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Abstract

Consider the followingnetwork subscription pricingroblem. We are given a gragh = (V, E)
with a rootr, and potential customers are companies headquarteredih locations at a subset of
nodes. Every customer requires a network connecting ititlmts tor. The network provider can
build this network with a combination dfackbonesdges (consisting of high capacity cables) that can
route any subset of the customers, acdessdges that can route only a single customer’s traffic. The
backbone edges codtl times that of the access edges. Our goal is to devigmap-strategyproof
pricing mechanism for the network provider, i.e., one inathiruth-telling is the optimal strategy for
the customers, even in the presence of coalitions. We givieiag mechanism that is 2-competitive and
O(1)-budget-balanced.

As a means to obtaining this pricing mechanism, we presentitst primal-duaB-approximation
algorithm for this problem. Since the two-stage Stoch&Staner tree problem can be reduced to the
underlying network design, we get a primal-dual algoritlonthe stochastic problem as well. Finally,
as a byproduct of our techniques, we also provide boundseiméfficiency of our mechanism.

1 Introduction

Consider the following connected backbone for tree accessank (CBTAN) design problem: given an
undirected grapld: = (V, E') with metric costs:(e) on the edges, and a roatwe want to build a network
to connect a set df possiblecustomerd/. Thei* customer is specified by a s6t C V of terminals. A
solution to the problem is a set of connected backbone eHge®ntaining the root and a set of access
networksE; one for each customérsuch thatEy U E; contains a Steiner tree connectifgu {r} for all

1. Backbone edgeE), are a factorM/ costlier than the access edgés The total cost to connect any subset
U’ C U of customers isMc(Ey) 4 >,y ¢(E;). Note that the objective of minimizing the total network
cost naturally trades off backbone and access network.costs

The above problem is equivalent to the rooted two-stagéattic Steiner tree probler81ocST) [IKMMO04,
GPRS04, GRS04] where the customers corresporsddnariosand the backbone network corresponds to
the first-stage tree. In line with this analogy, we refer tstomers ascenarios Also, we refer to the nodes
connected by the backbone eddgsto the rootr asbackbone nodesr facilities. Our problem generalizes
the problem of network design for information networks deditny Hayrapetyan et al. [HSTO05] by imposing
connection between facilities. The SROB network desigmlera [SK04, GKR03, PT03] can also derived
from our problem if every scenario is a single terminal.
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In this paper, we are interested igame-theoretic extensia the problem that is perhaps best described as
asubscription pricingproblem: suppose we have a 8ebf [ customers, where customgs ultimate goal is

to connect the sef; to the rootr, and she derives a (privately-heldfjlity «; > 0 from being connected to
the root. We can seBubscriptiongo the potential customers such that a subscription-hgldirstomer is
guaranteed connectivity of her set to the root. The goalsite these subscriptions for potential customers
in such a way that the sale of these subscriptions to sometsabsustomers yields enough money (up to
constant factors) to pay for the cost of the network serdirggé¢ subscription-holding customers.

Formally, we are interested in findingcast-sharing mechanisthat determinegroup-strategyproofsub-
scription priceg; for each customeirin U. Group-strategyproofness implies that reporting theie tutility

u; as their bid should be a dominant strategy for each custandrthe customers should have no incentive
to indulge in strategic behavieven when they are allowed to colludéhe mechanism solicits bid$; };cir

from all customers and commits to serve the customers iff & < b;,7 € U. If there is a customer
whose bid is less than its subscription price (as determyatie mechanism), the process is repeated after
removing all the customers whose bid is lower than their cution price.

Of course, making the subscriptions free would ensureftilitess; to avoid such degenerate solutions, we
would like to ensure other desirable properties. E.g., enaweiesm isbudget balanced the actual cost'(.S)

of servicing the customers ifi is at most the sum of the subscription costs for the custoine¥s—i.e., we
recoup our costs by selling the subscriptions. (In this pape focus om-budget balance, where we only
recover anl/« fraction of C(S); hence budget-balance is the samé-&midget-balance.) A mechanism is
competitiveif the sum of subscription costs to the customersidoes not exceed the cost of an optimal
solution forS. A mechanism is calledfficientif it selects a seb of customers that maximizes tbe#iciency
u(S) — C(S).

Classical results in economics [GKL76, Rob79] state thagleti balance and efficiency cannot be simulta-
neously achieved by any mechanism. Moreover, Feigenbawh [EPS01] recently showed that there is
no group-strategyproof mechanism that always recoversistaot fraction of the maximum efficiency and
a constant fraction of the incurred cost even for the simpledfitree multicast problem. In light of these
impossibility results, previous work on mechanism designally focused on a proper subset of the above
desiderata. One class of such mechanisms are based on avdnoé Moulin and Shenker [MS01], who
show that given am-budget balanced anttoss-monotonic cost sharing methfuat the underlying prob-
lem, the naturaMoulin mechanisniMou99] satisfies botl-budget balance and group-strategyproofness.
Cross-monotonicity imposes that the cost-share computéldebmechanism for each player only decreases
if more players join the game. (Formal definitions are deféto Section 2.) Moulin and Shenker’s frame-
work has recently been applied to game-theoretic variahtsumerous classical optimization problems,
and we will also seek cross-monotone cost-shares for owonletdesign problem to solve the subscription
pricing problem.

Contributions.  Our main result is the following:

Theorem 1.1 There is a cross-monotonic cost sharing schemeCiBTAN that is 2-competitive and 41-
budget-balanced.

As in several previous papers giving cost-shares, we dérese cost shares from a primal-dual algorithm
for the CBTAN problem. However, rather surprising, no primal-dual alipon was previously known
for this problem. We obtain the first primal-dual algorithor £CBTAN and StocST that achieves an 8-
approximation for these problems; due to space constrainssalgorithm is deferred to Appendix A.

