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(
overing Steiner Tree) on G is the problem of �nding a minimum-
ost 
onne
ted sub-graph of G that 
ontains at least ki verti
es of group gi for all i 2 f1; : : :mg. We denotethe size of the largest group by N , and the largest requirement of a group by K. We
all the group verti
es terminals.1.2 (Non)standard notation and terminologyIf S � V is a set of verti
es of G, we write �S for the set of edges with exa
tly oneendpoint in S. If y : E ! Q is a fun
tion de�ned on a set E, we write y(E0) forPe2E0 y(e) for any set E0 � E. In the sequel, we use two words|
ost and weight|tomean one and the same thing.1.3 AssumptionsIn order to simplify the exposition we make a number of other assumptions. For 
laritywe �rst list all of them and then explain why ea
h may be made with almost no loss ofgenerality.(1) The graph G is a weighted tree.(2) The groups are disjoint.(3) We know one vertex spanned by the optimal solution (we give this vertex a spe
ialrole and 
all it the root).(4) Every vertex belonging to a group has degree 1.(5) Every vertex of degree 1 belongs to some group.All our algorithms assume that the given graph G is a weighted tree. Unfortunatelywe do not know how to generalize our algorithms (or, for that matter, the linear relax-ations on whi
h the algorithms are based) to general graphs. However, the results ofBartal [3, 4℄ and Charikar et al. [6, 7℄, give a way to redu
e any one from a very broad
lass of 
ombinatorial optimization problems de�ned on a general weighted graph tothe same problem on a tree. We des
ribe this in slightly greater detail in Se
tion 5.Brie
y, this assumption 
osts us an extra fa
tor O(log n log logn) in the approximationguarantee, where n is the number of nodes in the input graph, i.e. n = jV (G)j.In some arguments, it will be 
onvenient to assume that the groups are pairwisedisjoint. There is no loss of generality: if a vertex v o

urs in p groups, p � 1, atta
hp new verti
es to v using newly 
reated zero-
ost edges. Assign ea
h leaf of this starto one of the groups and remove v from all groups. In this new graph, the groups aredisjoint sets of verti
es, and there is a 
ost-preserving bije
tion between 
overing Steinertrees in the two graphs.Another useful assumption is that one vertex, 
alled the root, of the optimal solu-tion is known in advan
e. This assumption is ne
essary in order to run our roundingalgorithms be
ause they are \
entralized": they grow the solution subtree from a singlevertex. There is no loss of generality (only loss of eÆ
ien
y), be
ause we 
an run thealgorithm for the rooted 
overing Steiner problem � N times, on
e for every possible
hoi
e of the root vertex from say the smallest group.Finally, we assume that every vertex belonging to a group has degree 1 in G. Thismay be a
hieved by adding a new vertex for ea
h group-vertex of degree greater than 1,
onne
ting it to its original vertex by an edge of weight 0 and then removing the original2



vertex from the group. Also, it is easy to 
he
k that the problem remains un
hanged ifany vertex of degree 1 that does not belong to any group is removed.1.4 Spe
ial 
asesThe 
overing Steiner problem generalizes two di�erent NP-hard network design problemsthat have been studied re
ently. The �rst is the k-MST problem (see Ravi et al. [18℄,Fis
hetti et al. [9℄, Blum, Ravi and Vempala [5℄, and Garg [10℄). The se
ond is thegroup Steiner problem (see Rei
h and Widmayer [19℄, Garg, Konjevod and Ravi [12℄and Charikar et al. [6℄).The k-MST problem is that of �nding a minimum-
ost 
onne
ted subgraph that
ontains at least k nodes in an undire
ted graph with nonnegative edge-
osts. The
overing Steiner problem redu
es to the k-MST problem when there is only one groupand when all the verti
es in V belong to this group. The best-known approximation ratiois 2, a
hieved by an algorithm of Garg [11℄ as a 
ulmination of the series of improvementson his original 3-approximation [10℄; see the papers by Arya and Ramesh [2℄ (givinga 2:5-approximation) and Arora and Karakostas [1℄ (a (2 + �)-approximation for any�xed � > 0). This problem 
an be solved in polynomial time on trees using dynami
programming.The group Steiner problem is the restri
tion of the 
overing Steiner problem tounit-valued group requirements. This problem is at least as hard to approximate asthe set 
over problem, be
ause even the spe
ial 
ase where the underlying graph is astar generalizes the 
lassi
al set 
over problem (Klein and Ravi [15℄). Garg, Konjevodand Ravi [12℄ and Charikar et al. [6℄ give randomized and deterministi
 approximationalgorithms for the group Steiner problem with (asymptoti
ally equal) polylogarithmi
approximation ratios.Subsequent to our work, Even et al. [8℄ use an edge-
ost-
ow formulation for the
overing Steiner problem and derive approximation algorithms with the same guaranteesas those presented in this paper.1.5 ResultsWe �rst des
ribe two linear relaxations of the 
overing Steiner problem on a tree. Weshow that they are equivalent and exhibit a graph for whi
h they have a large integralitygap (arbitrarily 
lose to K). However, as shown in the preliminary version of thiswork [16℄, even this does not pre
lude using either of these relaxations as a basis fora rounding algorithm with a polylogarithmi
 approximation guarantee. In parti
ular,the main result in [16℄ is an O(logN logm logK) randomized approximation algorithmfor the 
overing Steiner problem on trees. Re
all that N denotes the maximum sizeof a group (whi
h is at most n, the number of nodes in G), K denotes the maximumrequirement of a group (whi
h in turn is at mostN) andm denotes the number of groups.In this paper, building on this previous paper, we present an improved approximationguarantee by using the stronger relaxation and a more involved analysis. Our algorithmgives a randomized approximation for the 
overing Steiner problem on a tree withguarantee O(logN log(mK)). As de�ned earlier, N denotes the maximum size of a group(whi
h is at most n, the number of nodes in G), K denotes the maximum requirement3



