �i at edge e androute fe
ow through it, the
ontribution to our
ost is le(pi + feri). We maytherefore view the installation of
able �i at an edge as paying a �xed
ost pilein order to obtain a dis
ounted rate ri of routing along this edge. The problem of�nding an assignment of dis
ount types to the edges and routing all the sour
edemands to the sink at minimum total
ost is the deep dis
ount problem withk dis
ount types (DD for short).Let us order the rates as r0 > r1 > : : : > rk�1. The rate r0 = 1 and the pri
ep0 = 0
orrespond to not using any dis
ount. (It is easy to see that we may s
aleour
ost fun
tions so that this is true in general.) Observe that if pi � pi+1 forsome i then �i will never be used. Therefore, without loss of generality, we
anassume p0 < p1 < : : : < pk�1.2.2 The buy-at-bulk problem with k-
able typesIn an edge-weighted undire
ted graph, suppose we are given a set of sour
esfv1; : : : ; vmg whi
h want to transport fdem1; : : : ; demmg units of
ow respe
tivelyto a
ommon sink t. We have available to us k di�erent
able types, ea
h having
apa
ity ui and
ost
i. We wish to buy
ables su
h that we have enough
apa
ityto support the simultaneous
ow requirements. We are allowed to buy multiple
opies of a
able type. There is no
ow
ost; our only
ost in
urred is the pur
hasepri
e of
ables. The problem of �nding a minimum
ost feasible network is thebuy-at-bulk problem with k
able types (BB for short). It isNP-Hard even whenk = 1 [14℄.

2.3 Approximate equivalen
e of BB and DDSuppose we are given a BB instan
e BB = (G;
; u) on a graph G with k
abletypes having
osts and
apa
ities (1; 1); (
1; u1); : : : ; (
k�1; uk�1). We transformit into an instan
e of DD by setting edge
osts (�xed and per-unit) (0; 1), (
1;
1u1),: : :, (
k�1;
k�1uk�1), and
all this DD(BB).Conversely, given a DD instan
e DD = (G; p; r) on a graph G with k dis-
ount types having pri
es and variable
osts (0; 1); (p1; r1); : : : ; (pk�1; rk�1), wetransform it into a BB instan
e BB(DD) with
able types having
osts and
apa
ities (1; 1), (p1; p1r1), : : :, (pk�1; pk�1rk�1).It is easy to see that BB(DD(BB)) = BB and DD(BB(DD)) = DD; i.e.,the two transformations are inverses of ea
h other. For a problem instan
e X ,we abuse notation to let X also denote the
ost of a feasible solution to it. LetX� denote the
ost of an optimal (integer) solution to X .Lemma 1. BB � DD�(BB)Proof. Consider an edge e and let the
ow on e in DD�(BB) be xe. If thesolution uses dis
ount type 0 on e, then the BB solution does not pay any morethan the routing
ost already paid. If it uses a dis
ount type i > 0, we installdxeui e
opies of
able type i at this edge. Clearly this gives us a feasible solutionto BB. For this edge DD�(BB) has routing
ost lexe
iui and building
ost le
i,hen
e a total
ost of le
i(1 + xeui). The BB solution has
able
ost le
idxeui e onedge e, whi
h is no more than the total
ost in
urred by edge e in DD�(BB).Lemma 2. DD � 2BB�(DD)Proof. We will initially allow for multiple dis
ount types on ea
h edge and payfor it all. A pruned solution will satisfy all the desired properties and
ost onlyless. Hen
e let xie be the number of
opies of
able type i used at edge e. Weonly
onsider edges with non-zero
ow, that is, where xie > 0. Note that the
ow on e is at most xiepi=ri. We pur
hase a dis
ount type i
able on edge eand route the
ow through it on this dis
ounted
able. We pay no more thanpile + xiepiri rile � (xie + 1)pile, whi
h is no more than two times the
ost xiepilealready paid by BB(DD), sin
e xie � 1.Together, the above two Lemmas imply that BB�(DD) � BB(DD) �DD� � DD � 2BB�(DD), so that a � approximation algorithm for BB gives a2� approximation algorithm for DD. Similarly, a � approximation to DD is a 2�approximation to BB.Given the above relations, we fo
us on the deep-dis
ount formulation in thispaper. One reason for
hoosing to work with this version is presented in Se
tion 3where we show there are always a
y
li
 optimal solutions for the deep-dis
ountproblem, while this is not always the
ase for the buy-at-bulk problem (see,e.g., [14℄). However, we
ontinue to use the term \
able type" to refer to thedis
ount type used in an edge from time to time, even though a solution to thedeep-dis
ount problem involves
hoi
es of dis
ount types on edges rather thaninstallation of
ables.