The duals generated in such a primal-dual algorithm nagyugale us cost-shares that are competitive and
approximately budget-balanced. However, they are nosemo@notone and hence, we have to work harder
to achieve this property. We are able to extend the resuR&ldind Tardos on SROB network design [PT03]
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to obtain cross-monotone cost shares for this more gerettalg the details of this process (and hence the
proof of the above theorem) appear in Section 3.

Very recently, Roughgarden and Sundararajan [RS06] intred an alternative measure of efficiency that
can be approximated at the same time of budget balance. tio®d¢ we present results on the approxi-
mated efficiency achieved by our mechanism.

Related Work Approximation algorithms for a variant of tt@BTAN problem where the access network
involves direct edges to the backbone nodes have beentwdied [RS99, GKK 01, SK04, KM0O]. Other
variants where no connectivity is sought among the backbodes is studied in [AZ02].

The Stochastic Steiner Tree problem which is equivale@B®AN has been previously studied by [IKMMO04,
GPRS04, GRS04] and constant-factor approximations baseaihalomized selection strategies are known;
however, no primal-dual algorithms were known for the peofol

See Moulin and Shenker [MS01] for a study of group-strategyp mechanisms and how to use cross-
monotonic cost sharing methods to design such mechanisimg the Moulin mechanism [Mou99]. This
work has given game-theoretic variants of problems likedfittee multicast [AFK 04, FKSS03, FPS01],
submodular cost-sharing [MS01], Steiner trees [JV01, KGKfcility location [PT03], single-source rent-
or-buy network design [PT03, LS04, GST04], and Steinerdisr§KLS05]. Lower bounds on the budget
balance achievable by cross-monotonic cost shares am igifvIM05, KLSvZ05)].

2 Preliminaries on Cost Sharing Methods

A cost sharing methogfor a problemlT is an algorithm that, given any subsetC U of players demanding
service, computes a solution for the setmoreover, it computes a non-negative cost slqar€) for each
playeri € S. The following properties of cost-sharing methods will lseful.

Definition 2.1 We say that the cost sharing methoi 5-budget balanced for every subset C U,

5 C(8) < Xies&ilS) < C(9).

A cost sharing method is cross-monotoni¢gMSO01] if for any two setsS andT" such thatS C 7" and any
playeri € S we haveg;(S) > &(T); i.e., the cost shares of a player never increase if moregragnter
the game.

Moulin and Shenker [MS01] showed that, given a budget baldand cross-monotonic cost sharing method
¢ for the underlying problem, the following cost sharing mamism/ (£) (henceforth known as tHdoulin
mechanismsatisfies budget-balance and group-strategyproofrieiglly, let S — U. If for each player

i € S the cost share;(.S) is at most her bid;, we stop. Otherwise, remove fra$rall players whose cost
shares are larger than their bids, and repe&wventually, let;(S) be the costs that are charged to players in
the final setS.

3 A cross-monotonic cost-sharing scheme faCBTAN

In this section, we develop a cross-monotonic cost-shariathod that is competitive and budget balanced
for CBTAN. The algorithm in this section can be perceived a substantiansion of the one in Appendix A,
where instead of running one primal-dual process, weatuextra dual processalled, as in [PT03], the
ghost process-this is a monotone process used to generate the cost stterdmwart of the argument is in
relating the real and ghost processes to each other andhgrthat the cost shares generated by the ghost
process are enough to pay for the actual network created.
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3.1 The Real and Ghost Processes

Note that if the we fix the set of connected backbone edggshe access edges for each customer or sce-
nario can be found relatively easily (say, by using a MST iséiarto connect to the backbone) to complete
the solution. Thus, the problem essentially reduces torfindi low cost set of backbone edges such that
there is a low cost of completion (set of access edges) fdr sanario. Recall that the nodes connected to
the root by the backbone edges are referred to as facilitibackbone nodes. Finding the set of backbone
edges is equivalent to finding the set of facilities that amenected to the root by the backbone edges. The
access edges of each scenario will form a Steiner foresteotetminals of the scenario, each tree of the for-
est containing at least one backbone node. Thus, we woukidmrtheCBTAN problem as one of finding
facilities that are connected to the root through the backhkexrges.

We describe ajhost processwhich is similar to the dual ascent schema of [AKR95], to stauct the
solution and cost shares for all the scenarios. It is sinnilapirit to the idea of ghost process developed
by Pal and Tardos in [PT03] for SROB, where, the ghost of daaminal j is a ball with centerj and
growing uniformly to infinity. However, unlike the mechamdor SROB where each scenario terminal has
a direct connection to some open facility, our ghost protessto assign cost share for building Steiner
tree connections to open facilities. This is done by intiggethe ghost process withseparate dual ascent
Steiner forest processes [AKR95]. For simplicity, we maiimt + 1 different copiegGy, G1, . .., G;) of the
graphG. CopiesGh, . .., Gy correspond to thé scenarios and cop§y corresponds to the open facilities.
Initially, every singleton terminal of scenarias an active component in the cop.

During the course of the algorithm, we would open some loaatinG( astentative facilitiesafter M or
more dual ascent processes in the other copies have maaedtieh tight (in their respective dual packing
constraints). Such a location is a feasible location to @pfatility as it has clusteredi/ different scenario
demands. For simplicity, we assume that a facility can baeegeanywhere along an edge. We can easily
remove this assumption at no additional cost.

We open aeal facility at a tentative locatiori only if there is no real open facility within a distande;
from j, wheret; is the time whery was declared tentatively open. We define a correspondingt ginocess
in copy Gy of the graph, where we run a dual ascent process on tenjatipeh facilities. Each tentatively
open facilityp becomes an active component(y at the instant it is declared open, sgy

Definition 3.1 (Tentative Facility Moats) We call the components #, as thetentative facility moatsThe
ghost of a tentatively open faciliyopened at time, is defined for any time> ¢, as a ballB(p, t — t,)) of
radiust — ¢, around vertex. Tentative facility moats -, are therefore the union of ghost components of
different radii.