of a group (whi
h in turn is at most N) and m denotes the number of groups. For thegroup Steiner problem with K = 1, this approximation ratio mat
hes the best-knownratio. The basi
 idea is that we grow a 
overing Steiner tree in several phases; we arguethat the expe
ted de�
it (whi
h is related to the yet-remaining 
overage required) goesdown fast enough, to establish the algorithm's performan
e.We then present a se
ond algorithm whi
h is a re�nement of the �rst, and whi
hgives a better approximation guarantee when the maximum requirement of a group islarge 
ompared to the number of groups. This is a
hieved via a more 
areful roundingpro
edure at every phase. Randomization is a key ingredient in the rounding pro
ess ofall our algorithms, and a tail bound of Janson [14℄ helps mu
h in our analyses.We do not make a 
omplete attempt at optimizing the 
onstants in our results.2 Linear relaxations2.1 The �rst relaxationWe present an integer programming formulation of the 
overing Steiner problem on atree. Let the indi
ator variable xe denote whether the edge e is 
ontained in the solution,xe = 1 if e 2 T � (the 
overing Steiner tree), and xe = 0 otherwise. The 
ost of thesolution x then equalsPe2E 
exe, and we use this quantity as the obje
tive fun
tion tominimize.In addition to x we use variables yi for i 2 f1; : : :;Kg on the edges E. We think of y1as supporting a unit 
ow from the root to one vertex of every group (whose requirementis at least 1). Similarly, y2 supports a unit 
ow from the root to one vertex of everygroup whose requirement is at least 2. For a general i � K, we require yi to support aunit of 
ow to every group whose requirement is at least i. That is,yi(�S) � 1for all S � V su
h that r 2 S andfor all i su
h that for some group g,S \ g = ; and kg � i: (2.1)Of 
ourse, x must support yi for all i:xe � yie for all i. (2.2)We refer to the yi as \
ommodities" to unders
ore the similarity of our problem'sformulation to multi
ommodity 
ow problems. We are asked to build a tree that 
on-ne
ts ki verti
es of group gi to the root vertex r. This 
an be thought of as installingenough 
apa
ity on the edges of G to send a unit of 
ow to ki di�erent verti
es of groupgi. The similarity ends here, however, be
ause the 
apa
ity may be shared between the
ommodities, unlike the 
ase in standard multi
ommodity 
ow.Consider a group g with requirement k. If there is no repetition among the k verti
esof group g rea
hed by y1; : : : ; yk, then the edges given value 1 by at least one of these
ommodities span at least k verti
es of g. However, in general, there may be verti
es4




ounted by more than one 
ommodity y1; : : : ; yk. In order to prevent this, we strengthenthe \support" 
onstraints (2.2) and enfor
exe =Xi yie; for every edge e in
ident on a terminal. (2.3)The above 
onstraints along with the integrality upper bound of one unit on thex-variables ensure that no vertex is 
ounted in more than one 
ommodity (to satisfymore than one unit of requirement) for its group.The 
onstraints (2.1), (2.2) and (2.3) together with integrality 
onstraintsxe; yie 2 f0; 1g for all e and all igive an integer programming formulation of the 
overing Steiner tree.We relax this integer program by allowing the variables y (and 
onsequently x) totake on fra
tional values between 0 and 1. However, unnatural fra
tional solutions arestill possible and to prevent them, we add \monotoni
ity" 
onstraints:xe � xf for all (e; f) where e is the parent edge of f . (2.4)A drawba
k to using these 
onstraints is that our linear relaxation is now only validif G is a tree. This is not a problem as we have already made this assumption. The
omplete linear programming relaxation is summarized below.minXe2E 
exeyi(�S) � 1for all S � V su
h that r 2 S andfor all i su
h that for some group g,S \ g = ; and kg � ixe � yiefor all non-pendant edges exe =Xi yiefor all pendant edges exe � xffor all (e; f) where e is the parent edge of f0 � xe; yie � 1 8(e; i):
(2.5)

