
COMBINATORICA 
Akad6miai Kind6 - Springer-Verlag 

COMBINATORICA 15 (2) (1995) 187--202 

AN APPROXIMATE MAX-FLOW MIN-CUT RELATION FOR 
UNDIRECTED MULTICOMMODITY FLOW, WITH APPLICATIONS* 

PHILIP KLEIN$, SATISH RAOw AJIT AGRAWALt and R. RAVIt 

Received July 27, 1992 
Revised July 27 1993 

In this paper ,  we prove the  first approximate  max-flow min-cut  theorem for undirected 
mul t i commodi ty  flow. We show tha t  for a feasible flow to exist in a mul t icommodi ty  problem, it 
is sufficient t ha t  every cut ' s  capacity exceeds its demand  by a factor of O(logClogD),  where C 
is the  sum of all finite capacities and D is the  sum of demands .  Moreover, our theorem yields an 
a lgor i thm for finding a cut tha t  is approximately min imum relative to the  flow tha t  must  cross 
it. We use this result  to obta in  an approximat ion algori thm for T. C. Hu's  generalization of the  
mult iway-cut  problem. This a lgori thm can in turn  be applied to obtain approximat ion algori thms 
for min imum delet ion of clauses of a 2-CNF--  formula, via minimization,  and other  problems.  
We also generalize the  theorem to hypergraph networks; using this generalization, we can handle 
CNF- -  clauses wi th  an arbi t rary  number  of literals per  clause. 

1. Introduction 

The amount  of flow one can push through a network from a source to a sink 
clearly cannot exceed the capacity of a cut separating them, and the celebrated 
max-flow rain-cut theorem of Ford and Fhlkerson [8] and of Elias, Feinstein and 
Shannon [7] showed that  the capacity upper bound is always tight. The value of 
the max imum flow is equal to the capacity of the minimum cut. This result yielded 
as a byproduct  an algorithm for finding a minimum capacity cut. 

Ever since, researchers have sought to generalize the max-flow min-cut theorem 
to apply to cases of multicommodity flow, in which each of several commodities has 
its own source and sink. In 1963, Hu showed [12] that  such a theorem held for 2- 
commodi ty  flow. In subsequent work, various special cases have been identified for 
which the max-flow min-cut theorem holds (see, e.g., [9,29]). As was demonstrated 

Mathemat ics  Subject  Classification (1991): 68 Q 25, 68 R 10, 90 C 08, 90 C 27 

* Most  of the  results in this paper  were presented in prel iminary form in "Approximat ion 
th rough  mul t i commodi ty  flow", Proceedings, 31th Annual Symposium on Foundations of Com- 
puter Science (1990), pp. 726-737. 

t Brown University, Providence,  RI. Research suppor ted  by the  National Science Foundat ion 
under NSF grant  CDA 8722809, by the  Office of Naval and the Defense Advanced Research 
Pro jec t s  Agency under  contract  N00014-83-K-0146,  and ARPA Order  No. 6320, Amendamen t  1. 

~: Research suppor ted  by NSF grant  CCR-9012357 and by an NSF Presidential  Young Inves- 
t igator  Award.  

w NEC Research Inst i tu te ,  Pr inceton,  NJ. Research suppor ted  by ONR Grant  N0014-88 -K-  
0243. 

0209-9683/95/$6.00 01995 Akad6miai Kiad5, Budapest 



188 PHILIP KLEIN, SATISH P~AO~ AJIT AGRAWAL, R. R,AVI 

fairly early, however, no such theorem can hold in general for all multicommodity 
flow instances. 

Leighton and Rao [19] recently defined the notion of an approximate max-flow 
min-cut theorem, by showing that the capacity upper bound is within a logarithmic 
factor of being tight for a special class of multicommodity flow instances, called 
uniform multicommodity flow. In a uniform flow problem for a graph C, a flow 
of value 1 is required between every two nodes of C. Their approximate max-flow 
min-cut theorem also yields an algorithm for finding an approximately sparsest cut, 
which in turn is the basis for a variety of approximation algorithms for NP-complete 
graph problems. 

In this paper, we prove an approximate max-flow min-cut theorem that  holds 
for all undirected multicommodity flow problems. We allow both nodes and edges 
to have capacities. 

Theorem 1.1. Consider an undirected mul t icommodity  flow instance where the sum 
of the demands is D and the sum of the finite capacities is C (and demands and 
capacities are integral). In order for there to exist a feasible flow, it is sui~cient that 
every cut's capacity exceeds the demand across the cut by a factor of  0 (log C log D). 

Moreover, our theorem yields an algorithm for finding a cut that  is (approxi- 
mately) minimum relative to the flow that must cross it. That  is, a minimum cut 
is one minimizing the ratio 

capacity of the cut/demand crossing the cut 

Theorem 1.2. There is a polynomial-time algorithm to find an approximately min- 
imum mut t icommodi ty  cut. The approximation factor is 0 (log Clog D), where the 
sum of the demands is D and the sum of the finite capacities is C, and the demands 
and capacities are integral. 

By appropriate choices of source-sink pairs, one can use this algorithm to find 
cuts that  are (approximately) minimum subject to certain criteria. 

The following observation is useful in applications where either the capacities 
or demands (but not both) are superpolynomial. It can be proved using a rounding 
technique; we omit the proof. 

Observation 1.3. I f  either C or D is polynomial in n, the number of nodes of  C, 
then the approximation factor in Theorem 1.2 can be improved to be O(log 2 n). 

Our first application concerns the following generalization of the multiway cut 
problem [6, 12]. Given a graph C with edge-weights and a set of node-pairs (ui, vi), 
1 < i < k, find a minimum-weight collection of edges of C whose removal disconnects 
ui from vi for all 1 < i < k. A special case of this problem was shown to be NP- 
hard by Dahlhous et al. We give the first approximation algorithm. Our techniques 
extend to handle the analogous problem in which nodes are to be removed instead 
of edges. 

