Approximation Algorithms for the Covering Steiner Problem*

Goran Konjevod' R. Ravit Aravind Srinivasan$

Abstract

The covering Steiner problem is a generalization of both the k-MST and the
group Steiner problems: given an edge-weighted graph, with subsets of vertices
called the groups, and a nonnegative integer value (called the requirement) for
each group, the problem is to find a minimum-weight tree spanning at least the
required number of vertices of every group. When all requirements are equal to
1, this becomes the group Steiner problem, while if there is only one group which
contains all vertices of the graph the problem reduces to k-MST with &k equal to
the requirement of this unique group.

We discuss two different (but equivalent) linear relaxations of the problem for the
case when the given graph is a tree and construct polylogarithmic approximation
algorithms based on randomized LP rounding of these relaxations. By using a
probabilistic approximation of general metrics by tree metrics due to Bartal, our
algorithms also solve the covering Steiner problem on general graphs with a further
polylogarithmic worsening in the approximation ratio.

1 Introduction

1.1 Problem statement

Let G = (V, E) be an undirected graph with a cost function ¢ : E — Q" defined on the
edges. Let a family of subsets of V' be given,

g = {gla"'agm} C 2V'

We call the sets g1, ..., gm groups. In addition, for each group ¢; a nonnegative integer
k; < |gi| is given, called the requirement of the group. The covering Steiner problem

*A preliminary version of part of this work appears in the paper “An approximation algorithm for
the covering Steiner problem” by G. Konjevod and R. Ravi, in the Proc. ACM-SIAM Symposium on
Discrete Algorithms, 2000.

"Dept. of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406.
Work done partly in the Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,
PA 15213-3890 and Los Alamos National Laboratory, supported in part by the NSF CAREER grant
CCR-9625297 and the DOE Contract W-7405-ENG-36. goran@asu.edu

YGSIA, Carnegie Mellon University, Pittsburgh, PA 15213-3890. Work partly done while visiting
IBM SRC, New Delhi. Supported in part by an NSF CAREER grant CCR-9625297. ravi@cmu.edu

$Department of Computer Science and University of Maryland Institute for Advanced Computer
Studies, University of Maryland at College Park, College Park, MD 20742. Part of this work was done
while at Bell Laboratories, Lucent Technologies, 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636.

srin@cs.umd.edu

(covering Steiner Tree) on G is the problem of finding a minimum-cost connected sub-
graph of G that contains at least k; vertices of group g; for all < € {1,...m}. We denote
the size of the largest group by IV, and the largest requirement of a group by K. We
call the group vertices terminals.

1.2 (Non)standard notation and terminology

If S C V is a set of vertices of G, we write 05 for the set of edges with exactly one
endpoint in S. If y : E — Q is a function defined on a set E, we write y(E') for
Y ecrr Y(e) for any set E' C E. In the sequel, we use two words—cost and weight—to
mean one and the same thing.

1.3 Assumptions

In order to simplify the exposition we make a number of other assumptions. For clarity
we first list all of them and then explain why each may be made with almost no loss of
generality.

(1) The graph G is a weighted tree.

(2) The groups are disjoint.

(3) We know one vertex spanned by the optimal solution (we give this vertex a special
role and call it the root).

(4) Every vertex belonging to a group has degree 1.

(5) Every vertex of degree 1 belongs to some group.

All our algorithms assume that the given graph G is a weighted tree. Unfortunately
we do not know how to generalize our algorithms (or, for that matter, the linear relax-
ations on which the algorithms are based) to general graphs. However, the results of
Bartal [3, 4] and Charikar et al. [6, 7], give a way to reduce any one from a very broad
class of combinatorial optimization problems defined on a general weighted graph to
the same problem on a tree. We describe this in slightly greater detail in Section 5.
Briefly, this assumption costs us an extra factor O(logn loglogn) in the approximation
guarantee, where n is the number of nodes in the input graph, i.e. n = |V (G)|.

In some arguments, it will be convenient to assume that the groups are pairwise
disjoint. There is no loss of generality: if a vertex v occurs in p groups, p > 1, attach
p new vertices to v using newly created zero-cost edges. Assign each leaf of this star
to one of the groups and remove v from all groups. In this new graph, the groups are
disjoint sets of vertices, and there is a cost-preserving bijection between covering Steiner
trees in the two graphs.

Another useful assumption is that one vertex, called the root, of the optimal solu-
tion is known in advance. This assumption is necessary in order to run our rounding
algorithms because they are “centralized”: they grow the solution subtree from a single
vertex. There is no loss of generality (only loss of efficiency), because we can run the
algorithm for the rooted covering Steiner problem < N times, once for every possible
choice of the root vertex from say the smallest group.

Finally, we assume that every vertex belonging to a group has degree 1 in G. This
may be achieved by adding a new vertex for each group-vertex of degree greater than 1,
connecting it to its original vertex by an edge of weight 0 and then removing the original

vertex from the group. Also, it is easy to check that the problem remains unchanged if
any vertex of degree 1 that does not belong to any group is removed.

