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Abstract

Consider the followingnetwork subscription pricingproblem. We are given a graphG = (V, E)
with a rootr, and potential customers are companies headquartered atr with locations at a subset of
nodes. Every customer requires a network connecting its locations tor. The network provider can
build this network with a combination ofbackboneedges (consisting of high capacity cables) that can
route any subset of the customers, andaccessedges that can route only a single customer’s traffic. The
backbone edges costM times that of the access edges. Our goal is to devise agroup-strategyproof
pricing mechanism for the network provider, i.e., one in which truth-telling is the optimal strategy for
the customers, even in the presence of coalitions. We give a pricing mechanism that is 2-competitive and
O(1)-budget-balanced.

As a means to obtaining this pricing mechanism, we present the first primal-dual8-approximation
algorithm for this problem. Since the two-stage StochasticSteiner tree problem can be reduced to the
underlying network design, we get a primal-dual algorithm for the stochastic problem as well. Finally,
as a byproduct of our techniques, we also provide bounds on the inefficiency of our mechanism.

1 Introduction

Consider the following connected backbone for tree access network (CBTAN) design problem: given an
undirected graphG = (V,E) with metric costsc(e) on the edges, and a rootr, we want to build a network
to connect a set ofl possiblecustomersU . Theith customer is specified by a setSi ⊆ V of terminals. A
solution to the problem is a set of connected backbone edgesE0 containing the rootr and a set of access
networksEi one for each customeri such thatE0 ∪ Ei contains a Steiner tree connectingSi ∪ {r} for all
i. Backbone edgesE0 are a factorM costlier than the access edgesEi. The total cost to connect any subset
U ′ ⊆ U of customers isMc(E0) +

∑

i∈U ′ c(Ei). Note that the objective of minimizing the total network
cost naturally trades off backbone and access network costs.

The above problem is equivalent to the rooted two-stage stochastic Steiner tree problem (StocST) [IKMM04,
GPRS04, GRS04] where the customers correspond toscenariosand the backbone network corresponds to
the first-stage tree. In line with this analogy, we refer to customers asscenarios. Also, we refer to the nodes
connected by the backbone edgesE0 to the rootr asbackbone nodesor facilities. Our problem generalizes
the problem of network design for information networks defined by Hayrapetyan et al. [HST05] by imposing
connection between facilities. The SROB network design problem [SK04, GKR03, PT03] can also derived
from our problem if every scenario is a single terminal.
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In this paper, we are interested in agame-theoretic extensionof the problem that is perhaps best described as
asubscription pricingproblem: suppose we have a setU of l customers, where customeri’s ultimate goal is
to connect the setSi to the rootr, and she derives a (privately-held)utility ui ≥ 0 from being connected to
the root. We can sellsubscriptionsto the potential customers such that a subscription-holding customer is
guaranteed connectivity of her set to the root. The goal is toprice these subscriptions for potential customers
in such a way that the sale of these subscriptions to some subset of customers yields enough money (up to
constant factors) to pay for the cost of the network serving these subscription-holding customers.

Formally, we are interested in finding acost-sharing mechanismthat determinesgroup-strategyproofsub-
scription pricesξi for each customeri in U . Group-strategyproofness implies that reporting their true utility
ui as their bid should be a dominant strategy for each customer,and the customers should have no incentive
to indulge in strategic behavioreven when they are allowed to collude. The mechanism solicits bids{bi}i∈U

from all customers and commits to serve the customers inU iff ξi ≤ bi, i ∈ U . If there is a customer
whose bid is less than its subscription price (as determinedby the mechanism), the process is repeated after
removing all the customers whose bid is lower than their subscription price.

Of course, making the subscriptions free would ensure truthfulness; to avoid such degenerate solutions, we
would like to ensure other desirable properties. E.g., a mechanism isbudget balancedif the actual costC(S)
of servicing the customers inS is at most the sum of the subscription costs for the customersin S—i.e., we
recoup our costs by selling the subscriptions. (In this paper, we focus onα-budget balance, where we only
recover an1/α fraction ofC(S); hence budget-balance is the same as1-budget-balance.) A mechanism is
competitiveif the sum of subscription costs to the customers inS does not exceed the cost of an optimal
solution forS. A mechanism is calledefficientif it selects a setS of customers that maximizes theefficiency
u(S) − C(S).