Definition 3.2 ((Ghost) Scenario Moats)In each scenario graply;, at any timet, we define a collection
of active components also callaghost scenario moatsr just scenario moats Every terminal in each
scenario has a ghost at any time> 0, which is a ballB3(v,t) of radiust around vertexv. As the time
grows, a ghost of scenariocan eventually collide witi) either another ghost of scenariqin G;), or (ii)
a tentatively facility moat (inzy), to merge into a single active component. The set of scemadats of
scenarioi at timet is the set of disjoint active components of scenaiinG,.

Definition 3.3 (Dark and Lit Moats) We call a scenario moatarkif it does not contain any open facility
(tentative or real) andit if it contains at least one tentatively or real open facility

Initially all the scenario moats are dark. The ghost processlts in one of the following events:



Events in the Ghost Process

1. Two dark scenario moats andC’ intersect in some cop§; of the graph. The two moats merge to
form a new dark scenario mo&atu C’.

2. For some locatiori € V, at leastM scenario moats of different scenarios (i)d. moats in different
copies of the graph) contajnfor the first time.

(a) Declarej as a tentatively open facility. The singleton termigiddecomes an active component
in Go.

(b) All the scenario moats containingare declared “lit”.

(c) If there is no real open facility within a distande; (¢; is the current time) frony, then open a
real facility atj.

3. Adark scenario moat' intersects a lit moat” in some copyG; of the graph. The two moats merge
to form a new lit moat.

4. Two lit scenario moat§’ andC” intersect in some copg;. The two moats merge to form a new lit
moat.

5. A scenario moaf’ (dark or lit) of some scenarid # 0 intersects a tentative facility modt in Gj.
Declare the scenario moétlit if it was dark and merge’ with F. Thus, the new lit moat iid-; is
CUF.

We continue this ghost process until every scenario moaagnthe root. The ghost process described
above lets us decide the cost shares for each terminal andetlsrmines where to open real facilities.

Network Design Algorithm
e Build a Steiner foresi; for each scenario, that connects terminals in scenaiido closest real
facilities (for each component).
e Build a Steiner tree (of backbone edges) over the real fi@silconnecting them to the root.

3.2 Defining the Cost Shares

We now describe the cost shares that are collected by telsmhall the scenarios during the ghost process.
We assign two kinds of cost shares to every termi(alone when it is a part of a dark scenario moat, and
(b) another when it becomes a part of a lit scenario moat. Let fisedthe two cost shares for a termirjal

in scenarici. Let C;(t) be the scenario moat containirigat timet andt} be the first time instant whep

is contained in a lit scenario moat and ﬂ%be the time when the moat containingeaches the root. Thus,
cost share foy till ¢} is defined as:

1
t; 1

1
J; /to o

Here |C;(t)| denotes the number of terminals in the scenario ndg4t) that divide up the cost share
accumulated as dual by this growing moat. Eor tjl,j is in a lit moatC (t).

Definition 3.4 We say that the modt; (¢) contributes to a tentative facility moat! if there exists a terminal
k € C;(t) which is at a distance at mosfrom the moaiM.



Note thatC};(t) could possibly contribute to many facility moats. Supp6gt) contributes to moats
My, ..., M; and letn; be the number of different scenarios contributing to mbgtat time t. Also, let

ne;(r) = MaXi=12,..,1 M- The cost share for the terminals:

covy

t2

J M
f—2 :/ ———dt (3.2)
/ t=t} ’Cj(t)’ Ty (t)

3.3 Properties of the Cost Shares

We need to prove that the cost shares defined above are ctvepetioss-monotone and budget balanced.
To prove competitiveness, we construct a feasible duallfelCBTAN problem from the cost shares of
the terminals. Since, a feasible dual is a lower bound on ptanam cost, it proves that cost shares
are competitive (approximately). The cross-monotonigitgperty follows from the description of ghost
process. The crucial part is proving that cost shares argditimhlanced. In other words, the cost shares of
the terminals can pay for the cost of the network construbtedur algorithm. Charging the cost of access
networks (Steiner foredt;) for each scenario to the cost shares collected by the tafsniri that scenario

is not very difficult and follows standard primal-dual argems [AKR95]. However, proving that the total
cost shares of all terminals are sufficient to pay for therfeteiree over the real facilities is challenging and
requires new ideas and charging techniques. In the folippemmas, we will prove the desired properties
for the cost shares.

Lemma 3.5 The cost sharesf§ + fj2 of terminalj) defined by the dual ascent process are 2-competitive
i.e. 22:1 Zjesk(f} + fj?) < 20PT, where OPT is the optimal cost of the network.

Proof: We need to prove that the total cost shares of all the tersiigaht most two times the optimal
solution. We will show that half times the cost shares formeasible dual. Consider a ma@atat timet of
scenarioi. If C'is a dark scenario moat at timgthe dual5c ; increases at a rate half, i.gtﬂqi = % If C

is a lit scenario moat at timg then%ﬁqi = % Here, we assume that there are locations at each point
along every edge and is an infinitesimal amount of time. Clearly, the individuaksario constraint for
edge packing is never violated. Consider the following aaastraint:

!
> > Bsi<M-ce Vee EVi=1,...,1 (3.2)
i=1 S:¢#£5NS;#£5;,e€8(S)

When an edge is dark, i.e. no tentative facility has been opened on angtioo one, each scenario moat
collects cost share at a rate 1. Thus, total dual collecteshdgts whiche crosses during the time it was
dark is at most@, because at most/ — 1 scenarios components can cresshile it is dark. When
it becomes lit, the total dual collected by all moats tharosses after this instant of time is at mé%.

1 2
Thus, the above constraint is not violated by the scaled difalis, we have that_ ., b ;ij < OPTor

thaty" v (ff + f7) < 20PT. m

Lemma 3.6 The cost sharg + f7 for any terminalj is cross-monotone.