1.4 Special cases

The covering Steiner problem generalizes two different NP-hard network design problems
that have been studied recently. The first is the k-MST problem (see Ravi et al. [18],
Fischetti et al. [9], Blum, Ravi and Vempala [5], and Garg [10]). The second is the
group Steiner problem (see Reich and Widmayer [19], Garg, Konjevod and Ravi [12]
and Charikar et al. [6]).

The k-MST problem is that of finding a minimum-cost connected subgraph that
contains at least £ nodes in an undirected graph with nonnegative edge-costs. The
covering Steiner problem reduces to the k-MST problem when there is only one group
and when all the vertices in V' belong to this group. The best-known approximation ratio
is 2, achieved by an algorithm of Garg [11] as a culmination of the series of improvements
on his original 3-approximation [10]; see the papers by Arya and Ramesh [2] (giving
a 2.5-approximation) and Arora and Karakostas [1] (a (2 + €)-approximation for any
fixed € > 0). This problem can be solved in polynomial time on trees using dynamic
programming.

The group Steiner problem is the restriction of the covering Steiner problem to
unit-valued group requirements. This problem is at least as hard to approximate as
the set cover problem, because even the special case where the underlying graph is a
star generalizes the classical set cover problem (Klein and Ravi [15]). Garg, Konjevod
and Ravi [12] and Charikar et al. [6] give randomized and deterministic approximation
algorithms for the group Steiner problem with (asymptotically equal) polylogarithmic
approximation ratios.

Subsequent to our work, Even et al. [8] use an edge-cost-flow formulation for the
covering Steiner problem and derive approximation algorithms with the same guarantees
as those presented in this paper.

1.5 Results

We first describe two linear relaxations of the covering Steiner problem on a tree. We
show that they are equivalent and exhibit a graph for which they have a large integrality
gap (arbitrarily close to K). However, as shown in the preliminary version of this
work [16], even this does not preclude using either of these relaxations as a basis for
a rounding algorithm with a polylogarithmic approximation guarantee. In particular,
the main result in [16] is an O(log N log mlog K) randomized approximation algorithm
for the covering Steiner problem on trees. Recall that N denotes the maximum size
of a group (which is at most n, the number of nodes in G), K denotes the maximum
requirement of a group (which in turn is at most V) and m denotes the number of groups.
In this paper, building on this previous paper, we present an improved approximation
guarantee by using the stronger relaxation and a more involved analysis. Our algorithm
gives a randomized approximation for the covering Steiner problem on a tree with
guarantee O(log N log(mK)). As defined earlier, N denotes the maximum size of a group
(which is at most 7, the number of nodes in), K denotes the maximum requirement

of a group (which in turn is at most N) and m denotes the number of groups. For the
group Steiner problem with K = 1, this approximation ratio matches the best-known
ratio. The basic idea is that we grow a covering Steiner tree in several phases; we argue
that the expected deficit (which is related to the yet-remaining coverage required) goes
down fast enough, to establish the algorithm’s performance.

We then present a second algorithm which is a refinement of the first, and which
gives a better approximation guarantee when the maximum requirement of a group is
large compared to the number of groups. This is achieved via a more careful rounding
procedure at every phase. Randomization is a key ingredient in the rounding process of
all our algorithms, and a tail bound of Janson [14] helps much in our analyses.

We do not make a complete attempt at optimizing the constants in our results.

2 Linear relaxations

2.1 The first relaxation

We present an integer programming formulation of the covering Steiner problem on a
tree. Let the indicator variable z, denote whether the edge e is contained in the solution,
ze. = 1 if e € T (the covering Steiner tree), and z, = 0 otherwise. The cost of the
solution x then equals), cete, and we use this quantity as the objective function to
minimize.

In addition to = we use variables y* for i € {1,..., K} on the edges E. We think of y'
as supporting a unit flow from the root to one vertex of every group (whose requirement
is at least 1). Similarly, y? supports a unit flow from the root to one vertex of every
group whose requirement is at least 2. For a general i < K, we require 4* to support a
unit of flow to every group whose requirement is at least ¢. That is,

y'(08) > 1
for all S C V such that » € S and 2.1)
for all 7 such that for some group g, '
SNg=10andk, > 1.
Of course, z must support ¢ for all i:
z, >yt for all 4. (2.2)

We refer to the 3* as “commodities” to underscore the similarity of our problem’s
formulation to multicommodity flow problems. We are asked to build a tree that con-
nects k; vertices of group g; to the root vertex r. This can be thought of as installing
enough capacity on the edges of G to send a unit of flow to k; different vertices of group
gi- The similarity ends here, however, because the capacity may be shared between the
commodities, unlike the case in standard multicommodity flow.

Consider a group g with requirement k. If there is no repetition among the k vertices
of group g reached by y',...,y*, then the edges given value 1 by at least one of these
commodities span at least k vertices of g. However, in general, there may be vertices

counted by more than one commodity y', ..., y*. In order to prevent this, we strengthen
the “support” constraints (2.2) and enforce

Te = Zyi, for every edge e incident on a terminal. (2.3)
i
The above constraints along with the integrality upper bound of one unit on the
x-variables ensure that no vertex is counted in more than one commodity (to satisfy
more than one unit of requirement) for its group.
The constraints (2.1), (2.2) and (2.3) together with integrality constraints

Te,yl € {0,1} for all e and all i

give an integer programming formulation of the covering Steiner tree.