Classical results in economics [GKL76, Rob79] state that budget balance and efficiency cannot be simulta-
neously achieved by any mechanism. Moreover, Feigenbaum etal. [FPS01] recently showed that there is
no group-strategyproof mechanism that always recovers a constant fraction of the maximum efficiency and
a constant fraction of the incurred cost even for the simple fixed-tree multicast problem. In light of these
impossibility results, previous work on mechanism design usually focused on a proper subset of the above
desiderata. One class of such mechanisms are based on a framework of Moulin and Shenker [MS01], who
show that given anα-budget balanced andcross-monotonic cost sharing methodfor the underlying prob-
lem, the naturalMoulin mechanism[Mou99] satisfies bothα-budget balance and group-strategyproofness.
Cross-monotonicity imposes that the cost-share computed by the mechanism for each player only decreases
if more players join the game. (Formal definitions are deferred to Section 2.) Moulin and Shenker’s frame-
work has recently been applied to game-theoretic variants of numerous classical optimization problems,
and we will also seek cross-monotone cost-shares for our network design problem to solve the subscription
pricing problem.

Contributions. Our main result is the following:

Theorem 1.1 There is a cross-monotonic cost sharing scheme forCBTAN that is 2-competitive and 41-
budget-balanced.

As in several previous papers giving cost-shares, we derivethese cost shares from a primal-dual algorithm
for the CBTAN problem. However, rather surprising, no primal-dual algorithm was previously known
for this problem. We obtain the first primal-dual algorithm for CBTAN andStocST that achieves an 8-
approximation for these problems; due to space constraints, this algorithm is deferred to Appendix A.

The duals generated in such a primal-dual algorithm naturally give us cost-shares that are competitive and
approximately budget-balanced. However, they are not cross-monotone and hence, we have to work harder
to achieve this property. We are able to extend the results ofPál and Tardos on SROB network design [PT03]
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to obtain cross-monotone cost shares for this more general setting; the details of this process (and hence the
proof of the above theorem) appear in Section 3.

Very recently, Roughgarden and Sundararajan [RS06] introduced an alternative measure of efficiency that
can be approximated at the same time of budget balance. In Section 4, we present results on the approxi-
mated efficiency achieved by our mechanism.

Related Work Approximation algorithms for a variant of theCBTAN problem where the access network
involves direct edges to the backbone nodes have been well-studied [RS99, GKK+01, SK04, KM00]. Other
variants where no connectivity is sought among the backbonenodes is studied in [AZ02].

The Stochastic Steiner Tree problem which is equivalent toCBTAN has been previously studied by [IKMM04,
GPRS04, GRS04] and constant-factor approximations based on randomized selection strategies are known;
however, no primal-dual algorithms were known for the problem.

See Moulin and Shenker [MS01] for a study of group-strategyproof mechanisms and how to use cross-
monotonic cost sharing methods to design such mechanisms using the Moulin mechanism [Mou99]. This
work has given game-theoretic variants of problems like fixed-tree multicast [AFK+04, FKSS03, FPS01],
submodular cost-sharing [MS01], Steiner trees [JV01, KSK96], facility location [PT03], single-source rent-
or-buy network design [PT03, LS04, GST04], and Steiner forests [KLS05]. Lower bounds on the budget
balance achievable by cross-monotonic cost shares are given in [IMM05, KLSvZ05].

2 Preliminaries on Cost Sharing Methods

A cost sharing methodξ for a problemΠ is an algorithm that, given any subsetS ⊆ U of players demanding
service, computes a solution for the setS; moreover, it computes a non-negative cost shareξi(S) for each
playeri ∈ S. The following properties of cost-sharing methods will be useful.

Definition 2.1 We say that the cost sharing methodξ is β-budget balancedif for every subsetS ⊆ U ,

1
β
· C(S) ≤

∑

i∈S ξi(S) ≤ C(S).