Theorem 1.4. There are polynomial-time approximation algorithms for the gen- 
eralized mul t iway edge-cut and node-cut problems. The approximation factor is 
O(log 3 n), where n is the number of  nodes in the input graph. 

The algorithm consists of a series of greedy applications of our min-cut algo- 
rithm. 



AN A P P R O X I M A T E  M A X - F L O W  M I N - C U T  T H E O R E M  189 

Using the node-cut  algorithm, we can handle another  problem, deletion of 
clauses of a CNF  - formula to achieve satisfiability. Such a formula has weighted 
clauses of the form (Pl -=P2 ~ . . .  =--Pk), where each Pi is either a Boolean variable or 
the negat ion of a variable. The  goal is to find a minimum-weight  collection of clauses 
whose deletion results in a satisfiable formula. We give the first approximat ion  
a lgor i thm for this problem. 1 

T h e o r e m  1.5. Minimum-weight deletion of clauses of  a CNF-= formula to achieve 
satisfiability can be approximated to within a factor  of O(log 3 n), where n is the 
number of variables appearing in the formula. 

One of our aims in this research is to develop a framework for approximate  
solution of graph problems of the form: delete a min imum number  of nodes (or 
edges) in order  to obtain  a graph  with a desired s t ructural  property.  Our  a lgor i thm 
for C N F  - clause deletion provides a good basis for such algorithms; one can 
sometimes state  the s t ructura l  proper ty  in the language of C N F -  in such a way 
tha t  deleting clauses corresponds to deleting edges or nodes of the graph. 2 

The  edge-deletion graph bipartization problem - -  deleting a min imum number  
of edges to get a bipar t i te  graph - -  was studied in [32]. It  is easy to state using 
C N F ~  tha t  a given graph is biparti te:  For each node v, we have a Boolean variable 
Pv. For each edge {v,w},  there is a clause (pv =--~pw) of weight 1. The  resulting 
formula  is satisfiable if and only if the graph is bipartite;  any satisfying t ru th  
assignment gives a bipar t i t ion (a two-coloring). Moreover, the min imum number  of 
clauses tha t  must  be deleted to achieve satisfiability equals the number  of edges tha t  
must  be deleted to achieve two-colorability. The  node-deletion graph bipartization 
problem can be modeled similarly. It  follows tha t  for these problems one obtains 
an O(log 3 n)-factor  approximat ion algorithm. 

Using similar techniques~ we can solve some other problems. The  via mini- 
mization problem (discussed in [4]) is a problem arising in the design of a printed 
circuit board,  in which there are two layers and one wants to minimize the number  
of holes made  in the board  in order to connect wires on different layers. The  geom- 
e t ry  of the problem is fixed; the goal is to choose an assignment of pieces of wire 
to layers. I t  is s t ra ightforward to mode l  the via minimizat ion problem as a CNF  = 
clause-deletion problem, and thereby obtain an O(log 3 n)-factor  approximat ion al- 
gor i thm for it. 

In the next  section, we give the proof  of our main results, an approximate  
max-flow min-cut  theorem for undirected mul t i commodi ty  flow and an approxima- 
t ion a lgor i thm for mul t i commodi ty  rain-cut. In  Section 3 we show how using the 
min-cut  a lgor i thm in a greedy fashion yields approximat ion algori thms for sepa- 
ra t ing  a constant  fraction of the demands.  We show how a greedy application of 

1 A complementary result was obtained by Johnson [13] in 1974; he showed that for CNF 
formulae the maximum size of a satisfiable subset of clauses could be approximated to within a 
small constant factor; indeed, for every formula, all but at most a constant fraction of the clauses 
can be satisfied simultaneously. In view of this latter result, it makes sense to focus on how many 
clauses must be deleted to achieve satisfiability. 

2 CL Papadimitriou and Yannakakis's idea [24] of expressing NP-complete problems witb 
quantified sentences in order to study their approximability. 



190 PHILIP KLEIN, SATISH RAOI AJIT AGRAWAL, R. RAVI 

this algorithm in turn yields an approximation algorithm for separating all the de- 
mands. This algorithm approximately solves the generalized multiway-cut problem 
of Theorem 1.4. In Section 4, we show how to use this algorithm to approximately 
solve the C N F -  clause-deletion problem. In Section 5, we briefly consider the ap- 
plication of the algorithm to the via minimization problem. We make some final 
remarks in Section 6. 

2. An approximate max-flow min-cut theorem 

for undirected multicommodity flow 

2.1. Preliminaries 

In this section we prove our approximate max-flow min-cut theorem for undi- 
rected multicommodity flow. An instance of undirected multicommodity flow con- 
sists of a network G with node-capacities CAP(v) and edge-capacities CAP(uv),  
and commodities { (s i , t i ,d ( i ) )  : i =  1,... ,k}, where si and ti are, respectively, the 
source and sink of commodity i, and d(i) is the demand of commodity i. We assume 
all demands and capacities are integral. A multicommodity flow f is an assignment 
of flows to all the commodities; a flow for the i th commodity is a way of routing d(i) 
units of the commodity from si to t i through the edges of G. The multicommod- 
ity flow f is said to satisfy the demands. We say f is feasible with respect to the 
capacities CAP(.)  if for every edge uv (every node v), the total number of units of 
all commodities routed through edge uv (through node v) is at most CAP(uv) (at 
most CAP(v)). For a node v, flow originating at v is not counted as being routed 
through v. 