We relax this integer program by allowing the variables y (and consequently) to
take on fractional values between 0 and 1. However, unnatural fractional solutions are
still possible and to prevent them, we add “monotonicity” constraints:

z. > xy for all (e, f) where e is the parent edge of f. (2.4)

A drawback to using these constraints is that our linear relaxation is now only valid
if G is a tree. This is not a problem as we have already made this assumption. The
complete linear programming relaxation is summarized below.

min E CeTe

eCE
y'(95) > 1
for all § C V such that r € S and
for all 7 such that for some group g,
SNg=0and kg >
Te > Yo

for all non-pendant edges e
Te = Z yé
i
for all pendant edges ¢
Te 2 Xf
for all (e, f) where e is the parent edge of f
0< xeayfz < 1V(e,).

Despite its exponential size, the above linear program can be solved in one of two
ways: One can reformulate the minimum cut constraints using the max-flow min-cut
theorem more compactly using flow variables. Alternately, one can employ the ellipsoid
method [13] by supplying a polynomial-time separation oracle for the constraints, the
crux of which is easily worked out to be a set of minimum cut problems. At any rate,
since we will introduce and employ an alternate compact formulation later in Section 2.3,
the solution of the above linear program is not critical to achieving our results.

2.2 Integrality gap

Even for the version of the problem with a single group (the A-MST problem), this
relaxation is not tight. For instance, let G be the tree in Fig. 1, a star with & — 1 leaves
whose center is connected to another star with &k leaves by a single edge. Let the root
vertex be the center of the first star. Denote the first star by A, the second by B, and
the edge joining them by ey. The single group consists of all the leaves of G and its
requirement is k.

Consider the solution to the linear program where each of the k& commodities sends
1/k of flow from the root to each of the k — 1 leaves of A and where each commodity
sends 1/k of flow to a distinct leaf of B. The packing constraints force z, = 1 for all
edges e in A, but since only one commodity is served by every edge of B, zy = 1/k for
all edges f of B and for the edge ey.

1

k—1 Figure 1.

Let the cost of the edges belonging to the stars A and B be €, and the cost of edge e
be C. Clearly, the cost of the optimal tree that contains the root and covers & terminals
is at least C + ke, since at least one of the leaves of B must be included. However,
the relaxed solution described above costs only C'/k + ke. Thus, the ratio between the
optimal integral and fractional solutions of the relaxation (2.5) can be arbitrarily close
to k.

2.3 Another relaxation

We now propose a relaxation which is simpler but equivalent to (2.5). In the integer
programming formulation, there is an indicator variable z, for each edge e of G, to say
whether e is chosen or not and thus the objective is again to minimize), coze.

For any non-root node u, let pe(u) denote the edge connecting u to its parent.
Similarly, for any edge e not incident on the root, let pe(e) denote the parent edge of e.
Also, given an edge e = uv where u is the parent of v, both T'(v) and T'(e) denote the
subtree of G' rooted at v. Let k, denote the requirement of group g.

To reach sufficiently many vertices we require that

pre(j) =k, for every group g. (2.6)
Jjeg
Consider an edge e and the subtree T'(e) below this edge. If e is included in the

covering Steiner tree then up to ky vertices of g may be reached in T'(e); if e is not
included in the solution then no vertex of g will be reached in 7'(e). Thus the constraint

Z Tpe(j) < KgTe (2.7)
Je(T(e)ngi)

is valid for any edge e and any group ¢g. This constraint will be crucial later in bounding
the parameter in Janson’s inequality.
Finally, we still impose the monotonicity constraints (2.4):

Tpe(e) = Te for all edges e not incident on the root. (2.8)

By allowing each z. to lie in [0, 1], we get our second LP relaxation of the covering
Steiner problem.

min E Cele

ecE
> epeti) = Ky
Jeyg
for every group g,

Yo el < Kgie,
e @na) (2.9)

for every edge e and every group g
Lpe(e) > Te
for every edge e not incident on r,
0< z. <1

for every edge e.

We now show that relaxations (2.9) and (2.5) are equivalent.

Theorem 2.1. Let = be a feasible solution to LP (2.9). Then there exist y',...y%
such that (z,y) is a feasible solution to LP (2.5). Conversely, given a solution (x,y) to
LP (2.5), it is also feasible for LP (2.9).

Proof. First we show that LP (2.9) is at least as strong as LP (2.5). Let g be a group
with requirement k,. Let vi,...v; € g be all vertices of g spanned by the support tree
of x. Define

wl = z./k, (2.10)

e

for every edge of the form e = pe(v;), and
wl® =0 (2.11)

for every other edge e incident on a terminal.

Define w(® for the other edges working bottom-up from the leaves along the tree G:
if w(9) has been defined for all children of e, let wf(;g) = > f wgcg), where the sum is taken
over all the children of e.