Despite its exponential size, the above linear program 
an be solved in one of twoways: One 
an reformulate the minimum 
ut 
onstraints using the max-
ow min-
uttheorem more 
ompa
tly using 
ow variables. Alternately, one 
an employ the ellipsoidmethod [13℄ by supplying a polynomial-time separation ora
le for the 
onstraints, the
rux of whi
h is easily worked out to be a set of minimum 
ut problems. At any rate,sin
e we will introdu
e and employ an alternate 
ompa
t formulation later in Se
tion 2.3,the solution of the above linear program is not 
riti
al to a
hieving our results.5



2.2 Integrality gapEven for the version of the problem with a single group (the k-MST problem), thisrelaxation is not tight. For instan
e, let G be the tree in Fig. 1, a star with k� 1 leaveswhose 
enter is 
onne
ted to another star with k leaves by a single edge. Let the rootvertex be the 
enter of the �rst star. Denote the �rst star by A, the se
ond by B, andthe edge joining them by e0. The single group 
onsists of all the leaves of G and itsrequirement is k.Consider the solution to the linear program where ea
h of the k 
ommodities sends1=k of 
ow from the root to ea
h of the k � 1 leaves of A and where ea
h 
ommoditysends 1=k of 
ow to a distin
t leaf of B. The pa
king 
onstraints for
e xe = 1 for alledges e in A, but sin
e only one 
ommodity is served by every edge of B, xf = 1=k forall edges f of B and for the edge e0.
A B12 ... ...k � 1

k 21C� �r Figure 1.Let the 
ost of the edges belonging to the stars A and B be �, and the 
ost of edge e0be C. Clearly, the 
ost of the optimal tree that 
ontains the root and 
overs k terminalsis at least C + k�, sin
e at least one of the leaves of B must be in
luded. However,the relaxed solution des
ribed above 
osts only C=k + k�. Thus, the ratio between theoptimal integral and fra
tional solutions of the relaxation (2.5) 
an be arbitrarily 
loseto k.2.3 Another relaxationWe now propose a relaxation whi
h is simpler but equivalent to (2.5). In the integerprogramming formulation, there is an indi
ator variable xe for ea
h edge e of G, to saywhether e is 
hosen or not and thus the obje
tive is again to minimizePe 
exe.For any non-root node u, let pe(u) denote the edge 
onne
ting u to its parent.Similarly, for any edge e not in
ident on the root, let pe(e) denote the parent edge of e.Also, given an edge e = uv where u is the parent of v, both T (v) and T (e) denote thesubtree of G rooted at v. Let kg denote the requirement of group g.To rea
h suÆ
iently many verti
es we require thatXj2g xpe(j) = kg for every group g. (2.6)Consider an edge e and the subtree T (e) below this edge. If e is in
luded in the
overing Steiner tree then up to kg verti
es of g may be rea
hed in T (e); if e is notin
luded in the solution then no vertex of g will be rea
hed in T (e). Thus the 
onstraintXj2(T (e)\gi) xpe(j) � kgxe (2.7)6



is valid for any edge e and any group g. This 
onstraint will be 
ru
ial later in boundingthe parameter in Janson's inequality.Finally, we still impose the monotoni
ity 
onstraints (2.4):xpe(e) � xe for all edges e not in
ident on the root. (2.8)By allowing ea
h xe to lie in [0; 1℄, we get our se
ond LP relaxation of the 
overingSteiner problem. minXe2E 
exeXj2g xpe(j) = kgfor every group g,Xj2(T (e)\gi) xpe(j) � kgxe;for every edge e and every group gxpe(e) � xefor every edge e not in
ident on r,0 � xe � 1for every edge e.
(2.9)

We now show that relaxations (2.9) and (2.5) are equivalent.Theorem 2.1. Let x be a feasible solution to LP (2.9). Then there exist y1; : : : yKsu
h that (x; y) is a feasible solution to LP (2.5). Conversely, given a solution (x; y) toLP (2.5), it is also feasible for LP (2.9).Proof. First we show that LP (2.9) is at least as strong as LP (2.5). Let g be a groupwith requirement kg. Let v1; : : : vj 2 g be all verti
es of g spanned by the support treeof x. De�ne w(g)e = xe=kg (2.10)for every edge of the form e = pe(vi), andw(g)e = 0 (2.11)for every other edge e in
ident on a terminal.De�ne w(g) for the other edges working bottom-up from the leaves along the tree G:if w(g) has been de�ned for all 
hildren of e, let w(g)e =Pf w(g)f , where the sum is takenover all the 
hildren of e.Our �rst 
laim is that w(g)e � xe7