A concurrent f low [30] of capacity utilization u is a multicommodity flow satis- 
fying the demands and feasible with respect to the multiplied capacities u. CAP(.). 
The concurrent flow problem is to find a flow f with minimum capacity utilization. 
The concurrent flow problem relates to feasibility of ordinary multicommodity flow: 
a multicommodity flow is feasible if and only if the minimum capacity utilization 
is at most 1. 

An equivalent way to formulate the concurrent flow problem is as follows: a 
concurrent flow of throughput z is a multicommodity flow satisfying the multiplied 
demands z.d(.)  and feasible with respect to the capacities CAP(.). The concurrent 
flow problem is then to find a flow with maximum throughput. 

For a subset W of the nodes and edges of G, let CAP(W) denote the sum of 
capacities of the elements of W. We say W separates a commodity if the endpoints 
of the commodity are in different components of G -  W. For purposes of this 
definition, we treat  each node in W as a singleton connected component of G - W .  
Let DEM(W) denote the sum of demands of commodities separated by W. 

A multicommodity minimum cut is a subset W that minimizes the ratio of 
capacity to demand. That  is, define the min imum cut ratio S as follows: 

(1) S -- min CAP(W) 
w DEM(W) 



AN APPROXIMATE MAX-FLOW MIN-CUT THEOREM 191 

where W ranges over all subsets of nodes and edges. 3 It  is easy to see that  the 
max imum throughput  is at most the minimum cut ratio. For suppose the minimum 
cut is W, and f is a mult icommodity flow of throughput  z. Then f must route at 
least z . D E M ( W )  units of flow through W. Since f is feasible with respect to the 
capacities, the capacity of W must be at least z.  DEM(W).  This proves tha t  z is 
at most CAP(W)/DEM(W).  

An equivalent s tatement  is that  the value of the capacity utilization is at least 
1IS. Consequently, for a mult icommodity ftow problem to be feasible, the minimum 
cut ratio must be at least one. Theorem 1.1 states an approximate converse, namely 
tha t  if the minimum cut ratio is at least O(logClogD) then the mult icommodity 
flow problem is feasible. We proceed with the proof of Theorem 1.1. 

We can assume without loss of generality tha t  only nodes are assigned capaci- 
ties, i.e. that  the capacity of every edge is unbounded. Simply replace an edge vw 
that  has capacity c with a pair of edges vx and xw, where x is a new node that  
has capacity c. As we will see, infinite capacities are not counted in C, the sum of 
capacities. We can model the case in which only (original) edges have capacities 
by assigning finite capacities to the new nodes x and unbounded capacities to the 
original nodes. 

Next, we formulate the linear program dual to the problem of minimizing the 
capacity utilization u. Let g be any nonnegative length function assigning lengths 
to the finite-capacity nodes of the graph G; the length of a node with unbounded 
capacity is considered to be zero. Let disQ(v,w) be the resulting shortest pa th  
distance between v and w (including the lengths of v and w ). The dual linear 
program is maximizing 

(2) dist (si,t )d( ) 
c o m m o d i t y  i 

subject to the constraint 

(3) ~ CAP(v)~(v) -- 1, 
nodes  v 

where the sum is over the finite-capacity nodes. In particular, the value of (2) is 
always at most the value of the capacity utilization u by weak linear programming 

3 In  t he  case where  only edges have finite capacity,  we can  res t r ic t  our  a t t en t ion  to edge- 

cu ts  W of  the  form F(X) ,  where  X is a node-subse t  and  F ( X )  denotes  the  set  of  edges hav ing  

exac t ly  one endpo in t  in X .  From any edge-cut  W one can easily ex t rac t  an  equal ly  good cut  

of  th is  form t h a t  separa tes  the  g raph  into exact ly  two componen t s .  Th i s  observat ion  pe rmi t s  a 

par t icu lar ly  nice fo rmula t ion  of the  min-cu t  problem,  in which commodi t i e s  are represented as 

edges in t he  g r aph  G. Each  pair  si,$ i of c o m m o d i t y  endpo in t s  is considered a demand edge', and  

is ass igned  a weight  DEM(siti) equal  to the  d e m a n d  value d(i). T h e  original edges of G are  called 

capacity edges. For a node-subse t  X ,  the  capac i ty - to -demand  ratio of  the  cut  F (X)  is the  ratio 

CAP(F(X))/DEM(F(X)) of the  weight of i ts capaci ty  edges to the  weight  of its d e m a n d  edges.  

We can  t h ink  of the  weight  of  d e m a n d  edges as signifying benefit  and  the  weight of capaci ty  edges 

as s ignifying cost; a m i n i m u m  cu t  t h e n  becomes  a cu t  whose cost- to-benefi t  rat io is minimized.  



192 PHILIP KLEIN, SATISH RAO, AJIT AGRAWAL, R. RAVI 

duality. Moreover, when e maximizes (2) and f minimizes u, the sum (2) equals u. 
That  is, at optimality, we have 

(4) E dist~(si, ti)d(i) =- u > 1/S. 
i 

Our main result in this section is to show that  the leftmost expression is not much 
more than the rightmost expression. 

Theorem 2.1. There is a polynomial-time algorithm to find a particular node- 
separator W t such that 

DEM(W')  
(5) E disQ(ri, si)d(i) = O(log C log D) 

i 

where C is the sum of all finite capacities and D is the sum of all demands, and 
the demands and capacities are integral. 

It follows by (4) and the definition of S that  

DEM(W) lo . DEM(W')  
(6) max < u < O(logC 

W CAP(W) - - gO) 

where W I is the node subset found by the algorithm. This inequality shows 
that  W l defines a near-optimal cut, proving Theorem 1.2. Moreover, since a 
multicommodity flow instance is feasible if u is no more than 1, the inequality 
also proves Theorem 1.1. 

2.2. The proof  of Theorem 2.1 

Our proof of the theorem follows the lines of Leighton and Rao's proof for their 
result concerning the uniform demand case (the case where there is a demand of 1 
between every pair of nodes). 