Our first claim is that

w9 <z,

for all e € E. In fact, we prove

1
wi) = T Lpe(j)
g .
€(T(e)Nyg)

and the claim then follows from the subtree constraint (2.7) for edge e.

The proof is by induction on the number of edges in the longest path “descending”
from e to a leaf of G.

By (2.10) and (2.11), the claim holds for the edges incident on terminals.

Consider an edge e € E. By the induction hypothesis, the claim is true for all

children edges of e: if e = pe(f) then w;g) = é je(T(f)ng) Tpe(j)- Now

1
=Y W= 3w
7

Y je(T(e)ng)

proving the claim.

9)

After defining w9 for every group g, we set y. = max,. kgziwg

(9)

Since x, > we’’ for all g and e, the pair (z,y) satisfies the support constraints (2.2).
By definition of w for terminal edges, all strengthened support constraints (2.3) are
satisfied. Constraints (2.4) and (2.8) are identical. Finally, note that by the definition
of w, w9 supports a unit flow from r to the terminals of the group ¢. Therefore, the
capacity (as defined by w(9)) of a minimum cut separating the root from the vertices of
g is at least 1. Thus the pair (z,y) satisfies cut-covering constraints (2.1), and is thus
a feasible fractional solution for LP (2.5).

Now, consider a feasible solution (z,y) to LP (2.5). Let g be a group with require-
ment k and let e be an edge in the tree. Then y.,... yf denote the “flow” values on the
edge e of commodities supporting group g. Now we have

k
Z Lpe(4) Z Zype SZ < kxe;

JjeT(e)Ng jeT(e)Ng 1=1

for all z and e.

that is, constraints (2.7) are satisfied by x. The justification is as follows. The equality
follows from (2.3). The first inequality follows because: (1) all vertices of g are leaves
of the tree, and so no two edges of the form pe(j), where j € T'N g, are contained
in any single path from the root to a terminal of g, and (2) the values ¢ form a flow
originating from the root. The second inequality follows from constraints (2.2). All
other constraints of LP (2.9) are obviously satisfied by (z,y) and so z is a feasible
solution to LP (2.9).

O

3 The main algorithm

We will proceed in phases, with each phase satisfying a part of the coverage require-
ments. Suppose a subset S; of g; has already been chosen (initially, S; = (). We will
work with ¢/ = g; — S;, and the remaining requirement of the ith group is r; = k; — |S;|.

The constraints of the linear program for the residual problem in this more general
notation become

Z Tpe(j) = Ti for every group g, (3.12)
Jj€g;
Tpe(e) > Te for every edge e not incident on the root (3.13)
Z Tpe(j) < TiTe for every edge e and every group qg. (3.14)

je(T(e)ng;)

Suppose we are given an optimal solution (z. : e € E) for this LP. We use the
rounding procedure described in [12]. For every edge e incident on the root, include e
in the set of edges to be added to the solution with probability z.. For every other edge
e with its parent denoted f, “round up” e with probability z./xf. This experiment is
performed for each edge of G independently. Let H denote the subgraph of G induced
by the edges that were “rounded up”. Discard all connected components of H except
the one containing the root, and denote the resulting tree by 7'. We choose all edges
of T in our solution. This constitutes one phase of “relax-and-round”. We repeat such
phases until all groups have their coverage satisfied. Also, after each phase, we reset
the costs of all chosen edges to zero, so as to not count their costs in future phases.

Consider the generic phase described above. It is not difficult to see that the expected
cost of T' is equal to the cost of the initial linear programming solution (which in turn
is at most the optimal objective function value of the original integer programming
problem). This can be seen as follows: An edge e is included in 7" if and only if all the
edges in the path from r to e, say ey, ..., e, e are picked in their respective independent
random experiments, the probability of which is

Te, Tey Te

1 = Te,

= z.. (3.15)

To analyze our random process and to show that we do not need too many phases, we
state and use a probabilistic inequality. Let be a universal set, and R C) determined
by the experiment in which each element r € 2 is independently included in R with
probability p,. Let {A; | i € I'} be a family of subsets of €2, and denote by B; the event
that 4; C R. Write i ~ j if i # j and 4; N A; # 0. Define A =37, . Pr[B; N By] (the
sum is over ordered pairs). Let X =), X, where X; is an indicator variable for the
event Bj, let pu; = E[X;] = Pr[B;] and p = E[X] =), it;. Finally, let e denote the base
of the natural logarithm.