Proof: Suppose a new termingl is added in scenarié. The moats in the ghost process for the new
instance are a superset of the moats in the original instartogs, for any other terminglin scenariok, j
collects cost share at a smaller rate in the new instancernagared to the original instance at any point of
time. For a terminaj in scenariok’ # k, the new terminaj’ can only decrease the rate at whjcbollects
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cost share after it becomes a part of a lit moat. Thus, addifa new terminal decreases the cost shares
for all other terminals which implieg! + f2 is a cross-monotone cost sharing function. [

Budget balance.The proof of budget balance proceeds in two parts. In thegandt we prove that the cost
sharesf! of terminals are enough to connect terminals of a scenarioréal open facility. This is proved
via a standard argument in the following lemma.

Lemma 3.7 For any scenaria,, we can build a Steiner forest over terminalsSpsuch that each Steiner
component is connected to some open facility and the case@teiner forest is at mo&tzjesi fjl.

Proof: Initially the ghost process for terminals of a scenario iaatly similar to the dual ascent process of
the Steiner tree algorithm of [AKR95]. The cost share codlddy each moat is exactly same as the dual
collected in the dual ascent process as long as the moatkis @iaus, consider the time instant (say time
t) when a dark moat becomes lit. At this instant, the cost shares of the terrsioah pay for building a
Steiner tree over them within a factor of 2 [AKR95]. The moath decome lit due to one of the following
events:

1. Some locatiori in the moat is declared tentatively open at timén this case, eitherbecomes a real
open facility or there is a real open facility within a distanrit from [. Thus, the Steiner component
can be connected to a real open facility by paying a cost at #moSince, the moat was dark till time
t, the cumulative cost share collected by the terminals imtbat is at least. Thus, cost of the Steiner
component connecting all the terminals in the méato an open facility is at most} . 4 fjl.

2. Moat.M meets another lit moat of the same scenario. We can buildiaeBteee over the terminals
in M as in the previous case. Moreover, in this case, there existsninalj’ in the lit moat which is
at a distance of at mo&t from some terminal ifM. Thus, terminals inV1 can get connected to an
open facility by connecting to the termingl The cost in this case is at mo:sEjeM fjl.

3. Moat M meets a tentative facility moat. Thus, there exists a tietdacility / which is at a distance
of at most2t from some terminal in moat which implies that the closest real open facility is at
a distance of at mostt from some terminal inM. Thus, the cost of building a Steiner tree on the
terminals inM and connecting them to a real open facility is at mbgjeM fjl.

In the second part, we prove that the cost shares can payifdinigua Steiner tree over the open facilities.
This is more difficult part of the proof and is proved over thiédwing series of lemmas. For the sake of the
analysis, we consider the Steiner tree algorithm over gadlities being run in parallel to the ghost process.

Note that after a scenario moat becomes lit, it collects sloate at a rate that is less than 1. This may not
be a sufficient to pay for Steiner connections between reditfemoats, whose cost i8/ times the cost of
the connection. In this case, however, we argue that thesbase collected by the scenario moats at a time
t' < tis sufficient to pay for the share requested by real facilipata at timest.

We charge the cost of the Steiner connections between @litiéa moats to anerge treever the dark and
the lit moats of each scenario. The merge tree is a virtualwigich we construct during the ghost process.
Each edge in the merge tree has an association fractfda) which is decided during the ghost process.
f(e) is the fraction of the cost of which can be paid by the cost shares of the terminals withionastent
factor.

Merge Tree. To construct the merge tree for scenaijiave consider a slightly modified view of the ghost
process in copyr; of the graph corresponding to scenari®@uppose a lit moat1 intersects with a tentative
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facility moat F' at timet in the ghost process. Recall that we mergeand F' to form a new lit moatM in
the ghost process. In the modified view, we call the tentdtigdity moat ' at timet as ahole H in G;.

Claim 3.8 Consider a moaiM in scenarioi at timet. Any locationj € M is at a distance of at most
from a scenario terminab € M or a hole H C M created during the ghost process.

The merge tree for scenarias constructed as follows:

1. Suppose a moat1; merges with a tentative facility modt at timet¢ at locationj. There exists a
terminalv, € Mj or a holeH; C M; which is at a distancé from j (wlog sayv;). In the merge
tree MT'(7), we construct an edgebetweenv; and;. The fractionf(e) associated witla is the rate
at which.M; collects cost share at time

2. Suppose two moais1; and M, of scenaria merge at locatiorj at timet. We can assume wlog that
Jj is at a distance from some terminal; € M; and some holél, C M. In the merge tre@d/7'(7)
we construct an edgebetweenv; and closest locatioh € H,. The fractionf(e) associated with
the edge is the maximum of the rates at whieh and M, collect cost shares at tinte

Lemma 3.9 The total cost share collected by the terminals of a scenaisaat least a fractionl /4 of the
total cost of M T'(i).

Proof: Observe that the rate at which a scenario moat collects bast slecreases monotonically. The cost
of the edge: joining M; and My, is at mos®t. Letr,(r2) be the rate at whiciM; (M3) collects cost share
at timet and suppose; > r». Thus, using the argument in [AKR95] and charging the coateskollected
by M; twice we can build a virtual edgeat cost share,. The additional factor of is lost because the
cost of the tree is at most twice a feasible dual solution [®ER [

Recall that the dual ascent process for Steiner tree on #hepen facilities continues in assumed to run in
parallel to the ghost process. The following notation wéldsed in the remainder of the proof.

Definition 3.10 The following components will be crucial to the followingdission:

e Ghost component: A tentative facility moat at time and all the terminals of different scenarios
which are within distance of the moat.

e Set of contributors of real facility moatM; at timet: set of scenario terminals which are within a
distance oinax{t,t,} from a real facilityp in moat.M, (wheret, is the opening time of facility).

e Real component: a real facility moatM; at timet and its set of contributors.