A cost sharing methodξ is cross-monotonic[MS01] if for any two setsS andT such thatS ⊆ T and any
player i ∈ S we haveξi(S) ≥ ξi(T ); i.e., the cost shares of a player never increase if more players enter
the game.

Moulin and Shenker [MS01] showed that, given a budget balanced and cross-monotonic cost sharing method
ξ for the underlying problem, the following cost sharing mechanismM(ξ) (henceforth known as theMoulin
mechanism) satisfies budget-balance and group-strategyproofness:initially, let S → U . If for each player
i ∈ S the cost shareξi(S) is at most her bidbi, we stop. Otherwise, remove fromS all players whose cost
shares are larger than their bids, and repeat. Eventually, letξi(S) be the costs that are charged to players in
the final setS.

3 A cross-monotonic cost-sharing scheme forCBTAN

In this section, we develop a cross-monotonic cost-sharingmethod that is competitive and budget balanced
for CBTAN. The algorithm in this section can be perceived a substantial extension of the one in Appendix A,
where instead of running one primal-dual process, we runan extra dual processcalled, as in [PT03], the
ghost process—this is a monotone process used to generate the cost shares;the heart of the argument is in
relating the real and ghost processes to each other and arguing that the cost shares generated by the ghost
process are enough to pay for the actual network created.
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3.1 The Real and Ghost Processes

Note that if the we fix the set of connected backbone edgesE0, the access edges for each customer or sce-
nario can be found relatively easily (say, by using a MST heuristic to connect to the backbone) to complete
the solution. Thus, the problem essentially reduces to finding a low cost set of backbone edges such that
there is a low cost of completion (set of access edges) for each scenario. Recall that the nodes connected to
the root by the backbone edges are referred to as facilities or backbone nodes. Finding the set of backbone
edges is equivalent to finding the set of facilities that are connected to the root by the backbone edges. The
access edges of each scenario will form a Steiner forest on the terminals of the scenario, each tree of the for-
est containing at least one backbone node. Thus, we would consider theCBTAN problem as one of finding
facilities that are connected to the root through the backbone edges.

We describe aghost process, which is similar to the dual ascent schema of [AKR95], to construct the
solution and cost shares for all the scenarios. It is similarin spirit to the idea of ghost process developed
by Pál and Tardos in [PT03] for SROB, where, the ghost of eachterminal j is a ball with centerj and
growing uniformly to infinity. However, unlike the mechanism for SROB where each scenario terminal has
a direct connection to some open facility, our ghost processhas to assign cost share for building Steiner
tree connections to open facilities. This is done by integrating the ghost process withl separate dual ascent
Steiner forest processes [AKR95]. For simplicity, we maintain l+1 different copies(G0, G1, . . . , Gl) of the
graphG. CopiesG1, . . . , Gl correspond to thel scenarios and copyG0 corresponds to the open facilities.
Initially, every singleton terminal of scenarioi is an active component in the copyGi.

During the course of the algorithm, we would open some locations inG0 astentative facilitiesafterM or
more dual ascent processes in the other copies have made the location tight (in their respective dual packing
constraints). Such a location is a feasible location to opena facility as it has clusteredM different scenario
demands. For simplicity, we assume that a facility can be opened anywhere along an edge. We can easily
remove this assumption at no additional cost.

We open areal facility at a tentative locationj only if there is no real open facility within a distance4tj
from j, wheretj is the time whenj was declared tentatively open. We define a corresponding ghost process
in copyG0 of the graph, where we run a dual ascent process on tentatively open facilities. Each tentatively
open facilityp becomes an active component inG0 at the instant it is declared open, saytp.

Definition 3.1 (Tentative Facility Moats) We call the components inG0 as thetentative facility moats. The
ghost of a tentatively open facilityp opened at timetp is defined for any timet ≥ tp as a ballB(p, t− tp) of
radiust − tp around vertexp. Tentative facility moats inG0 are therefore the union of ghost components of
different radii.