3 Stru
ture of an optimum solution to the deep-dis
ountproblemLet us look at how an optimal solution allo
ates the dis
ount types to edges androutes the
ow to the sink. Clearly an edge will use only one type of dis
ount.Suppose in an optimum, an edge e uses dis
ount-i. De�ne a new length fun
tionl0e := rile. Clearly on
e the �xed
ost for the dis
ount is paid, the routing
ostis minimized if we route along a shortest path a

ording to the length fun
tionl0. Therefore, there is an optimum whi
h routes along shortest paths a

ordingto su
h a length fun
tion l0. As a result, we
an also assume that the
ownever splits. That is, if two
ommodities share an edge then they share all thesubsequent edges on their paths to t. This is be
ause we
an
hoose a shortestpath tree in the support graph;
ow along this tree to the root will never split.The
ost of routing f units of
ow on an edge e using dis
ount-i is le(pi+rif).So the dis
ount type
orresponding to minimum
ost depends only on f and isgiven by type(f) := minargifpi + rif j0 � i < kg.Lemma 3. The fun
tion type(f) de�ned above is non-de
reasing in f .Proof. Consider any two dis
ount types, say i and j with i < j. We know thatri > rj and pi < pj . As the
ost fun
tions p + rf are linear, there is a
riti
alvalue f of
ow su
h that, pi + rif = pj + rjf . If the
ow is smaller than f ,dis
ount-i is better than dis
ount-j. And if the
ow is more than f , dis
ount-jis better than dis
ount-i. This proves the lemma.Suppose the optimal
ow is along a path P from vj to t. As the
ow neversplits, the
ow along P is non-de
reasing as we go from vj to t. Hen
e from theabove lemma, the dis
ount type never de
reases as we go from vj to t. We
allthis property path monotoni
ity.Summarizing, we have the following.Theorem 1. There exists an optimum solution to the deep-dis
ount problemwhi
h satis�es the following properties.{ The support graph of the solution is a tree.{ The dis
ount types are non-de
reasing along the path from a sour
e to theroot.Similar results were proved independently (but di�erently) in [3℄ and [7℄.Figure 1 illustrates the stru
ture of an optimum assuming 3 dis
ount types.4 Linear program formulation and rounding4.1 Overview of the algorithmFirst we formulate the deep-dis
ount problem as an integer program. We thentake the linear relaxation of the IP, and solve it to optimality. Clearly an optimalsolution to the LP is a lower bound on the optimal solution to the IP.