for all e 2 E. In fa
t, we provew(g)e = 1kg Xj2(T (e)\g) xpe(j);and the 
laim then follows from the subtree 
onstraint (2.7) for edge e.The proof is by indu
tion on the number of edges in the longest path \des
ending"from e to a leaf of G.By (2.10) and (2.11), the 
laim holds for the edges in
ident on terminals.Consider an edge e 2 E. By the indu
tion hypothesis, the 
laim is true for all
hildren edges of e: if e = pe(f) then w(g)f = 1kg Pj2(T (f)\g) xpe(j). Noww(g)e =Xf w(g)f = 1kg Xj2(T (e)\g) xpe(j);proving the 
laim.After de�ning w(g) for every group g, we set yie = maxg: kg�iw(g)e for all i and e.Sin
e xe � w(g)e for all g and e, the pair (x; y) satis�es the support 
onstraints (2.2).By de�nition of w for terminal edges, all strengthened support 
onstraints (2.3) aresatis�ed. Constraints (2.4) and (2.8) are identi
al. Finally, note that by the de�nitionof w, w(g) supports a unit 
ow from r to the terminals of the group g. Therefore, the
apa
ity (as de�ned by w(g)) of a minimum 
ut separating the root from the verti
es ofg is at least 1. Thus the pair (x; y) satis�es 
ut-
overing 
onstraints (2.1), and is thusa feasible fra
tional solution for LP (2.5).Now, 
onsider a feasible solution (x; y) to LP (2.5). Let g be a group with require-ment k and let e be an edge in the tree. Then y1e ; : : : yke denote the \
ow" values on theedge e of 
ommodities supporting group g. Now we haveXj2T (e)\g xpe(j) = Xj2T (e)\g kXi=1 yipe(j) � kXi=1 yie � kxe;that is, 
onstraints (2.7) are satis�ed by x. The justi�
ation is as follows. The equalityfollows from (2.3). The �rst inequality follows be
ause: (1) all verti
es of g are leavesof the tree, and so no two edges of the form pe(j), where j 2 T \ g, are 
ontainedin any single path from the root to a terminal of g, and (2) the values yi form a 
oworiginating from the root. The se
ond inequality follows from 
onstraints (2.2). Allother 
onstraints of LP (2.9) are obviously satis�ed by (x; y) and so x is a feasiblesolution to LP (2.9).3 The main algorithmWe will pro
eed in phases, with ea
h phase satisfying a part of the 
overage require-ments. Suppose a subset Si of gi has already been 
hosen (initially, Si = ;). We willwork with g0i = gi�Si, and the remaining requirement of the ith group is ri = ki� jSij.8



The 
onstraints of the linear program for the residual problem in this more generalnotation be
ome Xj2g0i xpe(j) = ri for every group g0i, (3.12)xpe(e) � xe for every edge e not in
ident on the root (3.13)Xj2(T (e)\g0i)xpe(j) � rixe for every edge e and every group g0i. (3.14)Suppose we are given an optimal solution (xe : e 2 E) for this LP. We use therounding pro
edure des
ribed in [12℄. For every edge e in
ident on the root, in
lude ein the set of edges to be added to the solution with probability xe. For every other edgee with its parent denoted f , \round up" e with probability xe=xf . This experiment isperformed for ea
h edge of G independently. Let H denote the subgraph of G indu
edby the edges that were \rounded up". Dis
ard all 
onne
ted 
omponents of H ex
eptthe one 
ontaining the root, and denote the resulting tree by T . We 
hoose all edgesof T in our solution. This 
onstitutes one phase of \relax-and-round". We repeat su
hphases until all groups have their 
overage satis�ed. Also, after ea
h phase, we resetthe 
osts of all 
hosen edges to zero, so as to not 
ount their 
osts in future phases.Consider the generi
 phase des
ribed above. It is not diÆ
ult to see that the expe
ted
ost of T is equal to the 
ost of the initial linear programming solution (whi
h in turnis at most the optimal obje
tive fun
tion value of the original integer programmingproblem). This 
an be seen as follows: An edge e is in
luded in T if and only if all theedges in the path from r to e, say e1; : : : ; ep; e are pi
ked in their respe
tive independentrandom experiments, the probability of whi
h isxe11 � xe2xe1 � � � xexep = xe: (3.15)To analyze our random pro
ess and to show that we do not need too many phases, westate and use a probabilisti
 inequality. Let 
 be a universal set, and R � 
 determinedby the experiment in whi
h ea
h element r 2 
 is independently in
luded in R withprobability pr. Let fAi j i 2 Ig be a family of subsets of 
, and denote by Bi the eventthat Ai � R. Write i � j if i 6= j and Ai \ Aj 6= ;. De�ne � =Pi�j Pr[Bi \ Bj℄ (thesum is over ordered pairs). Let X = PiXi, where Xi is an indi
ator variable for theevent Bi, let �i = E[Xi℄ = Pr[Bi℄ and � = E[X℄ =Pi �i. Finally, let e denote the baseof the natural logarithm.Theorem 3.1. (Janson's inequality [14℄.) With the notation as above and with 0 � Æ �1, Pr�X � (1� Æ)�� � e�Æ2�=(2+�� ):We will use Theorem 3.1 to show that we get a guaranteed amount of 
overagefrom any �xed group, with non-neglibile probability. Let us �x a group gi. Then, inthe setting of Theorem 3.1, we have 
 = E(G) and pe = xe=xpe(e), where pe(e) is theparent edge of e. Ea
h subset Aj is the edge-set of a path from r to a leaf belongingto gi. Thus, X is the random variable denoting the amount of gi's residual requirement9