The following lemma is a natural consequence of the comtitio opening real facilities.
Lemma 3.11 Any scenario terminad is contained in one real component at any time.

Proof: Suppose is contained in real componeni and Rs at timet. Thus,v is at a distance of at most
max{t,t,} from some real facility € R, and at a distance of at masitax{¢,¢,} from some real facility
q € Ry. Thus,d(p,q) < max{t,t,} + max{t,t,}. Clearly,t < max{t,,,} since, otherwiseé(p, q) < 2t
which implies R; and R, must have merged to form a single real component by timAssume wlog,
t, > t,. Therefored(p, q¢) < 2t,, which contradicts the fact that real facilities are opeatlothp andg. m

The next lemma, similar in spirit to the one in [PT03], helpseélating the cost shares collected by the set
of contributors to the cost of the Steiner tree over operiifi@si.



Lemma 3.12 The set of terminals contained in a ghost component at timiél be contained in the same
real component at timégt.

Proof: Consider a ghost compone@tat timet. There is a real facility-y within a distanceit of each
tentatively open facilityf in the ghost component’. Thus, all the terminals within a distanceof a
tentatively open facilityf are contained in the real component that contains the reditfar, at time
5t. Furthermore, we claim that all the real facilities whicle atose to some tentatively open facility @h
are in the same real component at tifte Letr,,, v, be real facilities within a distancé from tentatively
open facilitiesp, ¢ € C respectively. We can find a path fropto ¢ in C, sayP = {p, f1, f2,- - [, q}
such that any two consecutive locations on the path are atandie of at mostt. This is because andq
are in the same ghost component at timAlso, since each of the locatiorfs, . . ., f; is a tentatively open

facility, there exists a real facility;, which is at a distance of at mo$t from f; fori = 1,... k. Thus, in
the sequence,, 7y, , ..., 7y, , 74, any consecutive real facilities are at a distance of at fwswhich implies
that all of them would be in the same real component at time [

We can now prove that the cost shares collected by the soemaxats are enough to pay for the Steiner
tree over real facilities. Recall that for any real openlfgcip there is no other real open facility within a
distancett, from p, wheret,, is the time wherp is declared open in the ghost process. \f denote the
real component containing. Until time ¢, facility p is the only open facility inM,,. So, the terminals
within a distance of,, from p form the contributor set faM,, at timet < t,,. The following lemma proves
that we can charge the cost of growing real components inirte interval [0, ¢, to the first-stage cost
shares of the set of contributors of the real component sontafacility p at timet,,.

Lemma 3.13 Consider a real open facility and supposeV,, be the real component containipdill time
t,. The cost shares collected by the set of contributors of mvdaican pay for its growth till time,,.

Proof: Real componeni\,, requires a cost share @f - ¢, until time ¢,. Note that there are terminals
from at least)M different scenarios i/,,. Thus, each contributing scenario needs to contribute tzsbase

of at mostt,, towards.M,,. Let v be a contributing terminal itM,, and letB(v, t,) be a ball of radiug,,
aroundv. B(v, t,) does not intersect any real component other théyn Suppose3(v, t,) intersects a real
component?’ # M, at timet’ < 2t,. Thus, there is a real facility € R’ at a distance of less thai,
fromwv. Also, p is at a distance of at mosf from v. Thus, the distance between real facilitieandr is less
than4t,, a contradiction. At timet,, B(v,t,) is contained inM,, thus it does not intersect any other real
component thao\1,,.

For each contributing scenaripconsider a terminal; € M,,.

1. If the scenario moat containing is lit before timet,, then there exists a path from v; to a real
facility ¢ # p. Clearly,q ¢ B(v;,t,) which impliesP crossesB(v;, t,). The part of pati® from v;
to the boundary oB(v;, t,) has lengtht,, and we can charge the share of scenatimvards.M,, to
this part. SinceB(v;,t,) does not intersect any other real component, we do not chiaigypart of
pathP again.

2. If the scenario moat M; containingu; is dark until timet,,,

(a) ifthere is aterminad’ € SM; such that’ ¢ B(v;,t,), then there is a patR,, ,» fromv; to v’
We can charge the part &, ,» within B(v;,t,) to pay the share, towardsM,,.

(b) Assume there is no terminal #/; outsideB(v;,t,). The cost share collected $\/; until
time t, is at leastt,. Thus, we can charge this cost share to pay towards growt puntil



timet,. Since,SM; does not contain any terminal outsif&v;, t,,), the cost share collected by
SM; until t,, is not charged by any other real component.

The following lemma proves that the cost shares can contimgay for the growth of real facility moats
after the time facilities got opened in the ghost process.

Lemma 3.14 Consider a real componerR at time5t. Supposét > t, for all real facilitiesp € R. The
demanding rate oR at time5¢ can be satisfied by the cost shares collected by its set dfiloators at some
timet’ < t.

Proof: Consider a real componeftat time5t > t,,, Vp € R. There are at least/ contributing scenarios
in R. Let T be the terminals of scenarian the set of contributors o at time5t. If there is an active
scenario moaiM at timet in the ghost process of scenatiguch that the terminals o¥1 are contained
in T, then (Lemma 3.12) the rate at whigWl collects cost shares at tines at most the contribution
requested fronR to scenaria at timebst.

Thus, we can assume that every active scenario moat of seerertimet that contains terminals 6f*
is not contained ink. Among the moats containing terminalsBf’, consider the moat’ that contained
aterminalu € T andv ¢ T earliest, say at time;. There exist a path from to v using the edges of
merge tree and holes. Suppose, the fath, v) =< u = g, 1, y1, u1, T2, Y2, U2, . . . , T, Ys, Us = V >,
whereu;,i =1, ..., s is a scenario terminal and, y; are locations on the boundary of hdig c M’.