Theorem 3.1. (Janson’s inequality [14].) With the notation as above and with 0 < § <
L,
y A
Pr[X < (1-0d)u] < ARGl

We will use Theorem 3.1 to show that we get a guaranteed amount of coverage
from any fixed group, with non-neglibile probability. Let us fix a group ¢;. Then, in
the setting of Theorem 3.1, we have Q = E(G) and p, = Z¢/Tpe(e), Where pe(e) is the
parent edge of e. Each subset A; is the edge-set of a path from r to a leaf belonging
to g;. Thus, X is the random variable denoting the amount of g;’s residual requirement

r; that a generic phase covers. The argument underlying (3.15) easily helps show that
i = r;. Thus, the key issue is to upper-bound the parameter A; = A of Theorem 3.1.
Suppose 7, j' € g; (recall that g} = g; —S;, where S; is the set of elements of g; that have
been covered in previous phases). We will say that j ~ j' if and only if (i) j # 7' and
(ii) the least common ancestor of j and j' in G is not the root r. If j ~ 5, let lca(j, 7')
denote the least common ancestral edge of j and 5’ in T". A little reflection shows that

A' o xpe(j)xpe(j’)

= E — e
T sl

3 €05 T rga >0 AT

We aim to show

Theorem 3.2. A; < ri(r; —1+r;In(|g}|/ri)). In particular, A; < k;(k; —1+k;In(]g;]))-

The proof of this useful theorem is shown next in Section 3.1.

3.1 Proof of Theorem 3.2

We use a technical result.

Lemma 3.3. If z,¢(j) > 0, then

X i
Tpe(j) * Z xlpe((,]),) < .rpe(j)(m —14mr ln(l/:L‘pe(j))).
j'egs grogt T

Lemma 3.3 suffices to prove Theorem 3.2. To see this, first note that the function
z+— z(ri—1+r;In(1/2)) is concave for z > 0, since its second derivative is non-positive.
Thus, since Zng; Tpe(j) = Ti, Lemma 3.3 shows that

A; < gil - (ri/1gil) - (ri = 1+ i n(lgil/r4)),

as required.

We now prove Lemma 3.3. Suppose Zpej) = 2 € (0,1]. We need some extra
notation. Let eg,eq,...,e; be the sequence of edges that we encounter as we walk up
the tree starting from j; let y, = x,,. Thus we have z = yp <y; <yp <--- <y < 1.
Next, for £ =0,1,...,¢, let S, = Zj,e(T(w)ng;) Tpe(jry- Then, it is not hard to see that
the left-hand side in the statement of the lemma equals

t
ZZM (3.16)

= Ye

The sum in (3.16) is clearly bounded by the maximum of the following optimization
problem, whose variables are the y, and Sy. (The optimization problem has a maximum
since the domain is a polytope and since the objective function is continuous in the
domain.)

OPT(z,t): maximize 35, % subject to

10

So =z

Yo = %

ye < L

Se < Sepr, £=0,1,...,t—1;

Yo < yey1, £=0,1,...,0 -1

Se < rye, £=0,1,...,t. (3.17)

Constraint (3.17) holds since (3.14) is a valid constraint in our problem formulation and
in the LP relaxation.

Let {yg, S¢ : £ > 0} be any feasible solution to the above optimization problem. We
now bound the objective function value v of this solution. We have

t—1

vo= Sifye—So/yi+ > Se- (1/ye = 1/yes1)
/=1
t—1

ri—zfyi+ > Se (1/ye — 1/yes1)

=1

-1
ri —z[y1 + Znye ~(1/ye — 1/yes1)

=1

-1

= ri—z/y+7i Y (1= ye/yesr)- (3.18)
=1

IN

IA

Note the use of constraints (3.14) in the second inequality above.

Take any ¢, 2 < ¢ <t — 1. If we keep all variables but y, fixed, we see that (3.18)
is maximized when yy = \/yy_19¢y1, ie., when yo_1/ys = ye/yey1. Thus, for any fixed
choice of y; and y;, (3.18) is maximized when y1, %9, ..., y; are in geometric progression.
Therefore, if we fix y; and y; and let ¢ = (y;/y;)"/ =1, we have

v<ri—z/yr +ri(t—1)(1 —1). (3.19)

1

Now, 9 > yl/(t_l) = elny)/(t=1) > 1 4 (Iny,)/(t — 1). Thus,

v<ri—z/y1+r;1n(l/y;). (3.20)

Subject to y; € [z,1] and r; > 1, the r.h.s. of (3.20) is maximized when y; = z. Thus,
v <71 —1+4r;In(1/z), concluding the proof.

Remark. In the preliminary version of this work [16], a bound on A; that is weaker by
a constant factor is shown using a different approach. That approach has the property
of letting us assume that the tree has “small” depth, which is useful in some other
contexts [20].

11

3.2 Analysis

Suppose some ¢ iterations of “relax-and-round” have been run, with remaining groups
g and residual requirements r;. Run the (£ + 1)st iteration. For each 4, let X; be the
number of elements of g covered in the above randomized rounding of the (¢ + 1)st
iteration; the deficit D; is max{r; — X;,0}. Since p; = r; and A;/p; < ri(1 + In(g;)),
Theorem 3.1 gives for any d € [0, 1] that

Pr[D; > ri0] = Pr[X; < (1 —)] < e 07i/Ztri(lIn(g))
Now, if y € [0,1], e ¥ <1 — (1 —1/e)y. Thus,
Pr[D; > 7] < 1 — 6%, (3.21)
where
v=0(1/logN). (3.22)

So, since D; is an integer taking values in [0, 7],
ZPr [D; > j] < Z — g2 /rE) < ri(l = y/3);

Linearity of expectation yields

Z D < (L=v/3)> rs. (3.23)
i
Now let Yy be the total residual requirement after £ iterations; Yy is deterministic, and
has value), k;. We see from (3.23) that for any y > 0,

E[Y 1|(Ye=y)] < (1 —7/3)y.