First solve the dual of the concurrent flow problem, obtaining an optimal length 
function g satisfying the constraint (3). Next, assume (for now) that  we know the 
value of S. We now give an algorithm to assign a path P(si,ti) to each commodity 
i such that  

(7) E length(P(si, ti))" d(i) = O((1/S) log C log D). 
i 

The algorithm works in stages, assigning paths to disjoint sets of commodities 
in different stages. We use Dt to denote the sum of the demands of the commodities 
that  have not yet been assigned paths by stage t. To initialize, let Do equal the 
sum D of all demands, and let t=-0. 

Each stage t consists of the following steps. Decompose the graph into node- 
disjoint trees so that  each tree has height O((1/SDt)logC). (This step is described 
in more detail later.) For each commodity i whose endpoints lie in a common 



AN APPROXIMATE MAX-FLOW MIN-CUT THEOREM 193 

tree, assign to the commodity the path in that tree, and discard the commodity. 
Then Dt+l is the sum of the demands of remaining commodities, i.e. those whose 
endpoints are in different trees. Finally, increment t, and loop. 

In each stage t, the length of every path assigned is O((I/SDt)logC), and the 
sum of demands of commodities that were assigned paths is Dr-Dr+l, so the total 
contr ibut ion of stage t to  the left-hand side of (7) is O((1/S)logC)). It  remains to 
describe a procedure  for decomposing G into trees of small height such tha t  Dt+l ~_ 
Dr~2, for then  the number  of stages is at most  logD,  and the total  contr ibut ion of 
all stages to the left-hand side of (7) is O((1/S)logClogD). 
Decomposi t ion  into trees. It  is convenient to discretize the distance into tokens. 
Each token of distance will correspond to distance 1/C in the original units. T h a t  
is, define 

(8) := Fc ( )l 

for each node v. Each token associated with v is assigned a weight equal to the 
capaci ty  of v. Notice tha t  since y '~ f (v )CAP(v)G 1 and rounding up adds only one 
extra  token for each node, we have tha t  the tota l  token weight is 

(9) h(v)CAP(v) < 2C. 

Measured in tokens, we must decompose the graph into trees of token height 
O((1/SDt)ClogC). 

Next,  repeat  the following step, forming a tree T (as described below), and 
then removing the nodes of the tree from the graph, until the graph  no longer 
contains a source or sink. 

Forming a t ree  T:  Star t  at any node r, and compute  the shor tes t -path  tree con- 
sisting of all nodes reachable from r. I f  every node in this tree has distance at most  
[(5Cln2C)/SDt] +1 ,  then let T be this tree. Otherwise, we must  select a distance 

d<_ [(5Cln2C)/SDt] + 1 at which to t runcate  the tree. 

d 

Fig. I. If the distance to v not including v's length is d-x, then rnin(x,~t(v)) of v's ~t(v) tokens 
are within distance d 



194 P H I L I P  K L E I N ,  SATISH RAO,  A J I T  A G R A W A L ,  R. RAVI 

There is a natural  notion of how many of a node's tokens lies within a given 
distance d from the root r. A node v has &(v) tokens in total. Let d - x  be the 
distance to v not including v's length. The number of v's tokens within distance 
d is de~ned to be min(z,&(v)). Denote this value by amount(v,d).  We determine 
the total  weight of tile subgraph within distance d of r, defined as follows. 

weight(d) = E amount (v ,d) .  CAP(v).  
n o d e  v 

We use binary search on the range of distances d = 1,2, 3... [(5C in 2C) /SDt ]  +1, 

to find a d such that  

0o) SDt "~ weight(d). weight(d + 1) < 1 + -4C--] 

Tha t  is, the weight at level d does not expand by much when we go out one more 
token. 

The binary search to find such a d proceeds as follows. First, we set d l to 1 
and dr to [(bCIn2C)/SDt] +1.  Note that  weight(all) is at least 1 since every node 
has capacity at  least one. Hence weight(d/)>__ (1 +SDt/4C) dz-1. Also note that  

(1 + SDt/4C) d~-I > (1 + SDt/4C) (bCln2C)/SDt > 2C 

using lOgl+ e x < ln x/e  for small e and (1 +e)l~ ~' x >  x whenever e~< E. Since 2C 
is more than the total weight in the whole graph by equation (9), we must have 
that  weight(dr) is strictly less than (1+  SDt/4C) dr-1. Thus there must be a level 
between d z and dr where the weight does not expand by (1 + SDt/4C). Now, we 

consider the level d ' =  [(dl+dr)/2]. If weight(d ' ) is  at least (I+SDt/4C) d'-I then 
set dl = d ,  otherwise set dr =d'. Note that  a level that  does not expand still exists 
between d I and dr and the number of levels between d l and dr has been halved. 
Thus, after O(logC) iterations, dl-dr becomes a constant so d can easily be found. 
(We use this binary search in the algorithm so that  the running t ime is polynomial 
in logC and n, i.e., the size of the input graph.) 

Once ct has been chosen, let our t runcated tree T be the portion of the shortest- 
pa th  tree spanning nodes all of whose tokens are within distance ct. The boundary 
of T is defined to be the set of nodes not in T but adjacent to nodes of T. Let 
weight(T) denote the sum of weights of all the tokens in T and in the boundary 
of T. Let BT denote the boundary of T. Each node v in BT contributes CAP(v)  
more weight to weight (d+l)  than it does to weight(el). Any other node contributes 

no more. Hence the capacity of the boundary is exactly weight(d§ 1 ) -  weight(d). 
It  follows by choice of ct that  

(11) CAP(BT)  ~ (SDt/4C)weight(d~ ~_ (SDt/4C)weight(T). 