We claim that for allj = 1,...,s, either bothz;,y; € R or bothz;,y; ¢ R. This is because at time
ts both verticesr;, y; were part of some tentative facility moat and thus were doathin the same ghost
component. Thus, at tim& > 5¢' both vertices must be contained in the same real componaatt(d
Lemma 3.12). Thus, there must be an edgg 1, x;) or (y;,u;) that crossest (wlog say (u;—1,x;)).
Thus, we can charge the demand/oft time5¢ from scenarioi to the fractional cost ofu;_1,z;). The
fraction f(u;_1,x;) corresponding to the edge is greater than the demandingfratelue to Lemma 3.12.

It is also clear that any two real componefsnd R’ cannot load the same portion of an edge of the merge
tree of scenaria. ™

The charge to cost shares for the Steiner forest on the sogaaminals i3 f!' (Lemma 3.7); the cost of the
portion of the Steiner tree on the open facilitiesharged until time,, is 8! (Lemma 3.13). Finally, the
remaining portion of the tree costs chargetod(f! + f2) + 5(f! + f2) by Lemma 3.14. This gives the
following theorem.

Theorem 3.15 The above cost-sharing scheme is 2-competitive, crosstioms and 41-budget balanced.

4 Cost Shares forCBTAN with Approximate Efficiency

In the previous section, we defined cost-shares forGB&AN problem that were cross-monotonic, and
(approximately) budget-balanced. In addition to thesepvaperties, one may also want the cost-shares to
give rise to Moulin mechanisms that result in high socialfargl.

Definition 4.1 Suppose each playérc U has a private utilityu;. ForasetS C U, defineu(S) = >, g ui.
Define thesocial cosfiI(.S) of a setS C U asII(S) = u(U \ S) + C(S). The Moulin mechanism/ () is
said to bea-approximatgRS06] if

(SM) < a-TI(S) VS CU.
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whereS™ is the final set of players computed by the Moulin mechadis®) on U.
We can also prove the following theorem:

Theorem 4.2 There existO(1)-budget-balanced cross-monotonic cost-shares which e @(log? k)-
approximate; i.e., their inefficiency is at maStlog? k) times the inefficiency of any cost-sharing mecha-
nism.

Due to lack of space, all the details are given in Appendix BiisTresult extends the recent result of
Roughgarden and Sundararajan [RS], who presented a casstonic cost-sharing scheme for the Single-
Source Rent-or-Buy§SRoB) problem with an approximate efficiency 6f(log? k). We end by noting
that while we can define these cost-shares which are croestor® and even have a better budget balance
factor than the cost shares defined in section 3, we do notayet éin efficient algorithm to compute these
cost shares.
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A A Primal-Dual Algorithm for CBTAN

A.1 LP formulation

Here, we present a primal dual algorithm for t88TAN problem for which the LP relaxation can be
formulated as follows.

min MZGEE Ce - BUS + Zizl ZeEE Ce - wle
Yeessy (@t +20) > 1 VS:S;i CSVi=1,...,1
290t > 0 Vee E\Vi=1,...,1

A setS crossesS; if SNS; € {0, S;}, and we denote it bg ©.S;. Then the dual of the above linear program

IS

!
max Dic1 ZS:SQSi Bs,i
. ZS:SQSi,eE(S(S) ﬁsﬂ'
Zizl ZS:SQSi,eEJ(S) Bs.i

co Vee E\Vi=1,...,1 (1)
M-c. VeeENi=1,...,1 (2)

IN N
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For simplicity, we assume that a facility can be opened amya/along an edge. We show later how to
remove this assumption incurring no additional cost.

A.2 The primal-dual algorithm

The algorithm runs in two phases. In the first phase, it ifiestthe locations to open facilities and connects
the demand points to some open facility and in the secondephlsilds a Steiner tree on the open facilities.
The basic intuition behind the algorithm is simple: since #uges connecting the open facilities chst
times more than the edges connecting the demands to thiéidacithe algorithm opens a facility only after

it has succeeded in clustering demands frbfndifferent scenarios. This allows us to associate at least
M different scenarios for each open facility and thus we cagnfpathe costlier connection between open
facilities. Given this simple intuition, we need to flesh the details, which we do in the following section.

A.2.1 The Algorithm: Phase I.

In this phase, we use the dual-ascent schema as in [AKR95,55\WFr each scenarigg we maintain a
separate Steiner foregt. We start with active components for each scenario as sorgterminals of that
scenario. Attime = 0, all the variablesis; are zero, and all the forests, = (). We start raising the dual
values for active components uniformly until one of thedaling events happen.

i. (Edge becomes tight.Jror some active componeftof scenariai and edge: € 4(5), the constraint
(1) becomes tight. We include the edgén the forestF; for scenarioi and update the active com-
ponents, possibly merging two or more active components@fario:. If the new componens’
contains an open facility, wieeezethe componens’ (i.e., we do not increase the dual variabtgs ;
any further).

ii. (M scenarios meet.)For some locatiory, components from at leadt/ different scenarios contain
the locationj. In this case, wdreezeall the active components containirigand create dentative
facility at j (thereby adding to a setF' of tentative facilities).

We continue this process of raising duals of active compisnentil all active components are frozen. We
sometimes call these growing componestsnario components or moatst the end of Phase |, we are left
with a subgrapht; for each scenarié which connects each terminal in scenario some tentative facility
in F, and let{ 35} be the final dual solution. Phase | of the algorithm procesdsliows.

I-1. (Opening facilities.) Let F' be the set of tentative facilities and lgtbe the time whernj € F' was
declared a tentative facility. We consider facilities inri@asing order of opening timeg and declare
some tentative facilityj to be anopen (real) facilityif there is no open facilityj’ with ¢;; < t; and
distanced(j, j') < 4t;. Let F’ be the set of open facilities. We include root as an openitiaail £".