ri that a generi
 phase 
overs. The argument underlying (3.15) easily helps show that�i = ri. Thus, the key issue is to upper-bound the parameter �i = � of Theorem 3.1.Suppose j; j0 2 g0i (re
all that g0i = gi�Si, where Si is the set of elements of gi that havebeen 
overed in previous phases). We will say that j � j0 if and only if (i) j 6= j0 and(ii) the least 
ommon an
estor of j and j0 in G is not the root r. If j � j0, let l
a(j; j0)denote the least 
ommon an
estral edge of j and j0 in T 0. A little re
e
tion shows that�i = Xj;j02g0i: j�j0;xl
a(j;j0)>0 xpe(j)xpe(j0)xl
a(j;j0) :We aim to showTheorem 3.2. �i � ri(ri�1+ri ln(jg0ij=ri)). In parti
ular, �i � ki(ki�1+ki ln(jgij)).The proof of this useful theorem is shown next in Se
tion 3.1.3.1 Proof of Theorem 3.2We use a te
hni
al result.Lemma 3.3. If xpe(j) > 0, thenxpe(j) � Xj02g0i: j�j0 xpe(j0)xl
a(j;j0) � xpe(j)(ri � 1 + ri ln(1=xpe(j))):Lemma 3.3 suÆ
es to prove Theorem 3.2. To see this, �rst note that the fun
tionz 7! z(ri�1+ri ln(1=z)) is 
on
ave for z > 0, sin
e its se
ond derivative is non-positive.Thus, sin
e Pj2g0i xpe(j) = ri, Lemma 3.3 shows that�i � jg0ij � (ri=jg0ij) � (ri � 1 + ri ln(jg0ij=ri));as required.We now prove Lemma 3.3. Suppose xpe(j) = z 2 h0; 1℄. We need some extranotation. Let e0; e1; : : : ; et be the sequen
e of edges that we en
ounter as we walk upthe tree starting from j; let y` = xe` . Thus we have z = y0 � y1 � y2 � � � � � yt � 1.Next, for ` = 0; 1; : : : ; `, let S` =Pj02(T (e`)\g0i) xpe(j0). Then, it is not hard to see thatthe left-hand side in the statement of the lemma equalsz � tX̀=1 S` � S`�1y` : (3.16)The sum in (3.16) is 
learly bounded by the maximum of the following optimizationproblem, whose variables are the y` and S`. (The optimization problem has a maximumsin
e the domain is a polytope and sin
e the obje
tive fun
tion is 
ontinuous in thedomain.) OPT (z; t): maximize Pt̀=1 S`�S`�1y` subje
t to10