sink

discount 2

discount 1

discount 0Fig. 1. Stru
ture of an optimum solution to the deep-dis
ount problem with threedis
ount types.We now use the LP solution to
onstru
t our solution. We have already seenthat there is an integer optimal solution whi
h is a layered tree. We
onstru
tsu
h a tree in a top-down manner, starting from the sink. We iteratively augmentthe tree by adding
ables of the next available lower dis
ount type. At ea
h stagewe use an argument based on the values of the de
ision variables in an optimalLP solution to
harge the
ost of our solution to the LP
ost. We thus boundthe
ost of building our tree. We next bound the routing
osts by an argumentwhi
h essentially relies on the fa
t that the tree is layered and that distan
esobey the triangle inequality.4.2 Integer program formulationWe now present a natural IP formulation of the deep-dis
ount problem. As isusual for
ow problems, we repla
e ea
h undire
ted edge by a pair of anti-paralleldire
ted ar
s, ea
h having the same length as the original (undire
ted) edge. Weintrodu
e a variable zie for ea
h e 2 E and for ea
h 0 � i < k, su
h that, zie = 1if we are using dis
ount-i on edge e and 0 otherwise. The variable f je;i is the
owof
ommodity j on edge e using dis
ount-i. For a vertex set S (or a singletonvertex v), we de�ne Æ+(S) to be the set of ar
s leaving S. That is, Æ+(S) =f(u; v) 2 E : u 2 S; v =2 Sg. Analogously, Æ�(S) = f(u; v) 2 E : u =2 S; v 2 Sg.The formulation is given in Figure 2.The �rst term in the obje
tive fun
tion is the
ost of pur
hasing the variousdis
ount types at ea
h edge; we
all this the building
ost. The se
ond term isthe total
ost (over all verti
es vj) of sending demj amount of
ow from vertex vjto the sink; we
all this the routing
ost of the solution. These two
omponentsof the
ost of an optimal solution are referred to as OPTbuild and OPTrouterespe
tively.

minXe2E k�1Xi=0 piziele +Xvj2SXe2E k�1Xi=0 demjf je;irilesubje
t to:(i) Xe2Æ+(vj) k�1Xi=0 f je;i � 1 8vj 2 S(ii) Xe2Æ�(v) k�1Xi=0 f je;i = Xe2Æ+(v) k�1Xi=0 f je;i 8v 2 V n fvj ; tg; 1 � j � m(iii) Xe2Æ�(v) k�1Xi=q f je;i � Xe2Æ+(v) k�1Xi=q f je;i 0 � q < k; 8v 2 V n fvj ; tg;1 � j � m(iv) f je;i � zie 8e 2 E; 0 � i < k(v) k�1Xi=0 zie � 1 8e 2 E(vi) z; f non-negative integersFig. 2. Integer program formulation of the deep-dis
ount problem.The �rst set of
onstraints ensures that every sour
e has an out
ow of oneunit whi
h is routed to the sink. The se
ond is the standard
ow
onservation
onstraints, treating ea
h
ommodity separately. The third set of
onstraints en-for
es the path monotoni
ity dis
ussed in the pre
eding Se
tion, and is thereforevalid for the formulation. The fourth simply builds enough
apa
ity, and the�fth ensures that we install at least one
able type on ea
h ar
. Note that thisis valid and does not add to our
ost sin
e we have the default
able availablefor installation at zero �xed
ost.Relaxing the integrality
onstraints (vi) to allow the variables to take realnon-negative values, we obtain the LP relaxation. This LP has a polynomialnumber of variables and
onstraints, and
an be therefore solved in polynomialtime. The LP relaxation gives us a lower bound whi
h we use in our approxima-tion algorithm.5 The rounding algorithm5.1 Pruning the set of available
ablesWe begin by pruning our set of available
ables, and we show that this does notin
rease the
ost by more than a
onstant fa
tor. This pruning is useful in theanalysis.