I-2. (Removing Redundant edges.lFor every scenario i, we remove the redundant edges froméiees
forest F;; i.e. for each componerit’ € F;, we select a minimal subgraghthat spans the terminals
in C' belonging to scenarie. Note that?" may not contain an open facility at this point, so we let
J € F be the tentative facility in the componefitwith the smallest;. We add a path connectirigy
to this facility j in the subgraphf; and delete the rest of the edgeg af

I-3. (Rerouting components.) Since only a subset of the tentative facilities are openaesnaponentl’
from scenariai may not have any open facility in it, so we add a shortest paitim /" to its closest
open facility to the edges if;.
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The result of the above operations is aBebf open facilitiesand a set of forest®; (one for each scenario)
such that each node ifi; is connected via edges ifi; to some open facility inf’. Before we describe
Phase II, we present two simple lemmas that bound the cosiesétforestd”;; proofs of these lemmas
follow from standard primal-dual arguments, see e.g. [ABRROW95].

Lemma A.1 (Cost of Step I-2) For any scenarioi, let T be a component obtained after ste in the
above procedure. TherT') <2 o-p fs.i-

Lemma A.2 (Cost of Step I-3) Let T be a component itk; after Stepl-2, which happens to contain no
open facility. Then the cost of connectiiigo the closest open facility iR is at most ) ¢ 7 Bs.i

Proof: Letthe tre€l’ be obtained by removing redundant edges from some compa6hédayt construction,
treeT’ contains a tentative facility in C' with the smallest;. Due tot; being the smallest, each terminal
v € C must be in an active componefit C 7" at any time instant < t¢;. Hence) ¢.q 1 f(s: > t;.
Moreover, sincg is not opened in Step1, there is an open facility within distande; of j, and hence the
rerouting cost is bounded b; < 4% g7 Bs. [

A.2.2 The Algorithm: Phase Il.

We now go on to Phase Il of the algorithm, where we build a 8teiree connecting the open facilities.
A little notation: each open facility € F’ has at leasf\/ different scenario components that contgin
Let K; C [I] be the set of scenarios whose Steiner components copt&ior each such scenarioe K,
consider the component; containingj, and the terminad’ € C’ closest tqj. Let B; = B(v}, ¢;) be a ball
of radiust; around the terminat;. Let K, C K; be the)M scenarios in; in order of increasing distance
d(j, v?) of the closest terminal’ from the open facility;.

Lemma A.3 Letj, j' be two facilities, with € K7 andi’ € KJ,. ThenB} and B]Zi', are disjoint.

Proof: Suppose € BiN BY,. Thus,d(v,v}) < ¢; andd(v, vi)) < t;. Also,d(j,v]) < t; andd(j’,v%,) <
t.. Thus, the distance between facilititand;” is at most(d(j, v) +d(v, j')) < 2t;+2t; < 4max{t;, t;}
which contradicts the rule of opening facilities. [

The algorithm of Phase Il is particularly simple.

II-1. (Define Initial Moats.) Define aninitial active moataround the open facility asM; = B(j,t;)
wheret; is the time of opening of. By Lemma A.3, the moats for two open facilitigsand j' must
be disjoint.

lI-2. (Connect Facilities.) Starting with initial moatsM;, run the Steiner tree algorithm of [AKR95,
GW95] to connect all open facilities iA".

The following lemma proves when we run the primal-dual athan in Step 11-2, the duals3’ we create
actually form a feasible dual for the problem.

Lemma A.4 The cost of Steiner trégr on the open facilities is at mo?.tzli:1 > scv Bs Whereg' is a
feasible dual.

Proof: (Sketch) There are two components in the cost of the treesecting the real facilities that must be
accounted for - the portion of edges not inside the initiahta@an be accounted for within a factor of two of
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the growing dual$¥’ as in a standard primal dual argument; The portion of theviitken the initial moats is
more problematic. Note that the initial moat around a reailifg  that was opened &t contains at least/
different scenario moats that have been accumulating fluadd least time; for a total dual ofA/t;. Since
every pairi, j of real open facilities are pairwis@ax(4t;, 4t;) apart, each initial moat arounds active
accumulating dual for at least anothgitime. We can charge the portion of edges of lengtmside the
initial moat+ to the portion of the same edge along the firgtme of growth around this initial moat, thus
arguing that the cost of the full tree including the portiamside the initial moats is at most twice the cost
of the portions outside them. (This charging idea is analsgo one in [RS99], and reused in [GKK1].)
Since the portions outside have been argued to be at most tiaccumulated dual (which can be seen to
be feasible), the overall cost of the tree is at most four siméeasible dual as claimed. [

Theorem A.5 The primal-dual algorithm foCBTAN is a 8-approximation algorithm.

B Cost-Shares with Approximate Efficiency

In Section 3, we defined cost-shares for ®BTAN problem that were cross-monotonic, and (approxi-
mately) budget-balanced. In addition to these two proggrttne may also want the cost-shares to give rise
to Moulin mechanisms that result in high social welfare. lietestate the theorem we want to prove:

Theorem 4.2 There existO(1)-budget-balanced cross-monotonic cost-shares whichlsoeOdlog? k)-
approximate; i.e., their inefficiency is at mastlog® k) times the inefficiency of any cost-sharing mecha-
nism.

The results of this section extend the recent result of Rgaigten and Sundararajan [RS], who presented
a cross-monotonic cost-sharing scheme for the Singleesdrent-or-Buy $SRoB) problem with an ap-
proximate efficiency oD (log? k). (The fact that our result is an extension of the resulS8RoB follows
from the fact that th&SRoB problem is the same as t@BTAN problem where the scenarios are singleton
vertices; see, e.g., [[KMMO04].) The cost-sharing schemenmilledefine is based on the “boosted sampling”
technique proposed in [GPRS04] f8tocST, which we now describe.