S0 = z;y0 = z;yt � 1;S` � S`+1; ` = 0; 1; : : : ; t� 1;y` � y`+1; ` = 0; 1; : : : ; t� 1;S` � riy`; ` = 0; 1; : : : ; t: (3.17)Constraint (3.17) holds sin
e (3.14) is a valid 
onstraint in our problem formulation andin the LP relaxation.Let fy`; S` : ` � 0g be any feasible solution to the above optimization problem. Wenow bound the obje
tive fun
tion value v of this solution. We havev = St=yt � S0=y1 + t�1X̀=1 S` � (1=y` � 1=y`+1)� ri � z=y1 + t�1X̀=1 S` � (1=y` � 1=y`+1)� ri � z=y1 + t�1X̀=1 riy` � (1=y` � 1=y`+1)= ri � z=y1 + ri t�1X̀=1(1� y`=y`+1): (3.18)Note the use of 
onstraints (3.14) in the se
ond inequality above.Take any `, 2 � ` � t � 1. If we keep all variables but y` �xed, we see that (3.18)is maximized when y` = py`�1y`+1, i.e., when y`�1=y` = y`=y`+1. Thus, for any �xed
hoi
e of y1 and yt, (3.18) is maximized when y1; y2; : : : ; yt are in geometri
 progression.Therefore, if we �x y1 and yt and let  = (y1=yt)1=(t�1), we havev � ri � z=y1 + ri(t� 1)(1 �  ): (3.19)Now,  � y1=(t�1)1 = e(ln y1)=(t�1) � 1 + (ln y1)=(t� 1). Thus,v � ri � z=y1 + ri ln(1=y1): (3.20)Subje
t to y1 2 [z; 1℄ and ri � 1, the r.h.s. of (3.20) is maximized when y1 = z. Thus,v � ri � 1 + ri ln(1=z), 
on
luding the proof.Remark. In the preliminary version of this work [16℄, a bound on �i that is weaker bya 
onstant fa
tor is shown using a di�erent approa
h. That approa
h has the propertyof letting us assume that the tree has \small" depth, whi
h is useful in some other
ontexts [20℄.
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3.2 AnalysisSuppose some ` iterations of \relax-and-round" have been run, with remaining groupsg0i and residual requirements ri. Run the (` + 1)st iteration. For ea
h i, let Xi be thenumber of elements of g0i 
overed in the above randomized rounding of the (` + 1)stiteration; the de�
it Di is maxfri � Xi; 0g. Sin
e �i = ri and �i=�i � ri(1 + ln(gi)),Theorem 3.1 gives for any Æ 2 [0; 1℄ thatPr[Di � riÆ℄ = Pr[Xi � (1� Æ)�i℄ � e�Æ2ri=(2+ri(1+ln(gi))):Now, if y 2 [0; 1℄, e�y � 1� (1� 1=e)y. Thus,Pr[Di � riÆ℄ � 1� 
Æ2; (3.21)where 
 = �(1= logN): (3.22)So, sin
e Di is an integer taking values in [0; ri℄,E[Di℄ = riXj=1 Pr[Di � j℄ � riXj=1(1� 
j2=r2i ) � ri(1� 
=3);Linearity of expe
tation yieldsE[Xi Di℄ � (1� 
=3)Xi ri: (3.23)Now let Y` be the total residual requirement after ` iterations; Y0 is deterministi
, andhas value Pi ki. We see from (3.23) that for any y > 0,E[Y`+1j(Y` = y)℄ � (1� 
=3)y:Hen
e, E[Y`+1℄ � (1 � 
=3)E[Y`℄. Indu
tion gives E[Y`℄ � (1 � 
=3)`Pi ki. Choosing` = `0 := d(3=
) � ln(2Pi ki)e, we get E[Y`0 ℄ � 1=2. Thus, by Markov's inequality,Pr[Y`0 � 1℄ � 1=2: (3.24)Also, as argued just before (3.15), the expe
ted total 
ost C` of the edges roundedin ea
h iteration ` is at most OPT . Thus, E[P`0`=1C`℄ � `0 �OPT . Markov's inequalityimplies, e.g., that Pr[ `0X̀=1 C` � 2:1`0 � OPT ℄ � 1=(2:1): (3.25)So, by (3.24) and (3.25), there is a probability of at least 1=2 � 1=(2:1) that after`0 iterations, all requirements have been satis�ed, and that the total 
ost of the treeprodu
ed is at most 2:1`0 � OPT . Note from (3.22) that `0 = O((logN) � (log(Km))).Thus we getTheorem 3.4. There is a randomized polynomial-time approximation algorithm for the
overing Steiner problem on trees, whi
h with 
onstant probability produ
es a solutionof value at most O((logN) � (log(Km))) times optimal.12



4 Large requirements|the se
ond algorithmIn this se
tion, we present an approximation algorithm with approximation guaranteeO� (logN) � log2mlog(2(logN) � (logm)= logK)� : (4.26)This bound is better than that of Theorem 3.4 if, e.g., K � 2a(logm)2 where a > 0 isa 
ertain absolute 
onstant. The main idea behind the re�nement in this algorithm isto partition the terminals from a group more 
arefully based on the support values ontheir parent edges: the part with the largest support values are rounded (as are theother edges on the path to the root) without mu
h in
rease in 
ost sin
e these edgeshave suÆ
ient support value to begin with. When the rounding does not a
hieve rapidprogress with this part, the remaining support edges are boosted in their fra
tional valueand rounded; when the number of groups is small, this boosted rounding also ensuresrapid progress leading to an overall smaller number of rounding steps.As in Se
tion 3, suppose we have run ` iterations of \relax-and-round", and thatthe residual version of gi is g0i, with remaining requirement ri. Call i a
tive i� ri 6= 0.As des
ribed in Se
tion 3, we solve the LP relaxation for the residual instan
e to get ave
tor (xe : e 2 E). Let � > 1 be a parameter that is �((logN) � (logm)); its a
tualvalue is de�ned by (4.31). For 
ertain positive 
onstants a0; a1 su
h that a0 + a1 < 1and a1 � ��1, we de�ne the following. For ea
h a
tive i, partition g0i into three sets:Si;1 = fj 2 g0i : xpe(j) � a1g;Si;2 = fj 2 g0i : xpe(j) 2 (��1; a1)g andSi;3 = fj 2 g0i : xpe(j) � ��1g:Also, for any ve
tor w = (we : e 2 E) and for t = 1; 2; 3, de�ne Fi;t(w) =Pj2Si;t wpe(j).Let i be any a
tive index. We will say that i is Type A i� Fi;1(x) � a0ri; otherwisewe say that i is Type B. Also let 0 < z < 1 be a parameter to be de�ned later. We arenow ready to des
ribe our rounding in the 
urrent, i.e., (` + 1)st, iteration. There aretwo 
ases:Case I: At least a z fra
tion of the 
urrently a
tive groups are of Type A. In this 
ase,our rounding is the following simple deterministi
 s
heme: 
hoose an edge e i� xe � a1.Case II: This is the 
omplement of Case I. In this 
ase, we set x0e = xe �minf�; 1=xeg,and run the randomized rounding s
heme of Se
tion 3 using these new values x0. (Morepre
isely, we repeat this randomized rounding algorithm independently a suÆ
ient|O(log n)|number of times so that a 
ertain property holds whp; see Se
tion 4.1.) Notethat 8i 8j 2 (Si;1 [ Si;2); x0pe(j) = 1: (4.27)As des
ribed above, the main idea behind this improved algorithm is to argue thatin Case II, the boosted probabilities used in rounding allow us to use fewer roundingiterations overall than in the previous 
ase. In this analysis, the se
ond of the three13