Hence, E[Yz1] < (1 — v/3)E[Y;]. Induction gives E[Y;] < (1 —v/3)¢3", k;. Choosing
C=1ty=[(3/7) In(2)>; k)], we get E[Y,,] < 1/2. Thus, by Markov’s inequality,

Pr[Yy > 1] < 1/2. (3.24)

Also, as argued just before (3.15), the expected total cost Cy of the edges rounded
in each iteration £ is at most OPT. Thus, E[20:1 Cy] < ¢y- OPT. Markov’s inequality

implies, e.g., that ,
0

Pr() " Cp > 2.14y- OPT] < 1/(2.1). (3.25)
(=1
So, by (3.24) and (3.25), there is a probability of at least 1/2 — 1/(2.1) that after
¢y iterations, all requirements have been satisfied, and that the total cost of the tree
produced is at most 2.1¢5 - OPT. Note from (3.22) that £y = O((log N) - (log(Km))).
Thus we get

Theorem 3.4. There is a randomized polynomial-time approzimation algorithm for the
covering Steiner problem on trees, which with constant probability produces a solution
of value at most O((log N) - (log(K'm))) times optimal.

12

4 Large requirements—the second algorithm

In this section, we present an approximation algorithm with approximation guarantee

((log N) - log?m)
log(2(log N) - (logm)/log K))

This bound is better than that of Theorem 3.4 if, e.g., K > 20(logm)* where ¢ > 0 is
a certain absolute constant. The main idea behind the refinement in this algorithm is
to partition the terminals from a group more carefully based on the support values on
their parent edges: the part with the largest support values are rounded (as are the
other edges on the path to the root) without much increase in cost since these edges
have sufficient support value to begin with. When the rounding does not achieve rapid
progress with this part, the remaining support edges are boosted in their fractional value
and rounded; when the number of groups is small, this boosted rounding also ensures
rapid progress leading to an overall smaller number of rounding steps.

As in Section 3, suppose we have run /¢ iterations of “relax-and-round”, and that
the residual version of g; is g}, with remaining requirement r;. Call ¢ active iff r; # 0.
As described in Section 3, we solve the LP relaxation for the residual instance to get a
vector (ze : e € E). Let A > 1 be a parameter that is ©((log N) - (logm)); its actual
value is defined by (4.31). For certain positive constants ag,a; such that ag +a; < 1
and a; > A%, we define the following. For each active 4, partition g} into three sets:

(4.26)

Si,l = {] € g; © Tpe(y) > al}a
Siz = {j€gi: Tpej) € A 'a1)} and
Sizg = {J€gi: Tpe(j) < AT

Also, for any vector w = (w, : e € E) and for t = 1,2, 3, define F; ;(w) = Zjesi,t Wpe(j)-

Let ¢ be any active index. We will say that ¢ is Type A iff F;;(z) > agr;; otherwise
we say that ¢ is Type B. Also let 0 < z < 1 be a parameter to be defined later. We are
now ready to describe our rounding in the current, i.e., (¢ + 1)st, iteration. There are
two cases:

Case I: At least a z fraction of the currently active groups are of Type A. In this case,
our rounding is the following simple deterministic scheme: choose an edge e iff z, > a;.

Case II: This is the complement of Case L. In this case, we set !, = z,. - min{\, 1/z.},
and run the randomized rounding scheme of Section 3 using these new values z’. (More
precisely, we repeat this randomized rounding algorithm independently a sufficient—
O(logn)—number of times so that a certain property holds whp; see Section 4.1.) Note
that

Vi Vj € (Sig1USi2), Tpe) =1 (4.27)

As described above, the main idea behind this improved algorithm is to argue that
in Case II, the boosted probabilities used in rounding allow us to use fewer rounding
iterations overall than in the previous case. In this analysis, the second of the three

13

sets of support edges for a group is used to dispose of an easy case - intuitively, when
F;2(z) is a constant fraction of the requirement r;, the boosting immediately ensures
(as in Case I) that we are making rapid progress in coverage. In the remaining case,
a direct application of Janson’s inequality (Theorem 3.1) with the boosted probability
shows that few repetitions of rounding are sufficient to finish covering all active indices
in such iterations.

4.1 Analysis of the rounding

Let us first upper-bound the total cost incurred by the iterations in which Case I held.
It is easily seen that in each such iteration, the total cost of the edges chosen is at most
OPT/al.

We next bound the number of iterations in which Case I could have been true. The
idea is roughly as follows: In every iteration in which Case I held, a z-fraction of active
groups all have an ag fraction of their terminal support values in the first partition
(with support value at least a1). Total deficit thus reduces roughly by a fraction of zag
in every Case I iteration. Since we start with total deficit at most m K, the number
of iterations is roughly O(lnl(nlr/nzfo)) and the cost incurred per iteration by rounding up
edges with original support values at least a; is a % factor. We do this more formally
below.