Finally we delete the nodes of T and its boundary, and repeat,  constructing 
another tree, until all sources and sinks have been deleted. 



A N  A P P R O X I M A T E  M A X - F L O W  M I N - C U T  T H E O R E M  195 

What  the t ree decomposition achieves: Now suppose that  all sources and sinks 
have been deleted. We have assigned short paths to every commodity whose source 
and sink lay in the same tree. Let Dt+l denote the sum of demands of remaining 
commodities.  We prove tha t  Dt+t <Dr~2. 

Each commodity  not assigned a short pa th  by the end of stage t has one 
endpoint in a tree T and one outside T. I t  follows that  the union I-iT BT of the 
boundaries of the trees separates all these commodities. Hence by the definition 
(1) of S we have 

By summing (11) over all trees in the decomposition, we obtain 

T 

After we constructed each truncated tree, we deleted its nodes before forming the 
next, so the t runcated trees are disjoint. Hence the sum of weights in the right 
hand side of (12) is at most the total  weight in the graph, which is in turn at most 
2C by (9). Tha t  is, we have 

(SDt/4C) E weight(T) < (SDt/4C)2C = SDt/2. 
T 

By combining these inequalities and dividing by S, we show that  the sum of 
demands yet to be assigned paths is at most one-half of the sum of demands that  
had not been assigned paths at the beginning of the stage. 

2.3. Turning the proof  into an algorithm 

In Theorem 2.1, we stated tha t  the algorithm would find a set W such that  

E dist(si,ti)d(i) = O(logClogD)DEM(W) 
i CAP(W)"  

In fact, we only proved that  EidisQ(si,ti)d(i)=O(logClogD)/S. Moreover, we 
assumed tha t  the value of S was exactly known in advance. We show how to remedy 
these drawbacks in this subsection. 

In the above argument we considered only O(logD) node-separators, one for 
each stage; namely, for each tree decomposition, we considered the node-separator 
consisting of the union of the tree boundaries UTBT" We therefore define the 
minimum "observed" cut value Sob s for a given execution of the algorithm to be 

CAP(W) 
m i n w  DEM----E--~(W~ where W ranges over these O(logD) node-separators. 

All tha t  was required in showing that  each stage halves the remaining demand 
was tha t  the value used as S in (10) be no more than Sob s. In fact, if the value 



196 PHILIP KLEIN, SATISH RAO, AJIT AGRAWAL, R. RAVI 

used is only slightly more than Sobs, say no more than (3/2)Sobs, then each stage 
reduces the remaining demand by a factor of 4/3. 

We use this observation as follows. We maintain an overestimate Sest of S, 
and a specific node-separator West achieving a capacity-to-demand ratio of Sest. 
We initialize Sest and West based on an arbi trary cut in the graph that  separates 
some demand. We run the algorithm, and compare the resulting value of Sobs with 
the est imate Sest- 

If  Sest is no more than (3/2)Sobs, then the algorithm will have proved equation 
(7) with Sest substi tuted for S. Thus we will have found a node-separator W, 
namely West, satisfying (5). If Sest is greater than (3/2)Sobs, we replace Sest with 
Sobs, replace West with the cut whose ratio is Sobs, and repeat. Since Sobs cannot be 
less than 1/D and we reduce Sest by a constant factor in each iteration, termination 
will occur after at most O(logCD) iterations. This proves Theorem 2.1. | 

3. Balanced separators 

In this section, we discuss the application of concurrent-flow based methods 
to finding balanced separators. In Subsection 3.1, we show how to apply our 
Theorem 2.i. These results are used in Section 4. 

3.1. Cutting a fraction of the demand 

The cuts that are found by the algorithm of the previous section tend to achieve 
a low cut ratio. However, such a cut may only separate a small fraction of the total 
demand in the flow problem. In this subsection, we consider the problem of finding 
a small cut that cuts a large fraction of the total demand. 

In this context, capacity is interpreted as a measure of removal cost. Let G be 
a multicommodity flow instance. Let D be the total demand. Our goal is to find 
a minimum-cost set of nodes or edges that separates a given fraction of D. This 
problem arises in evaluating a network's resilience to worst-case faults. Note that 
nodes and edges may be assigned infinite cost, effectively precluding their inclusion 
in a separator.  

For a constant 0 </3 _< 1, let OPT~ be the minimum cost of a set of nodes or 
edges tha t  separates a/3 fraction of the demand. 

Theorem 3.1. Suppose 0 < oe </3 _< 1 are constants. There is a polynomial-time 
algorithm to find a set W of nodes or edges separating at least a fraction c~ of the 
demand such that the cost of W is O(log n)OPT~. 

Thus the separator  found by the algorithm only separates an o~ fraction of 
the total  demand, but  we compare its cost to the cheapest set of nodes or edges 
separating a larger fraction/3. 

The following method of analysis closely resembles that  of [26, 28]. 
Proof. We use a greedy application of the min-cut algorithm of Theorem 2.1. 
Tha t  is, use the algorithm to find an approximate min-cut. Discard the nodes and 



AN A P P R O X I M A T E  M A X - F L O W  M I N - C U T  T H E O R E M  197 

edges belonging to the cut, discard the separated demands, and then repeat on the 
resulting graph, until the sum of the discarded demands exceeds aD. 

Now we analyze the greedy algorithm. Let ~opt be the minimum-cost set of 
nodes and edges separating /3D demand. Let p be the performance ratio of the 
approximate min-cut algorithm. By Theorem 2.1, p = O (log Clog D). 

Let Qi be the total demand separated after i steps of the greedy algorithm. 
Then 

(13) Qi4-1 = Qi + (amount of additional demand separated in ithstep). 