sets of support edges for a group is used to dispose of an easy 
ase - intuitively, whenFi;2(x) is a 
onstant fra
tion of the requirement ri, the boosting immediately ensures(as in Case I) that we are making rapid progress in 
overage. In the remaining 
ase,a dire
t appli
ation of Janson's inequality (Theorem 3.1) with the boosted probabilityshows that few repetitions of rounding are suÆ
ient to �nish 
overing all a
tive indi
esin su
h iterations.4.1 Analysis of the roundingLet us �rst upper-bound the total 
ost in
urred by the iterations in whi
h Case I held.It is easily seen that in ea
h su
h iteration, the total 
ost of the edges 
hosen is at mostOPT=a1.We next bound the number of iterations in whi
h Case I 
ould have been true. Theidea is roughly as follows: In every iteration in whi
h Case I held, a z-fra
tion of a
tivegroups all have an a0 fra
tion of their terminal support values in the �rst partition(with support value at least a1). Total de�
it thus redu
es roughly by a fra
tion of za0in every Case I iteration. Sin
e we start with total de�
it at most mK, the numberof iterations is roughly O( lnmKln(1=za0) ) and the 
ost in
urred per iteration by rounding upedges with original support values at least a1 is a 1a1 fa
tor. We do this more formallybelow.Let s be an integer with 0 � s � dlnme. Let Is be the sequen
e of iterations(arranged in in
reasing order) in whi
h the number of a
tive indi
es was in the range(es�1; es℄, and in whi
h Case I was true; we will now bound jIsj. Consider any i thatwas a
tive at the beginning of Is. Equation (4.27) shows that for every iteration in Isin whi
h i was Type A, at least an a0 fra
tion of gi's requirement is satis�ed; so i 
ouldhave been Type A in at most d(lnK)=(ln(1=a0))e iterations in Is. Sin
e ea
h iterationin Is had at least es�1 a
tive indi
es, at least zes�1 a
tive indi
es are of Type A in ea
hiteration in Is. So, sin
e there were at most es a
tive indi
es at the beginning of Is, we
an 
he
k that jIsj � ez � � lnKln(1=a0)� :Summing over the (1 + dlnme) possible values of s and re
alling that ea
h \Case I"iteration in
urs a 
ost of at most OPT=a1, we getThe total 
ost from \Case I" iterations is at most ea1z �� lnKln(1=a0)� � (1+ dlnme) �OPT:(4.28)We now analyze Case II. Fix an iteration in whi
h Case II held; As before, let ri bethe residual demand of group gi. The terms \A
tive", \Type B" et
. below, refer tothese predi
ates at the beginning of this iteration.We aim to show that if � is 
hosen large enough, then the residual demands ofall a
tive Type B indi
es will be satis�ed by this iteration whp. We �rst dispose ofan easy 
ase. Re
all that a0 + a1 < 1. Consider any a
tive i of Type B, for whi
hFi;3(x) � (1 � a0 � a1)ri. Sin
e i was Type B, we have Fi;1(x) < a0ri. However,Fi;1(x) + Fi;2(x) + Fi;3(x) = ri. So, we must have Fi;2(x) � a1ri. Now, we 
an 
he
k14