Definition 3.2 ((Ghost) Scenario Moats)In each scenario graphGi, at any timet, we define a collection
of active components also calledghost scenario moatsor just scenario moats. Every terminal in each
scenario has a ghost at any timet ≥ 0, which is a ballB(v, t) of radius t around vertexv. As the time
grows, a ghost of scenarioi can eventually collide with(i) either another ghost of scenarioi (in Gi), or (ii)
a tentatively facility moat (inG0), to merge into a single active component. The set of scenario moats of
scenarioi at timet is the set of disjoint active components of scenarioi in Gi.

Definition 3.3 (Dark and Lit Moats) We call a scenario moatdark if it does not contain any open facility
(tentative or real) andlit if it contains at least one tentatively or real open facility.

Initially all the scenario moats are dark. The ghost processresults in one of the following events:
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Events in the Ghost Process

1. Two dark scenario moatsC andC ′ intersect in some copyGi of the graph. The two moats merge to
form a new dark scenario moatC ∪ C ′.

2. For some locationj ∈ V , at leastM scenario moats of different scenarios (i.e.M moats in different
copies of the graph) containj for the first time.

(a) Declarej as a tentatively open facility. The singleton terminalj becomes an active component
in G0.

(b) All the scenario moats containingj are declared “lit”.

(c) If there is no real open facility within a distance4tj (tj is the current time) fromj, then open a
real facility atj.

3. A dark scenario moatC intersects a lit moatC ′ in some copyGi of the graph. The two moats merge
to form a new lit moat.

4. Two lit scenario moatsC andC ′ intersect in some copyGi. The two moats merge to form a new lit
moat.

5. A scenario moatC (dark or lit) of some scenarioi 6= 0 intersects a tentative facility moatF in G0.
Declare the scenario moatC lit if it was dark and mergeC with F . Thus, the new lit moat inGi is
C ∪ F .

We continue this ghost process until every scenario moat contains the root. The ghost process described
above lets us decide the cost shares for each terminal and also determines where to open real facilities.

Network Design Algorithm
• Build a Steiner forestEi for each scenarioi, that connects terminals in scenarioi to closest real

facilities (for each component).
• Build a Steiner tree (of backbone edges) over the real facilities connecting them to the root.

3.2 Defining the Cost Shares

We now describe the cost shares that are collected by terminals of all the scenarios during the ghost process.
We assign two kinds of cost shares to every terminal:(a) one when it is a part of a dark scenario moat, and
(b) another when it becomes a part of a lit scenario moat. Let us define the two cost shares for a terminalj
in scenarioi. Let Cj(t) be the scenario moat containingj at timet andt1j be the first time instant whenj
is contained in a lit scenario moat and lett2j be the time when the moat containingj reaches the root. Thus,
cost share forj till t1j is defined as:

f1
j =

∫ t1j

t=0

1

|Cj(t)|
dt

Here |Cj(t)| denotes the number of terminals in the scenario moatCj(t) that divide up the cost share
accumulated as dual by this growing moat. Fort ≥ t1j , j is in a lit moatCj(t).

Definition 3.4 We say that the moatCj(t) contributes to a tentative facility moatM if there exists a terminal
k ∈ Cj(t) which is at a distance at mostt from the moatM.
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Note thatCj(t) could possibly contribute to many facility moats. SupposeCj(t) contributes to moats
M1, . . . ,Ml and letni be the number of different scenarios contributing to moatMi at time t. Also, let
nCj(t) = maxi=1,2,...,l ni. The cost share for the terminalj is:

f2
j =

∫ t2j

t=t1j

M

|Cj(t)| · nCj(t)
dt (3.1)

3.3 Properties of the Cost Shares

We need to prove that the cost shares defined above are competitive, cross-monotone and budget balanced.
To prove competitiveness, we construct a feasible dual for the CBTAN problem from the cost shares of
the terminals. Since, a feasible dual is a lower bound on the optimum cost, it proves that cost shares
are competitive (approximately). The cross-monotonicityproperty follows from the description of ghost
process. The crucial part is proving that cost shares are budget-balanced. In other words, the cost shares of
the terminals can pay for the cost of the network constructedby our algorithm. Charging the cost of access
networks (Steiner forestEi) for each scenario to the cost shares collected by the terminals of that scenario
is not very difficult and follows standard primal-dual arguments [AKR95]. However, proving that the total
cost shares of all terminals are sufficient to pay for the Steiner tree over the real facilities is challenging and
requires new ideas and charging techniques. In the following lemmas, we will prove the desired properties
for the cost shares.