If we removed ~opt from the original graph, we would separate at least/3D demand. 
Consider instead first executing i steps of the greedy algorithm, and then removing 
~opt from the resulting graph. The total demand separated would be at least/3D, 
but  up to Qi of that  demand might have been separated by the i greedy steps. 
Thus removing 8opt would still separate at least #D - Qi additional demand. It 
follows that  the graph remaining after i steps has a separator of cost no more than 
OPT~ tha t  separates at l e a s t / 3 D - Q i  demand. 

Let Ri =/3D - Qi. By the above argument, if Ri > 0 then the min-cut has a 
capacity-to-demand ratio of at most OPTz/Ri .  Suppose the i+ 1 st step finds a 
cut of capacity capi+l separating demand demi+l. This cut is within a p factor of 
optimal, so 

OPT~ (14) capi+l < P" _ _  
demi+ l - Ri 

The algorithm terminates when the demand separated exceeds aD,  say after L 
iterations. Hence Qi ~- aD for each i < L, and we obtain Ri >_ flD-o~D. Substituting 
into (14) and multiplying both sides by demi+l we get 

OPT z 
capi+l ~_ p" (#----~)Ddemi+l . 

Summing over all i and using the fact that ~-]i demi ~-D, we obtain 

E eapi ~ P~I--~-OPT~ 
i p - - o z  

as desired. 
In general, we have shown only that  p--O(logClogD). To prove Theorem 3.1 

which claims an O(log 2n) performance ratio, we resort to a rounding technique. 
Let cr = (/~-o~)D/2n 2. Before running the greedy algorithm, we round all demands 
up to the nearest multiple of cr. This increases the sum of demands by at most 
(~ -a )D/2 .  Moreover, these increased demands can only reduce the cost OPT~ of 
separating demands totaling/3D. Because each demand is a polynomial multiple of 
a, we can apply Observation 1.3 to obtain a performance guarantee J =  O(log 2 n) 
for the min-cut algorithm. 

Now run the greedy algorithm but stop only after the sum of separated de- 
mands is at least a~D, where a ~ = (a +/3)/2.  By the above analysis, the cost of 



198 PHILIP KLEIN, SATISH RAO, AJIT AGRAWAL, R. RAVI 

the separator found is at most O(J)OPT~,  which is O(log2n)OPT/3. However, we 

must account for the separated demands that were overestimated in the rounding 
process. We separated at least aiD demand, of which at most ( / 3 - a ) D / 2  was 
added demand due to rounding. We are thus left with at least a t D -  ( / 3 - a ) D / 2  
demand having been separated. Substituting the value of a t, we see that this is at 
least aD demand separated. | 

Thus we have an algorithm to find a small cut that  separates many of the 
demands. In fact, by repeated use of this algorithm, we can find a small cut 
that  separates all demands. The following corollary provides an approximation 
algorithm for the generalized multiway cut problem, proving Theorem 1.4. Note 
that it also provides an approximation algorithm for the generalized multiway node- 
cut problem. We use the latter algorithm in the next section. 

Corollary 3.2. There is a polynomial-time algorithm to find an approximately 
minimum-cost set ~ of nodes and edges separating MI commodities. The perfor- 
mance ratio is O(log 3 n), where n is the number of nodes. 

Proof. Apply the algorithm of Theorem 3.1 iteratively in a greedy fashion with 
/3 = 1 and c~ = 1/2. Each iteration halves the number of commodities remaining, so 
there are O(logn) iterations. 

Let O P T  be the minimum cost of a set of nodes and edges separating all 
demands in the original graph. For each of the graphs arising in the above greedy 
iteration, the minimum cost of a set of nodes and edges separating all demands is 
certainly at most OPT, so the cost of the nodes and edges selected in each iteration 
is O(log2n)OPT. This proves the theorem. | 

4. Deleting CNF-- clauses to achieve satisfiability 

A C N F -  formula F is a conjunction of (possibly weighted) clauses of the form 
(Pl-= P 2 - " " - P k ) ,  where the pi's are literals, i.e. either variables or negations 
of variables. Even in the case where there are only two literals per clause, it is 
NP-hard to find a minimum-weight set of clauses whose deletion yields a satisfiable 
formula [11]. We use a well-known construction to reformulate this problem as a 
problem of deleting nodes in a graph, and apply Corollary 3.2. 

4.1. Modeling the problem 

Given a weighted C N F -  = formula F, we first define a second weighted formula 
F t equivalent to F. For each clause c = (Pl - - " "  --Pk) in F, there is an equivalent 
clause d in F 1 with the same weight but with all literals negated: ~ = (-'Pl - " "  -= 
-~Pk). We assume without loss of generality that no clauses of F t appear in F. 

Next we define the corresponding bipartite graph G as follows. The node-set 
of G consists of two disjoint sets, one consisting of all variables and their negations, 
and the other consisting of the clauses of F A F t. For each literal appearing in a 
clause, there is an edge in G between the literal and the clause. 



AN A P P R O X I M A T E  M A X - F L O W  M I N - C U T  T H E O R E M  199 

Note that G has a "symmetry" property: for each clause c of F, G contains 
both c and & This property is crucial in the proof of the following well-known 
lemma (cf. [14]). 

Lemma 4.1. A CNF -- formula F is satisfiable iff no connected component of the 
corresponding graph G contains both a literal and its negation. 

4.2. The algorithm 

We can use the graph formulation of Subsection 4.1 in an algorithm for ap- 
proximately minimum-weight deletion of clauses to achieve satisfiability, proving 
Theorem 1.5. 

P roo f  of Theorem 1.5. The algorithm is as follows. For any weighted C N F _  = formula 
F,  construct the graph G as described above. For each clause, the weight of the 
clause is assigned as the cost to remove the clause/node from G. All other nodes and 
all edges receive infinite cost. Then apply the algorithm for generalized multiway 
node cut to find an approximately minimum-weight set N of nodes whose removal 
separates each variable from its negation. We show how to derive from N a solution 
to the clause-deletion problem. 