Let s be an integer with 0 < s < [lnm]|. Let Iy be the sequence of iterations
(arranged in increasing order) in which the number of active indices was in the range
(e5~1,e°], and in which Case I was true; we will now bound |I5|. Consider any i that
was active at the beginning of I;. Equation (4.27) shows that for every iteration in I
in which 7 was Type A, at least an aq fraction of ¢;’s requirement is satisfied; so ¢ could
have been Type A in at most [(In K)/(In(1/ap))] iterations in I. Since each iteration
in I; had at least e*~! active indices, at least ze*~! active indices are of Type A in each
iteration in Ig. So, since there were at most e® active indices at the beginning of I, we
can check that

1] < e In K
=z |In(1/ag) |
Summing over the (1 + [Inm]) possible values of s and recalling that each “Case I”
iteration incurs a cost of at most OPT'/a;, we get

In K

The total cost from “Case I” iterations is at most —— - [———— | - (14+[lnm])-OPT.
In(1/a0)

(4.28)

a1z

We now analyze Case II. Fix an iteration in which Case II held; As before, let r; be
the residual demand of group g;. The terms “Active”, “Type B” etc. below, refer to
these predicates at the beginning of this iteration.

We aim to show that if A is chosen large enough, then the residual demands of
all active Type B indices will be satisfied by this iteration whp. We first dispose of
an easy case. Recall that ap + a; < 1. Consider any active ¢ of Type B, for which
Fiz3(z) < (1 —ap — ay)r;. Since ¢« was Type B, we have F;(z) < aor;. However,
Fi1(z) + Fi2(z) + Fi3(x) = r;. So, we must have Fjo(z) > air;. Now, we can check

14

that for each j € S;p», :v;e L=12> xpe(j)/al. Therefore, since F;a(x) > ayr;, all of
group g;’s residual demand will get satisfied with probability 1, by this iteration.

So, we can just focus on those Type B indices that are not covered by the above easy
case. Define i to be relevant if it is active, Type B, and has F;3(x) > (1 — ag — a1)r;.
We will now show that if A is chosen large enough, then the residual demands of all
relevant indices will be satisfied by this iteration whp. To do this, we will actually prove
the following. For each edge e, let Y, be the indicator random variable for whether e
is chosen by this iteration or not. We will show that whp, F;3(Y) > r; for all relevant
indices 4.

Fix a relevant i. To prove that Pr[F;3(Y) >] is sufficiently high, we will use
Janson’s inequality (Theorem (3.1)). To do so, we now modify the definition of the
relation ~, and also redefine p; and A;. Suppose j and j' belong to S; 3. We will say
that j ~ 4/ iff: (i) 7 # 7 and (ii) a;gca(jyj,) < 1. [Note that this requirement (ii) is
different from before; this is crucial for our bound (4.30) on Al.] Define

pr = E[F,3(Y)] = .FZ',3(£EI) = AF;3(xz) > AM(1 —ap — a1)ry, and (4.29)

z

A — Z pe(7)pe(s’)

(3 xl
J:3'€Si 3z vyt lealdng’)
!

pe(s)
Sij3. The definition of ~ also implies that if j ~ j', then a;gca(

Theorem 3.2 yields

For each j,j' € S;3, we have z = AZpe(j) and a;;)e(j,) = AZpe(j) by definition of

j,j’) =)\a;lca(jyj,). SO,
Al < cryplog N (4.30)
for some constant c¢. Let exp(y) denote e¥. Theorem 3.1 gives, for any ¢ € [0, 1], that

Pr[Fis(Y) < pi(1 = 8)] < exp(=82pi/ (2 + Aj/ 7).

Then, using (4.29) and (4.30), we derive the bound

Hi
Pr|F;3(Y | < Pr|Fis(Y —_
FalY) <rl < Pr|FalY) < g]
A(l—ao—al) 1 2
< Al Y A (IO — N
- exp(2(1 +clogN) <)\(l—ag—al)>
Choosing
A= 3. (1+ clog N) -In(2m), (4.31)
1—a0—a1

we get Pr[F; 3(Y) < r;j] <1/(2m). Thus,
Pr[there is some Type B index that is not completely covered] < 1/2. (4.32)

It is also easy to see that the expected total cost of the edges chosen is at most A- OPT;
Markov’s inequality shows that the probability of this cost being more than, e.g., 2.1 -
A-OPT is at most 1/(2.1). So, we have from (4.32) that with at least the constant
probability of 1/2 — 1/(2.1), the chosen edges cover all the Type B indices, and have a

15

total cost of at most 2.1 - X\ - OPT. This probability can be amplified to, say, 1 — 1/n>
by repeating this process O(logn) times. Thus, since each “Case II” iteration covers at

least an (1 — z) fraction of the currently active indices, at most [%1 such iterations
need to be run, whp. Therefore,

|
Whp, the total cost from “Case II” iterations is at most 2.1 - [nm -| -A-OPT.