The following lemma shows that the
ost of solution does not in
rease by alarge fa
tor if we restri
t ourselves to rates that are suÆ
iently di�erent, that is,they de
rease by a
onstant fa
tor.Let OPT be the optimum value with rates r0; r1; : : : ; rk�1 and
orrespondingpri
es p0; p1; : : : ; pk�1. Let � 2 (0; 1) be a real number. Assume that �l�1 �rk�1 > �l. Now, let us
reate a new instan
e as follows. Let the new rates be1; �; : : : ; �l�1. For ea
h i, let the pri
e
orresponding to �i be pj , where rj is thelargest rate not bigger than �i. Let OPT 0 be the optimum value of this newproblem.Lemma 4. OPT 0route � 1�OPTrouteProof. Consider an edge e whi
h uses dis
ount-j in OPT . In the solution of thenew problem,
hange its dis
ount type to �i su
h that �i � rj > �i+1. Thus, forthis edge, the pri
e does not in
rease and the routing
ost in
reases by a fa
torat most 1=�.Sin
e OPT 0build � OPTbuild, we have as a
onsequen
e that OPT 0 � 1�OPT .Hereafter we assume that the rates r0; r1; : : : ; rk�1 de
rease by a fa
tor at least� for some 0 < � < 1, thereby in
urring an in
rease in
ost by a fa
tor of at most1=�.5.2 Building the solution: OverviewRe
all that G is our input graph, and k is the number of
able types. We alsohave a set of parameters f�; �;
; Æg, all of whi
h are �xed
onstants and whosee�e
t will be studied in the analysis in Se
tion 6.We build our tree in a top-down manner. We begin by de�ning Tk to be thesingleton vertex ftg, the sink. We then su

essively augment this tree by adding
ables of dis
ount type i to obtain Ti, for i going down k� 1; k� 2; : : : ; 1; 0. Our�nal tree T0 is the solution we output. Routing is then trivial { simply routealong the unique path from ea
h sour
e to the sink in the tree.Our basi
 strategy for
onstru
ting the tree Ti from Ti�1 is to �rst identify asubset of demand sour
es that are not yet in
luded in Ti�1 by using informationfrom their
ontributions to the routing
ost portion of the LP relaxation. Inparti
ular, we order these
andidate nodes in non-de
reasing order of the radiusof a ball that is de�ned based on the routing
ost
ontribution of the
enter ofthe ball. We then
hoose a maximal set of non-overlapping balls going forwardin this order. This intuitively ensures that any ball that was not
hosen
an be
harged for their routing via the smaller radius ball that overlapped with it thatis in
luded in the
urrent level of the tree. After
hoosing su
h a subset of as yetun
onne
ted nodes, we build an approximately minimum building
ost Steinertree with these nodes as terminals and the (
ontra
ted) tree Ti�1 as the root.The balls used to identify this subset now also serve a se
ond purpose of relatingthe building
ost of the Steiner tree to the fra
tional optimum. Finally, in a thirdstep, we
onvert the approximate Steiner tree rooted at the
ontra
ted Ti�1 to

a LAST (light approximate shortest-path tree [10℄) whi
h intuitively ensuresthat all nodes in the tree are within a
onstant fa
tor of their distan
e fromthe root Ti�1 in this LAST without in
reasing the total length (and hen
e thebuilding
ost) of the tree by more than a
onstant fa
tor. This step is essentialto guarantee that the routing
ost via this level of the tree does not involve longpaths and thus
an be
harged to within a
onstant fa
tor of the appropriate LProuting
ost bound.5.3 Building the solution: DetailsThe details of the algorithm are presented in Figure 3. Let Cij denote the fra
tionof the routing
ost for routing unit
ow from vj to t
orresponding to dis
ount-i,that is, Cij = Pe f je;irile. Hen
e P0�i<k Cij is the total routing
ost for vertexvj . For a vertex v and a positive number R, let B(v;R) = fu 2 V : d(u; v) � Rgdenote the ball of radius R
entered at vertex v.Sele
ting verti
es for in
lusion in the
urrent level. The bulk of the workis done in Step 4. We �rst
hoose a
ertain set of verti
es (Si at level i), and thenbuild a Steiner tree
onne
ting the
hosen verti
es to the root
omponent (Ti+1).We note that this step is somewhat similar to the \tour ball"
onstru
tion in[13℄.Building the Steiner tree. We build balls B(vj ; ÆRij) around ea
h sele
tedvertex vj . We note that we will
hoose Æ <
, where
 is the dilation parame-ter for the radius of the balls used in the vertex sele
tion step. We then buildan approximately minimum Steiner tree whi
h
onne
ts these sele
ted balls toTi+1. More formally, we
ontra
t ea
h ball and introdu
e a new node for it. Wealso
ontra
t Ti+1 and introdu
e a node for it. Then we run an approximationalgorithm to �nd a Steiner tree
onne
ting all the sele
ted nodes that has
ost atmost twi
e the value of a fra
tional Steiner tree, i.e., within twi
e the
ost of anLP relaxation for the Steiner tree problem on these nodes (See, e.g., [1℄). Thenwe un-
ontra
t the balls and extend the edges of the resulting forest in
ident onthe boundary of B(vj ; ÆRij) with dire
t edges to the
enter vj . Thus we have atree
onne
ting all the sele
ted verti
es vj to Ti+1.Converting the Steiner tree to a LAST. The Steiner tree
onstru
ted sofar may have a very large diameter, sin
e we have not taken the routing into
onsideration so far. Hen
e it may lead to very high routing
osts in the solution.To get around this, we use a
onstru
tion due to Khuller, Raghava
hari andYoung [10℄ whi
h a
hieves short paths from a root node while being light.De�nition 1 (Light approximate shortest-path tree). Let G = (V;E) bea graph with a length fun
tion l : E ! IR+ and let t 2 V be a root vertex. Let�; � > 1 be real numbers. An (�; �)-LAST rooted at t is a tree T in G su
h that