Each node in N is a clause in F A F  I. Let NI----{~ : c E N } .  Then the graph 
G - ( N U N  1) has the "symmetry" property, so Lemma 4.1 applies. Since N was a 
multiway cut, so is N U N  ~. Hence no component of G - ( N U N  ~) contains both  a 
literal and its negation, so the formula F with clauses N U N  ~ deleted is satisfiable. 
Note tha t  only half the clauses of N U N ~ appear in F; the others appear  in F I. 
Hence the total  weight of the clauses removed from F is at most the weight of N. 

The analysis is as follows. Consider a minimum-weight set C of clauses whose 
removal renders the formula satisfiable. Let C I = {~ : c E C}. By Lemma 4.1, the 
graph G - ( C U C  0 has the property that  each variable is separated from its negation. 
This shows tha t  the cost of the optimal solution to the generalized multiway cut 
instance is at most twice the weight of the optimal solution to the clause-deletion 
instance. Hence the cost of the clauses deleted by the algorithm described above is 
2. O(log 3 n) times optimal. I 

5. Via minimization 

Via minimization problems have received much attention [1, 2, 3, 4, 21, 22, 23, 
25]. The general problem is as follows. One is given a layout of a circuit. The goal 
is to assign wire segments to layers of the VLSI chip or PC-board.  Wire segments 
tha t  cross in the layout must be assigned to distinct layers. Wire segments that  
should be electrically connected (i.e. belong to the same wire) but lie on different 
layers must be connected using a via or contact. One is therefore given (implicitly 
or explicitly), in addition to the layout, a set of points (called junctions) that  are 
candidates for locations of vias. For PC boards, vias correspond to holes that  must 
be drilled. For VLSI chips, a contact requires a certain amount of area t h a t  wires; 
moreover, the yield of the fabrication process depends inversely on the number of 



200 PHILIP KLEIN, SATISH RAO, AJIT AGRAWAL, R. RAVI 

contacts [25]. In both cases, therefore, it is desirable to minimize the number of 
vias. 

However, the problem is NP-hard if the number of layers can exceed two or 
the junction degree can exceed three [4]. Researchers have proposed algorithms for 
cases of the via minimization problems, e.g. when the number of layers is limited 
to two and the maximum number of wire segments incident to a junction is limited 
to three. Pinter [25] also points out that  in VLSI the layers are not all equivalent 
in performance - -  some layers are to be preferred to others - -  and he considers the 
problem of maximizing the amount of wire assigned to a preferred layer. 

We observe that  the two-layer problem can be formulated as a CNF--- clause- 
deletion problem, and can therefore be approximated by the algorithm of Theo- 
rem 1.5. There is a variable for each wire segment indicating to which layer the 
segment is to be assigned. For each pair of crossing wire segments, there is a clause 
of infinite weight stating that  the segments must be assigned to distint layers. For 
each junction, there is a clause of weight 1 stating that the incident wire segments 
must be assigned to the same layer. Let F be the resulting CNF-- formula. Each 
selection of k vias and associated layer assignment corresponds to a selection of k 
weight-1 clauses of F to delete and a t ru th  assignment that satisfies the remaining 
clauses. 

This formulation also allows us to incorporate Pinter's suggestion. We can 
assign weights to the wire segments indicating the cost of not assigning them to 
the preferred layer, and then minimize a weighted sum of number of vias and total  
weight of segments not assigned to the preferred layer. We simply introduce a 
clause for each segment stating that  the variable for that  segment is assigned 1; the 
weight for the clause is the weight assigned to the segment. 

6. Final remarks 

We have not addressed running times of algorithms described in this paper, but  
we note that  the algorithms of [17] and [18] can be used to quickly find approximate 
solutions to the concurrent flow problems. 

Since the research described here was completed, there have been several 
improvements and related results [10, 15, 27, 31]. Garg, Vazirani, and Yannakakis 
[10] have improved the performance ratio in Theorem 1.4 to O(logk), where k is 
the number of commodities. This improvement yields similar improvements in 
the performance ratio for minimum-weight deletion of clauses of a CNF-- formula, 
for the edge-deletion graph bipartitization problem, and for the via minimization 
problem. 

Acknowledgements. We gratefully acknowledge helpful conversations with Tom 
Leighton, John Reif, David Shmoys, and ]~va Tardos. 



AN APPROXIMATE MAX-FLOW MIN-CUT THEOREM 201 

R e f e r e n c e s  

[1] F. BARAHONA: On via minimization, IEEE Trans. Circuits Syst. 37, 410-416. 
[2] F. BARAHONA, M. GR(~TSCHEL, M. Ji)NGER, and G. REINELT: An application 

of combinatorial optimization to statistical physics and circuit layout design, 
Operations Research 36 (1988), 493-513. 

[3] R.-W. CHEN, Y. KAJITANI, and S.-P. CHAN: A graph-theoretic via minimization 
algorithm for two-layer printed circuit boards, IEEE Trans. Circuits Systems, 
CAS-30 (1983), 284-299. 

[4] H. CHOI, K. NAKAJIMA, and C.S. RIM: Graph bipartization and via minimization, 
SIAM J. of Discrete Math. 2 (1989), 38-47. 

[5] V. CHVATAL: Tough graphs and Hamiltonian circuits, Discrete Mathematics 5 
(1973), 215-228. 

[6] E. DAHLHOUS, D. S. JOHNSON, C. H. PAPADIMITRIOU, P. D. SEYMOUR, and M. 
YANNAKAKIS: The complexity of multiway cuts, Proc. 2~th ACM Symposium 
on Theory of Computing (1992), 241-251. 