In(1/z) 4.33)

Thus, the total cost is whp at most the sum of the quantities from (4.28) and (4.33).
We choose ay = a; = 1/3 and

2 = min { (log K) - log(2(log N) - (logm) / log K) ;}
(log N) - logm "5 (0

though again a more careful choice of the constants is possible. This completes the
analysis and gives the following theorem.

Theorem 4.1. There is a randomized polynomial-time approximation algorithm for the

covering Steiner problem on trees, which with constant probability produces a solution
(log N)-log® m
log(2(log N)-(log m)/ log K

of value at most O()) times optimal.

5 Extensions

5.1 General metrics

Definition 5.1. A set of metric spaces S over V is said to a-probabilistically approzi-
mate a metric space M over V, if (1) for all x,y € V and S € S, ds(x,y) > dy(x,y),
and (2) there exists a probability distribution D over metric spaces in S such that for
all z,y € V, Eldp(z,y)] < ady(z,y).

Bartal [3, 4] proved the following theorem.

Theorem 5.2. Fvery weighted connected graph G on n vertices can be a-probabilistically
approzimated by a set of weighted trees, where o = O(lognloglogn). Moreover, we can
sample from the probability distribution in polynomial time.

The trees that we get from Bartal’s algorithm are not subtrees of the original graph.
Only their leaves are the original vertices of G. To solve the covering Steiner tree
problem on a general graph G, first find a set of trees and the distribution on them that
O(lognloglog n)-approximates G. Then pick a tree from the distribution and solve
the covering Steiner tree problem approximately on it. Now this solution subtree must
be transformed into a subgraph of GG, and this can be done by simply taking the tour
that visits all the leaves of the solution tree, as in the classical 2-approximation for the
metric TSP. The distances in the tree are greater than those in the original graph, so
this tour will at most double the cost of the solution tree. The expected cost of this
tour is O(plognloglogn) times the optimum, where p is the approximation ratio of the
covering Steiner approximation algorithm on trees. By using Markov’s inequality, we
finally get the following theorem.

16

Theorem 5.3. The algorithm described above with high probability finds a covering
Steiner tree of cost O(plognloglogn) times the cost of the optimal tree, where p is the
approximation ratio of the algorithm for trees.

A slight improvement of Bartal’s result for graphs that exclude small minors is
presented by Konjevod et al. [17], and can be applied to improve the performance ratio
on instances of the covering Steiner problem for these classes of graphs.

Acknowledgements. Thanks to Naveen Garg, Madhav Marathe and Neal Young
for helpful conversations. We also thank the referees for their many helpful comments.

References

[1] S. Arora and G. Karakostas. A 2 4+ € approximation algorithm for the k-MST
problem. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 754-759, 2000.

[2] S. Arya and H. Ramesh. A 2.5-factor approximation algorithm for the k-MST
problem. Information Processing Letters, 65:117-118, 1998.

[3] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, pages 184-193, October 1996.

[4] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pages 161-168, 1998.

[5] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation for the k-
MST problem. In Proceedings of the 28th Annual ACM Symposium on Theory of
Computing, pages 442-448, 1996.

[6] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: deterministic
approximation algorithms for group Steiner trees and k-median. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pages 114123, 1998.

[7] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite
metric by a small number of tree metrics. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 379-388, 1998.

[8] G. Even, G. Kortsarz, and W. Slany. On network design problems: fixed cost flow
and the covering Steiner problem. manuscript, May 2001.

[9] M. Fischetti, H. W. Hamacher, K. Jornsten, and F. Maffioli. Weighted k-cardinality
trees: complexity and polyhedral structure. Networks, 24:11-21, 1994.

[10] N. Garg. A 3-approximation for the minimum tree spanning & vertices. In Proceed-
ings of the 87th Annual IEEE Symposium on Foundations of Computer Science,
pages 302-309, Oct. 1996.

17

[11]
[12]

[13]

N. Garg. Personal communication, September 1999.

N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group Steiner tree problem. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 253-259, 1998.

M. Grotschel, L. Lovéasz, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer, 1988.

S. Janson. Poisson approximations for large deviations. Random Structures &
Algorithms, 1:221-230, 1990.

P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted Steiner tree. J. Algorithms, 19:104-115, 1995.

G. Konjevod and R. Ravi. An approximation algorithm for the covering Steiner
problem. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 338-344, 2000.

G. Konjevod, R. Ravi, and F. S. Salman. On approximating planar metrics by tree
metrics. Information Processing Letters, 80:213-219, 2001.

R. Ravi, R. Sundaram, M. V. Marathe, D. Rosenkrantz, and S. S. Ravi. Spanning
trees—short or small. SIAM J. Discrete Math., 9:178-200, 1996.

G. Reich and P. Widmayer. Beyond Steiner’s problem: A VLSI oriented general-
ization. In Graph- Theoretic Concepts in Computer Science WGS9, volume 411 of
Lecture Notes in Computer Science, pages 196-210. Springer, 1990.

A. Srinivasan. New approaches to covering and packing problems. In Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 567-576,
2001.

18