Algorithm Deep-dis
ount(G; K; �; �;
; Æ)G: input graphK: set of
ables�; �;
; Æ: parameters (�xed
onstants)1. Prune the set of available
ables as des
ribed in 5.1.2. Solve the LP relaxation of the IP des
ribed in 4.2.3. Tk = ftg.4. For i = k � 1; k � 2; : : : ; 1:De�ne Si := ;8vj =2 Ti+1:Rij = C0j+:::+Ci�1jri�1 .If Ti+1 \B(vj ;
Rij) 6= ;;proxyi(vj):= any (arbitrary) vertex in Ti+1 \B(vj ;
Rij)Si := Si [fvjg.Order the remaining verti
es Li = V n (Ti+1 [Si) in nonde
reasingorder of their
orresponding ball radii.While Li 6= ;:Let B(vj ;
Rij) be the smallest radius ball in L.8u 2 L \B(vj ;
Rij):proxyi(u) := vjL := L n fugL := L n fvjgSi := Si [fvjgComment: Si is the set of sour
es
hosen to be
onne
ted at this level.Contra
t Ti+1 to a singleton node ti+1.Build a Steiner tree STi with Si [fti+1g as terminals (Elaborated inthe text below { the parameter Æ is used here).Use dis
ount type i for these edges.Convert STi into an (�; �)-LAST rooted at ti+1, denoted LASTi.De�ne Ti := Ti+1 [LASTi.5. For every sour
e vertex vj =2 T1:Compute a shortest path P from vj to any node in T1.Augment T1 by in
luding the edges in P .Use
able type 0 on the edges in P .T0 := T1.6. Route along shortest paths in T0. This is the solution we output.Fig. 3. The algorithm