Lemma 3.5 The cost shares (f1
j + f2

j of terminalj) defined by the dual ascent process are 2-competitive

i.e.
∑l

k=1

∑

j∈Sk
(f1

j + f2
j ) ≤ 2OPT, where OPT is the optimal cost of the network.

Proof: We need to prove that the total cost shares of all the terminals is at most two times the optimal
solution. We will show that half times the cost shares form a feasible dual. Consider a moatC at timet of
scenarioi. If C is a dark scenario moat at timet, the dualβC,i increases at a rate half, i.e.d

dt
βC,i = 1

2 . If C

is a lit scenario moat at timet, then d
dt

βC,i = M
2nC(t)

. Here, we assume that there are locations at each point

along every edge anddt is an infinitesimal amount of time. Clearly, the individual scenario constraint for
edge packing is never violated. Consider the following dualconstraint:

l
∑

i=1

∑

S:φ 6=S∩Si 6=Si,e∈δ(S)

βS,i ≤ M · ce ∀e ∈ E,∀i = 1, . . . , l (3.2)

When an edgee is dark, i.e. no tentative facility has been opened on any location one, each scenario moat
collects cost share at a rate 1. Thus, total dual collected bymoats whiche crosses during the time it was
dark is at most(M−1)ce

2 , because at mostM − 1 scenarios components can crosse while it is dark. When
it becomes lit, the total dual collected by all moats thate crosses after this instant of time is at mostMce

2 .

Thus, the above constraint is not violated by the scaled dual. Thus, we have that
∑

j∈V

f1
j +f2

j

2 ≤ OPT or
that

∑

j∈V (f1
j + f2

j ) ≤ 2OPT.

Lemma 3.6 The cost sharef1
j + f2

j for any terminalj is cross-monotone.

Proof: Suppose a new terminalj′ is added in scenariok. The moats in the ghost process for the new
instance are a superset of the moats in the original instance. Thus, for any other terminalj in scenariok, j
collects cost share at a smaller rate in the new instance as compared to the original instance at any point of
time. For a terminalj in scenariok′ 6= k, the new terminalj′ can only decrease the rate at whichj collects
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cost share after it becomes a part of a lit moat. Thus, addition of a new terminal decreases the cost shares
for all other terminals which impliesf1

i + f2
i is a cross-monotone cost sharing function.

Budget balance.The proof of budget balance proceeds in two parts. In the firstpart, we prove that the cost
sharesf1 of terminals are enough to connect terminals of a scenario toa real open facility. This is proved
via a standard argument in the following lemma.

Lemma 3.7 For any scenarioi, we can build a Steiner forest over terminals inSi such that each Steiner
component is connected to some open facility and the cost of the Steiner forest is at most8

∑

j∈Si
f1

j .

Proof: Initially the ghost process for terminals of a scenario is exactly similar to the dual ascent process of
the Steiner tree algorithm of [AKR95]. The cost share collected by each moat is exactly same as the dual
collected in the dual ascent process as long as the moat is dark. Thus, consider the time instant (say time
t) when a dark moatM becomes lit. At this instant, the cost shares of the terminals can pay for building a
Steiner tree over them within a factor of 2 [AKR95]. The moat can become lit due to one of the following
events:

1. Some locationl in the moat is declared tentatively open at timet. In this case, eitherl becomes a real
open facility or there is a real open facility within a distance4t from l. Thus, the Steiner component
can be connected to a real open facility by paying a cost at most 4t. Since, the moat was dark till time
t, the cumulative cost share collected by the terminals in themoat is at leastt. Thus, cost of the Steiner
component connecting all the terminals in the moatM to an open facility is at most6

∑

j∈M f1
j .

2. MoatM meets another lit moat of the same scenario. We can build a Steiner tree over the terminals
in M as in the previous case. Moreover, in this case, there existsa terminalj′ in the lit moat which is
at a distance of at most2t from some terminal inM. Thus, terminals inM can get connected to an
open facility by connecting to the terminalj′. The cost in this case is at most4

∑

j∈M f1
j .