[7] P. ELIAS, A. FEINSTEIN, and C.E. SHANNON: A note on the maximum flow through 
a network, IRS Trans. Information Theory IT  2 (1956)~ 117-119. 

[8] L. R. FORD, JR., and D. R. FULKERSON: Flows in Networks, Princeton University 
Press, Princeton, New Jersey (1962). 

[9] A. FRANK: Packing paths, circuits, and cuts - -  a survey, in: Paths, Flows, and VLSI 
Layout, ed. B. Korte, L. Lovs H. J. PrSmel, A. Schrijver, Springer-Verlag 
(1990), 47-100. 

[I0] N. GARG, V. V. VAZIRANI~ and M. YANNAKAKIS: Approximate max-flow rain- 
(multi)cut theorems and their applications. Proc. 25th ACM Symposium on 
the Theory of Computing (1993), 698-707. 

[11] M. R. GAREY, and D. S. JOHNSON: Computers and Intractability: A guide to the 
theory of NP-eompleteness, W. H. Freeman, San Francisco (1979). 

[12] T. C. Hu: Multicommodity network flows, Operations Research 11, (1963), 344-360. 
[13] D. S. JOHNSON: Approximation algorithms for combinatorial problems, Journal of 

Computer and System Sciences 9 (1974), 256-278. 
[14] N. D. JONES, Y. E. LIEN, and W. T. LASSER: New problems complete for nonde- 

terministic log space, Math. Systems Theory, 10 (1976), 1-17. 
[15] P. KLEIN, S. PLOTKIN, and S. RAO: Planar graphs, multicommodity flow, and net- 

work decomposition. Proc. 25th ACM Symposium on the Theory of Computing 
(1991), 682-690. 

[16] P. KLEIN, S. PLOTKIN, S. RAO, and 1~,. TARDOS: Bounds on the max-flow min-cut 
ratio for directed multicommodity flows, Brown University Technical Report 
CS-93-30 (1993). 

[17] P. KLEIN, S. PLOTKIN, C. STEIN, and E. TARDOS: Faster approximation algorithms 
for the unit capacity concurrent flow problem with applications to routing and 
finding sparse cuts, SIAM Journal on Computing, to appear. 

[18] F. T. LEIGHTON, F. MAKEDON, S. PLOTKIN, C. STEIN, ]~. TARDOS, S. 
TRAGOUDAS: Fast approximation algorithms for multicommodity flow prob- 
lems, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing 
(1991), 191-111. 

[19] F. T. LEIGHTON, and S. RAO: An approximate max-flow rain-cut theorem for 
uniform multicommodity flow problems with application to approximation al- 
gorithms, Proceedings, 29th Symposium on Foundations of Computer Science 
(1988), 422-431. 



202 PHILIP KLEIN et al.: AN APPROXIMATE MAX-FLOW MIN-CUT THEOREM 

[20] F. T. LEIGHTON, F. MAKEDON, and S. TRAGOUDAS: personal communication, 1990 
[21] P. MOLITOR: On the contact-minimization problem, Proc. ~th Annual Symposium 

on Theoretical Aspects of Computer Science (1987), published as Lecture Notes 
in Computer Science 247, Springer-Verlag, New York, Berlin (1987), 420-431. 

[22] N. NACLERIO, S. iVIASUDA~ and K. NAKAJIMA: Via minimization for gridless layouts, 
Proc. 2~th A C M / I E E E  Design Automation Conference (1987), 159-165. 

[23] N. NACLERIO, S. MASUDA, and K. NAKAJIMA: The via minimization problem is 
NP-complete, IEEE Trans. Comput. 38, 1604-1608. 

[24] C. H. PAPADIMITRIOU, and M. YANNAKAKIS: Optimization, approximation, and 
complexity classes, Proceedings, 20th A CM Symposium on Theory of Computing 
(1988), 229-234. 

[25] R. PINTER: Optimal layer assignment for interconnect, Journal of VLSI and Com- 
puter Systems 1 (1984), 123 137. 

[26] D. PLAISTED: A heuristic algorithm for small separators in arbi t rary graphs, S I A M  
J. Comput. 19 (1990), 267 280. 

[27] S. PLOTKIN~ and }~. TARDOS: Improved bounds on the max-flow min-cut ratio 
for multicommodity flows. Proc. 25th A C M  Symposium on the Theory of 
Computing (1993), 691-697. 

[28] S. RAO: Finding near optimal separators in planar graphs, Proceedings, 28th Annual 
Symposium on Foundations of Computer Science (1987), 225-237. 

[29] A. SCHRIJVER: Min-max results in combinatorial optimization, Mathematical Pro- 
gramming, the state of the art Springer-Verlag, Bonn (1983), 439-500. 

[30] F. SHAHROKHI, and D. MATULA; The maximum concurrent flow problem, Journal 
of the ACM 37:2 (1990), 318-334 

[31] S. TRAGOUDAS: VLSI parti t ioning approximation algorithms based on multicom- 
modity flow and other techniques, PhD thesis, University of Texas at Dallas 
(1991). 

[32] M. YANNAKAKIS: Edge-Deletion problems, SIAM J. Computing 10, (1981), 297-309. 

Ph i l ip  Kle in  

Department of Computer Science 
Brown University 
Providence, RI 02912, U.S.A. 
kleinOcs, brown, edu 

Ajit Agrawal 

Exa Corporation 
125 Cambridge Park Drive 
Cambridge, MA 02140 
a g a r w a l ~ e x a ,  tom 

Satish Rao 

NEC Research Institute 
Independence Way 

Princeton, NJ 08540, U.S.A. 
satishOresearch.nj .nec. com 

R. Ravi  

DIMACS Center 
P. O. Box 1170 
Rutgers University 
Piscataway, NJ 08855-1179, U.S.A 
rravi�9 rutgers ,  edu 