the total length of T is at most � times the length of an MST of G, and for anyvertex v 2 V , the length of the (v; t) path along T is at most � times the lengthof a shortest (v; t) path in G.The Steiner tree
onstru
ted
an now be transformed into an (�; �)-LASTrooted at ti+1 (the
ontra
ted version of Ti+1) for some
onstants �; � > 1 usingthe algorithm of [10℄. The edges in the LAST will use dis
ount-i. We then un-
ontra
t the root
omponent. This breaks up the LAST into a forest where ea
hsubtree is rooted at some vertex in the un-
ontra
ted tree Ti+1. De�ne Ti to bethe union of Ti+1 and this forest.In the last stage, we
onne
t ea
h sour
e vj not in T1 to T1 by a shortest path,using dis
ount-0, thereby extending T1 to in
lude all remaining sour
e verti
esin T0.6 AnalysisWe use the LP optimum OPT as a lower bound on the integer optimum. LetOPTbuild =PePi piziele denote the total pri
e paid for pur
hasing
ables of alldis
ount types in an LP optimum. Similarly, letOPTroute =PvjPePi demjf je;irilebe the total routing
ost paid in that optimum. Thus OPT = OPTbuild +OPTroute is a lower bound on the total
ost. In this se
tion, we prove that,for our algorithm, the total building
ost is O(k � OPTbuild) and the total rout-ing
ost is O(k � OPTroute). Thus we establish that the integrality gap of theformulation is no more than O(k).6.1 Building
ostWe analyze the total pri
e paid for installing dis
ount-i
ables when we augmentthe tree Ti+1 to Ti.Note that in building an (�; �)-LAST from the tree, we in
ur a fa
tor of atmost � in the building
ost. We argue that the
ost of building the tree at the
urrent stage is O(OPTbuild). Then, summing over all k stages, we get that thetotal building
ost is O(k � OPTbuild).For any sour
e vertex v, the following Lemma proves that there is suÆ
ientfra
tional z-value
rossing a ball around v to allow us to pay for an edge
rossingthe ball. Sin
e the LP optimum pays for this z, we
an
harge the
ost of ouredge to this fra
tional z and hen
e obtain our approximation guarantee.Lemma 5. Let S � V be a set of verti
es su
h that t 62 S and B(vj ; ÆRij) � S.Then, k�1Xq=i Xe2Æ+(S) zqe � 1� 1Æ :

Proof. Assume for the sake of
ontradi
tion that the sum is less than 1�1=Æ. Sothe total
ow starting from the sour
e vj whi
h
rosses S using dis
ount typessmaller than i is more than 1=Æ. As it pays at least ri�1 per unit distan
e perunit
ow, the total routing
ost is more thanÆRijri�1Æ = C0j + : : :+ Ci�1jri�1 ri�1 = C0j + : : :+ Ci�1jThis is a
ontradi
tion, as the total
ost spent in dis
ount types smaller thani is exa
tly C0j + : : :+ Ci�1j .We built a LAST whi
h used dis
ount-i. So the building
ost of the LASTis pi times the length of the LAST. The following Lemma gives a bound on this
ost.Lemma 6. The
ost of the LAST built at any stage is O(OPTbuild).Proof. If we s
ale up the z-values in the optimum by a fa
tor Æ=(Æ� 1), Lemma5 indi
ates that we have suÆ
ient z-value of types i or higher to build a Steinertree
onne
ting the balls B(vj ; ÆRij) to Ti+1. If we use the primal dual method [1℄,we in
ur an additional fa
tor of 2 in the
ost of the Steiner tree as against theLP solution z-values. Thus, its
ost will be at most2 ÆÆ � 1pi k�1Xq=iXe zqe � 2 ÆÆ � 1OPTbuild:After un-
ontra
ting the balls, we extended the forest to
enters vl by dire
tedges between the boundaries of forest edges in B(vl; ÆRil) and vl. We
an a
-
ount for this extension by using the following observation. For a
enter vl, the
ost of extension is at most Æ
�Æ times the
ost of the forest inside B(vl;
Ril).Furthermore, during the sele
tion of the verti
es, we ensured that for any twosele
ted verti
es vl and vj , the balls B(vl;
Ril) and B(vj ;
Rij) are disjoint. Thusthe total
ost of the extended tree is at most 1+ Æ
�Æ times the
ost of the previousforest. Hen
e
ost of the Steiner tree built is at most 2

�Æ ÆÆ�1OPTbuild. Subse-quently, the
ost of the LAST built from this tree is at most 2�

�Æ ÆÆ�1OPTbuild[10℄. For �xed
onstants �; Æ;
 with
 > Æ, this is O(OPTbuild) and
ompletesthe proof.The total building
ost is the sum of building
osts at ea
h stage, and wehave k su
h stages. Thus, we have the following.Lemma 7. The total building
ost is O(k �OPTbuild).6.2 Routing
ostAfter
onstru
ting the tree, for ea
h sour
e vertex vj , we route the
orresponding
ommodity along the unique (vj ; t) path on the tree. Let OPTj =Pi Cij denote

t = u
k

2
u

3
u

u
1

v = u
0

3
proxy (v)