3. MoatM meets a tentative facility moat. Thus, there exists a tentative facility l which is at a distance
of at most2t from some terminal in moatM which implies that the closest real open facility is at
a distance of at most6t from some terminal inM. Thus, the cost of building a Steiner tree on the
terminals inM and connecting them to a real open facility is at most8

∑

j∈M f1
j .

In the second part, we prove that the cost shares can pay for building a Steiner tree over the open facilities.
This is more difficult part of the proof and is proved over the following series of lemmas. For the sake of the
analysis, we consider the Steiner tree algorithm over real facilities being run in parallel to the ghost process.

Note that after a scenario moat becomes lit, it collects costshare at a rate that is less than 1. This may not
be a sufficient to pay for Steiner connections between real facility moats, whose cost isM times the cost of
the connection. In this case, however, we argue that the costshare collected by the scenario moats at a time
t′ ≤ t is sufficient to pay for the share requested by real facility moats at time5t.

We charge the cost of the Steiner connections between real facilities moats to amerge treeover the dark and
the lit moats of each scenario. The merge tree is a virtual tree which we construct during the ghost process.
Each edgee in the merge tree has an association fractionf(e) which is decided during the ghost process.
f(e) is the fraction of the cost ofe which can be paid by the cost shares of the terminals within a constant
factor.

Merge Tree. To construct the merge tree for scenarioi, we consider a slightly modified view of the ghost
process in copyGi of the graph corresponding to scenarioi. Suppose a lit moatM intersects with a tentative
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facility moatF at timet in the ghost process. Recall that we mergeM andF to form a new lit moatM in
the ghost process. In the modified view, we call the tentativefacility moatF at timet as aholeH in Gi.

Claim 3.8 Consider a moatM in scenarioi at timet. Any locationj ∈ M is at a distance of at mostt
from a scenario terminalv ∈ M or a holeH ⊂ M created during the ghost process.

The merge tree for scenarioi is constructed as follows:

1. Suppose a moatM1 merges with a tentative facility moatF at timet at locationj. There exists a
terminalv1 ∈ M1 or a holeH1 ⊂ M1 which is at a distancet from j (wlog sayv1). In the merge
treeMT (i), we construct an edgee betweenv1 andj. The fractionf(e) associated withe is the rate
at whichM1 collects cost share at timet.

2. Suppose two moatsM1 andM2 of scenarioi merge at locationj at timet. We can assume wlog that
j is at a distancet from some terminalv1 ∈ M1 and some holeH2 ⊂ M2. In the merge treeMT (i)
we construct an edgee betweenv1 and closest locationh ∈ H2. The fractionf(e) associated with
the edge is the maximum of the rates at whichM1 andM2 collect cost shares at timet.

Lemma 3.9 The total cost share collected by the terminals of a scenarioi is at least a fraction1/4 of the
total cost ofMT (i).

Proof: Observe that the rate at which a scenario moat collects cost share decreases monotonically. The cost
of the edgee joiningM1 andM2 is at most2t. Let r1(r2) be the rate at whichM1(M2) collects cost share
at timet and supposer1 > r2. Thus, using the argument in [AKR95] and charging the cost share collected
by M1 twice we can build a virtual edgee at cost sharer1. The additional factor of2 is lost because the
cost of the tree is at most twice a feasible dual solution [AKR95].

Recall that the dual ascent process for Steiner tree on the real open facilities continues in assumed to run in
parallel to the ghost process. The following notation will be used in the remainder of the proof.

Definition 3.10 The following components will be crucial to the following discussion:

• Ghost component: A tentative facility moat at timet and all the terminals of different scenarios
which are within distancet of the moat.
• Set of contributors of real facility moatMt at timet: set of scenario terminals which are within a
distance ofmax{t, tp} from a real facilityp in moatMt (wheretp is the opening time of facilityp).
• Real component: a real facility moatMt at timet and its set of contributors.

The following lemma is a natural consequence of the condition for opening real facilities.