B.1 TheBoost-and-Sample Framework

The Boost and Sample framework was proposed in [GPRSO04] to obtain an algorithnthe two-stage
stochastic versiostoc(IT) of some combinatorial optimization proble given an algorithm for the orig-
inal problemlII itself:

Algorithm B.1 TheBoost-and-Sample Algorithm:
B-1. Boosted SamplingSamples times from the set of scenarios to get sets of termifals. ., S, .

B-2. Building First Stage SolutianBuild an a-approximate solution for the clients =  J; S;.

B-3. Building recourse When actual future in the form of a sétof clients appears, augment the solution
of StepB-2 to a feasible solution faof'.

A crucial role in the analysis of this technique is played Iy hotion ofstrictnesgGKPR03, GPRS04]:

Definition B.2 Given ana-approximation algorithmd for the problentl, the functiort : 2V x U — Rx
is a (3-strict cost sharing function if the following properties hold:
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1. (voluntary participation. ) For a setS C U, £(S,7) > O only forj € S.
2. (fairmess) ForasetS C U, > .5 &(S,j) < C(OPT(S5)).

3. (strictnesg If 5" = SUT, then} .., &(5,5) > (1/8)x cost ofaugmentinghe solutionA(S) to a
solution ofS” at cost at mosB > .- £(5", 7).

Theorem B.3 ([GPRSO04]) Given a combinatorial optimization problehhthat is sub-additive, le#l be an
a-approximation algorithm for its deterministic versiontiwva 3-strict cost-sharing function. TheBoost-
and-Sample is an (« + [3)-approximation forStoc(IT).

B.2 Defining the Cost Shares

Let us use the MST-heuristic to approximate the Steinerdoegputed in Step-2; i.e., we find a minimum
spanning tree on the metric completi6i{S) of the vertex setS. (In the following, we abuse notation
slightly and assume the root vertexs part ofS.) It is well-known that a minimum spanning tree 6(.5)

is a2-approximation of the optimal Steiner tree Sr(see, e.g., [Vaz01]).

One way of computing the MST on a set of points is to bidireetrgundirected edge, run Edmonds’ primal-
dual algorithm [Edm67] to compute a minimum cost arboresegand then to simply discard the directions
on edges. We can associate the standard notion of time witlokds’ primal-dual algorithm of, and at
time ¢, uses;(t) to denote the number of vertices in the strongly connectedpoment containing. We
define;(t) = 1/s;(t) if the component containing does not contain the root, am(t) = 0 otherwise.
Jain and Vazirani [JV01] showed the cost shatgs= % fooo B;(t)dt are cross-monotonic aritibudget-
balanced for the Steiner tree game. (We refer to these basts as thdV cost shareén the following
discussion.)

It is natural to consider the playgis randomcost share (with respect to the random.Sgas
> Lgs(t)dt if g and
agy = {Jo PO TS, (B.3)
’ 0 if j¢8.

Then the cost-shai€(S, j) can be defined as

£(5,7) = Eslas,].

Following the arguments presented in [LS04, GST04] for$isRoB problem, one can infer that the cost
sharest are competitive and cross-monotonic for BBTAN problem. In order to prove that they are also
budget balanced faZBTAN, we need to prove that they are both approximated and strict.

Lemma B.4 The cost shares defined by Jain and Vazirani [JV01] for thén&tetree problem are2-
approximated an@-strict.

Proof: JV cost shares arz-approximated [JVO1]. For proving-strictness, consider sets of terminéls
T, andS” = S UT and the execution of the branching algorithm of Edmondsor_et C be a strongly
connected componendt C 7' that connects at timeto vertexv of a component” that either contains the
rootr or a vertex ofS. We know that the total cost share collected by the verti€€s tdl time ¢ is sufficient
to pay for at least half a spanning tree@fand half the cost of the edge connectifigo vertexv. For the
base of the induction, the lemma is proved i= r or if v € S. For the inductive step, i§ € 7', assume
that the total cost share collected by the vertice® of C” till time ¢ is sufficient to pay for the connection
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to vertices ofS N C'’ or to rootr € C’. The claim then follows since vertexwill allow the vertices ofC to
connect tar or to a vertex ofS N C’. This implies 2-strictness of JV cost-shares. [

We finally prove that the cost-sharésS, j) are approximately efficient fd@BTAN. Roughgarden and Sun-
dararajan [RS06] proved that the Moulin mechani&h() is (« + 3)-approximate and-budget balanced
if £ is a-summableind3-budget balanced. The summability of a cost sharing methdédfined as follows:
Assume we are given an arbitrary permutationn the players irV and a subse$ C U of players. We
assume that the players thare ordered according tg i.e., S = {i1,...,4g} wherei; <, i if and only

if 1 <j<k<|S|. WedefineS; C S as the (ordered) set of the firsplayers ofS according to the order
g.

Definition B.5 A cost sharing methoglis a-summabléf for every orderings and every subsei C U

S|

> &,(8) <a-C(S). (B.4)
j=1

wheresS; is the set of the first players, and;; is thej" player according to the ordering.
Lemma B.6 Cost shareg S, j) are O(log? k)-summable for th€BTAN cost function.

Proof: The expected cost of the solution provided by Bwost-and-Sample algorithm is related by a
constant factor to the expected cost of a Steiner tree cadmut a sef = | J;_, S;. The proof then reduce
to the summability of the Steiner tree cost function, i.e/eg a fix ordero of players inS,

5]
> &, (8)) = Olog” k) - Csr(S), (B.5)
j=1

whereS; is the set of the firsy players,i; is the j*" player according to the ordering, andCgz(S) is
the cost function of a Steiner tree connectifigo the rootr. The claim the follows from the (log? k)-
summability of JV’s cost shares [RS06]. [

We therefore conclude with

Theorem B.7 Cost shareg(S, ;) are cross-monotonic, 4-approximated afidlog? k)-approximately effi-
cient for theCBTAN problem.
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