2
proxy (v)

1
proxy (v)Fig. 4. Analysis for routing
ost.the routing
ost per unit
ow for vj in the optimum. We prove that the routing
ost for a sour
e vj is O(k) times OPTj . Thus the total routing
ost is O(k �OPTroute).Refer to Figure 4 for the following analysis.Lemma 8. For any sour
e vertex vj , the
ost of routing unit amount of its
orresponding
ommodity is O(k � OPTj).Proof. Let the (vj ; t) path along T0 be vj = u0; u1; : : : ; uk = t su
h that thesub-path (ui; ui+1) uses dis
ount-i for 0 � i < k. Note that if dis
ount-i is notused, then ui = ui+1. Let dT (ui; ui+1) be the distan
e between ui and ui+1 inthe tree T0. Then, for vj , the routing
ost per unit
ow is Pi ridT (ui; ui+1).For 1 � i < k, let proxyi(vj) denote the proxy of vj in stage k� i. Moreover,for all j, de�ne proxyk(vj) = t. We have d(vj ; proxyi+1(vj)) � 2
C0j+:::+Cijri �2
OPTjri . We also know that ridT (ui; ui+1) � � � rid(ui; proxyi+1(vj)) be
ausewhen we
onstru
ted the LAST in stage k � i, d(ui; ui+1) was at most � timesthe shortest path
onne
ting ui to Ti+1. Also this shortest path is shorter thand(ui; proxyi+1(vj)), as proxyi+1(vj) was in Ti+1.By indu
tion on i we prove that, ridT (ui; ui+1) �M �OPTj for some
onstantM . For the base
ase when i = 0, vj was
onne
ted by a shortest path to T1.Hen
e r0dT (u0; u1) � r0d(vj ; proxy1(vj)) � r0 � 2
C0jr0 � 2
OPTj � M � OPTjfor suÆ
iently large M .Now assume rldT (ul; ul+1) �M �OPTj for all l < i. Using triangle inequalityand the indu
tion hypothesis, we getri � dT (ui; ui+1) � � � ri � d(ui; proxyi+1(vj))� � � ri i�1Xq=0 d(uq ; uq+1) + � � ri � d(u0; proxyi+1(vj))= � i�1Xq=0 rirq � rq � d(uq ; uq+1) + � � ri � d(vj ; proxyi+1(vj))

� � i�1Xq=0 �i�q �M �OPTj + � � 2
OPTj� (��1� �M + 2�
)OPTj�M � OPTjfor M � 2�
(1��)1��(1+�) . This
ompletes the indu
tion. Summing over all edges inthe path from vj to t, we get the statement of the lemma.Summing the routing
ost bound over all sour
e verti
es vj , we obtain thatthe total routing
ost is no more than O(k �OPTroute).7 Con
lusionThe exa
t approximation fa
tor of our algorithm depends on the parameters. Ifwe set (�; �;
; Æ; �) to be (7; 43 ; 3; 2; 15) respe
tively, we obtain an approximationfa
tor of 60k for both
omponents of the
ost fun
tion. The running time of ouralgorithm is dominated by the time to solve an LP with O(mnk)
onstraints andvariables.7.1 Re
ent workThe work of Guha et al [7℄ is
ombinatorial, and they build their tree in a bottomup manner. Their approa
h is to gather demand from nodes by means of Steinertrees until it is more pro�table to use the next higher type of
able available.They then
onne
t su
h trees using shortest path trees that gather suÆ
ientdemand to use the next
able type. They iteratively do this until all nodes are
onne
ted to the sink. Their algorithm being purely
ombinatorial has a mu
hbetter running time. However, their approximation ratio is a large
onstant,roughly 2000. We
an
ontrast this with our approximation fa
tor, whi
h is 60kwith k being the number of
ables after pruning.After learning about their work, we have been able to tighten the ratio of thebuilding
ost
omponent of our solution to the analogous
omponent in the LPrelaxation (OPTbuild) to a
onstant. We show how to do this in the extendedversion of our paper [6℄. Essentially, we prune the set of available
ables so asto get a suÆ
ient (geometri
) in
rease in the �xed
ost of higher index
ables.Subsequently, if our LP has pur
hased a
ertain amount of a
ertain
able, weallow ourselves to pur
hase the same amount of all
ables of lower index. Giventhe geometri