that for ea
h j 2 Si;2, x0pe(j) = 1 � xpe(j)=a1. Therefore, sin
e Fi;2(x) � a1ri, all ofgroup gi's residual demand will get satis�ed with probability 1, by this iteration.So, we 
an just fo
us on those Type B indi
es that are not 
overed by the above easy
ase. De�ne i to be relevant if it is a
tive, Type B, and has Fi;3(x) > (1 � a0 � a1)ri.We will now show that if � is 
hosen large enough, then the residual demands of allrelevant indi
es will be satis�ed by this iteration whp. To do this, we will a
tually provethe following. For ea
h edge e, let Ye be the indi
ator random variable for whether eis 
hosen by this iteration or not. We will show that whp, Fi;3(Y ) � ri for all relevantindi
es i.Fix a relevant i. To prove that Pr[Fi;3(Y ) � ri℄ is suÆ
iently high, we will useJanson's inequality (Theorem (3.1)). To do so, we now modify the de�nition of therelation �, and also rede�ne �i and �i. Suppose j and j0 belong to Si;3. We will saythat j � j0 i�: (i) j 6= j0 and (ii) x0l
a(j;j0) < 1. [Note that this requirement (ii) isdi�erent from before; this is 
ru
ial for our bound (4.30) on �0i.℄ De�ne�0i = E[Fi;3(Y )℄ = Fi;3(x0) = �Fi;3(x) > �(1� a0 � a1)ri; and (4.29)�0i = Xj;j02Si;3: j�j0 x0pe(j)x0pe(j0)x0l
a(j;j0) :For ea
h j; j0 2 Si;3, we have x0pe(j) = �xpe(j) and x0pe(j0) = �xpe(j0) by de�nition ofSi;3. The de�nition of � also implies that if j � j0, then x0l
a(j;j0) = �xl
a(j;j0). So,Theorem 3.2 yields �0i � 
ri�0i logN (4.30)for some 
onstant 
. Let exp(y) denote ey. Theorem 3.1 gives, for any Æ 2 [0; 1℄, thatPr[Fi;3(Y ) � �0i(1� Æ)℄ � exp(�Æ2�0i=(2 + �0i=�0i)):Then, using (4.29) and (4.30), we derive the boundPr[Fi;3(Y ) < ri℄ � Pr�Fi;3(Y ) < �0i�(1� a0 � a1)�� exp ��(1� a0 � a1)2(1 + 
 logN) ��1� 1�(1� a0 � a1)�2! :Choosing � = 31� a0 � a1 � (1 + 
 logN) � ln(2m); (4.31)we get Pr[Fi;3(Y ) < ri℄ � 1=(2m). Thus,Pr[there is some Type B index that is not 
ompletely 
overed℄ � 1=2: (4.32)It is also easy to see that the expe
ted total 
ost of the edges 
hosen is at most � �OPT ;Markov's inequality shows that the probability of this 
ost being more than, e.g., 2:1 �� � OPT is at most 1=(2:1). So, we have from (4.32) that with at least the 
onstantprobability of 1=2 � 1=(2:1), the 
hosen edges 
over all the Type B indi
es, and have a15



total 
ost of at most 2:1 � � � OPT . This probability 
an be ampli�ed to, say, 1� 1=n2by repeating this pro
ess O(log n) times. Thus, sin
e ea
h \Case II" iteration 
overs atleast an (1� z) fra
tion of the 
urrently a
tive indi
es, at most l lnmln(1=z)m su
h iterationsneed to be run, whp. Therefore,Whp, the total 
ost from \Case II" iterations is at most 2:1 � � lnmln(1=z)� � � �OPT:(4.33)Thus, the total 
ost is whp at most the sum of the quantities from (4.28) and (4.33).We 
hoose a0 = a1 = 1=3 andz = min�(logK) � log(2(logN) � (logm)= logK)(logN) � logm ; 12� ;though again a more 
areful 
hoi
e of the 
onstants is possible. This 
ompletes theanalysis and gives the following theorem.Theorem 4.1. There is a randomized polynomial-time approximation algorithm for the
overing Steiner problem on trees, whi
h with 
onstant probability produ
es a solutionof value at most O( (logN)�log2mlog(2(logN)�(logm)= logK)) times optimal.5 Extensions5.1 General metri
sDe�nition 5.1. A set of metri
 spa
es S over V is said to �-probabilisti
ally approxi-mate a metri
 spa
e M over V , if (1) for all x; y 2 V and S 2 S, dS(x; y) � dM (x; y),and (2) there exists a probability distribution D over metri
 spa
es in S su
h that forall x; y 2 V , E[dD(x; y)℄ � �dM (x; y).Bartal [3, 4℄ proved the following theorem.Theorem 5.2. Every weighted 
onne
ted graph G on n verti
es 
an be �-probabilisti
allyapproximated by a set of weighted trees, where � = O(log n log log n). Moreover, we 
ansample from the probability distribution in polynomial time.The trees that we get from Bartal's algorithm are not subtrees of the original graph.Only their leaves are the original verti
es of G. To solve the 
overing Steiner treeproblem on a general graph G, �rst �nd a set of trees and the distribution on them thatO(log n log log n)-approximates G. Then pi
k a tree from the distribution and solvethe 
overing Steiner tree problem approximately on it. Now this solution subtree mustbe transformed into a subgraph of G, and this 
an be done by simply taking the tourthat visits all the leaves of the solution tree, as in the 
lassi
al 2-approximation for themetri
 TSP. The distan
es in the tree are greater than those in the original graph, sothis tour will at most double the 
ost of the solution tree. The expe
ted 
ost of thistour is O(� log n log log n) times the optimum, where � is the approximation ratio of the
overing Steiner approximation algorithm on trees. By using Markov's inequality, we�nally get the following theorem. 16



Theorem 5.3. The algorithm des
ribed above with high probability �nds a 
overingSteiner tree of 
ost O(� log n log log n) times the 
ost of the optimal tree, where � is theapproximation ratio of the algorithm for trees.A slight improvement of Bartal's result for graphs that ex
lude small minors ispresented by Konjevod et al. [17℄, and 
an be applied to improve the performan
e ratioon instan
es of the 
overing Steiner problem for these 
lasses of graphs.A
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