osts, this only results in a
onstant fa
tor dilation of the LP lowerbound. We show that this solution is near-optimal, and we
ompare ourselvesagainst it. Our algorithm
an then
harge the building
ost of
able type i towhat the augmented LP paid for
able type i only, instead of the entire building
ost of the LP. This enables us to prove that the integrality gap of the building
ost
omponent is low. However, we do not see yet how to improve the routing
ost
omponent of our solution.

7.2 Open questionsThe main open question from our work is the exa
t integrality gap of this prob-lem, whether it is a
onstant, O(k), or something in between. The question ofgetting even better approximation ratios for this problem remains open. Theproblem
an be generalized to allow di�erent sour
e-sink pairs; for this problemthe
urrent state of the art is a polylogarithmi
 approximation [4℄.Referen
es1. Agrawal, A., Klein, P., Ravi, R.: When trees
ollide: An approximation al-gorithm for the generalized Steiner problem on networks. SIAM Journal ofComputing,24(3):440-456, 1995.2. Alth�ofer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners ofweighted graphs. Dis
rete and Computational Geometry, 9:81-100, 1993.3. Andrews, M., Zhang, L.: The a

ess network design problem. Pro
. of the 39th Ann.IEEE Symp. on Foundations of Computer S
ien
e, 42-49, O
tober 1998.4. Awerbu
h, B., Azar, Y.: Buy at bulk network design. Pro
. 38th Ann. IEEE Sym-posium on Foundations of Computer S
ien
e, 542-547, 1997.5. Bartal, Y.: On approximating arbitrary metri
s by tree metri
s. Pro
. 30th Ann.ACM Symposium on Theory of Computing, 1998.6. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: A math-emati
al formulation of a transportation problem with e
onomies of s
ale. CarnegieBos
h Institute Working Paper 01-1, 2001.7. Guha, S., Meyerson, A., Munagala, K.: Improved
ombinatorial algorithms for singlesink edge installation problems. To appear in Pro
. 33rd Ann. ACM Symposium onTheory of Computing, 2001.8. Guha, S., Meyerson, A., Munagala, K.: Heirar
hi
al pla
ement and network designproblems. Pro
. 41st Ann. IEEE Symposium on Foundations of Computer S
ie
e,2000.9. Hassin, R., Ravi, R., Salman, F.S.: Approximation algorithms for a
apa
itatednetwork design problem. Pro
. of the APPROX 2000, 167-176, 2000.10. Khuller, S., Raghava
hari, B., Young, N.E.: Balan
ing minimum spanning andshortest path trees. Algorithmi
a, 14, 305-322, 1993.11. Mansour, Y., Peleg, D.: An approximation algorithm for minimum-
ost networkdesign. The Weizman Institute of S
ien
e, Rehovot, 76100 Israel, Te
h. Report CS94-22, 1994; Also presented at the DIMACS workshop on Robust Communi
ation Net-works, 1998.12. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distan
e: Two metri
 network de-sign. Pro
. 41st Ann. IEEE Symposium on Foundations of Computer S
ien
e, 2000.13. Ravi, R., Salman, F.S.: Approximation algorithms for the traveling pur
haser prob-lem and its variants in network design. Pro
. of the European Symposium on Algo-rithms, 29-40, 1999.14. Salman, F.S., Cheriyan, J., Ravi R., Subramanian, S.: Approximating the single-sink link-installation problem in network design. SIAM Journal of Optimization11(3):595-610, 2000.