Lemma 3.11 Any scenario terminalv is contained in one real component at any time.

Proof: Supposev is contained in real componentsR1 andR2 at timet. Thus,v is at a distance of at most
max{t, tp} from some real facilityp ∈ R1 and at a distance of at mostmax{t, tq} from some real facility
q ∈ R2. Thus,d(p, q) ≤ max{t, tp} + max{t, tq}. Clearly,t < max{tp, tq} since, otherwised(p, q) ≤ 2t
which impliesR1 andR2 must have merged to form a single real component by timet. Assume wlog,
tp ≥ tq. Therefore,d(p, q) ≤ 2tp, which contradicts the fact that real facilities are openedat bothp andq.

The next lemma, similar in spirit to the one in [PT03], helps in relating the cost shares collected by the set
of contributors to the cost of the Steiner tree over open facilities.
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Lemma 3.12 The set of terminals contained in a ghost component at timet will be contained in the same
real component at time5t.

Proof: Consider a ghost componentC at timet. There is a real facilityrf within a distance4t of each
tentatively open facilityf in the ghost componentC. Thus, all the terminals within a distancet of a
tentatively open facilityf are contained in the real component that contains the real facility rf at time
5t. Furthermore, we claim that all the real facilities which are close to some tentatively open facility inC
are in the same real component at time5t. Let rp, rq be real facilities within a distance4t from tentatively
open facilitiesp, q ∈ C respectively. We can find a path fromp to q in C, sayP = {p, f1, f2, . . . , fk, q}
such that any two consecutive locations on the path are at a distance of at most2t. This is becausep andq
are in the same ghost component at timet. Also, since each of the locationsf1, . . . , fk is a tentatively open
facility, there exists a real facilityrfi

which is at a distance of at most4t from fi for i = 1, . . . , k. Thus, in
the sequencerp, rf1 , . . . , rfk

, rq, any consecutive real facilities are at a distance of at most10t which implies
that all of them would be in the same real component at time5t.

We can now prove that the cost shares collected by the scenario moats are enough to pay for the Steiner
tree over real facilities. Recall that for any real open facility p there is no other real open facility within a
distance4tp from p, wheretp is the time whenp is declared open in the ghost process. LetMp denote the
real component containingp. Until time tp, facility p is the only open facility inMp. So, the terminals
within a distance oftp from p form the contributor set forMp at timet ≤ tp. The following lemma proves
that we can charge the cost of growing real components in the time interval [0, tp] to the first-stage cost
shares of the set of contributors of the real component containing facility p at timetp.

Lemma 3.13 Consider a real open facilityp and supposeMp be the real component containingp till time
tp. The cost shares collected by the set of contributors of moatMp can pay for its growth till timetp.

Proof: Real componentMp requires a cost share ofM · tp until time tp. Note that there are terminals
from at leastM different scenarios inMp. Thus, each contributing scenario needs to contribute a cost share
of at mosttp towardsMp. Let v be a contributing terminal inMp and letB(v, tp) be a ball of radiustp
aroundv. B(v, tp) does not intersect any real component other thanMp. SupposeB(v, tp) intersects a real
componentR′ 6= Mp at timet′ < 2tp. Thus, there is a real facilityr ∈ R′ at a distance of less than3tp
from v. Also,p is at a distance of at mosttp from v. Thus, the distance between real facilitiesp andr is less
than4tp, a contradiction. At time2tp, B(v, tp) is contained inMp, thus it does not intersect any other real
component thanMp.

For each contributing scenarioi, consider a terminalvi ∈ Mp.

1. If the scenario moat containingvi is lit before timetp, then there exists a pathP from vi to a real
facility q 6= p. Clearly,q /∈ B(vi, tp) which impliesP crossesB(vi, tp). The part of pathP from vi

to the boundary ofB(vi, tp) has lengthtp and we can charge the share of scenarioi towardsMp to
this part. Since,B(vi, tp) does not intersect any other real component, we do not chargethis part of
pathP again.

2. If the scenario moatSMi containingvi is dark until timetp,

(a) if there is a terminalv′ ∈ SMi such thatv′ /∈ B(vi, tp), then there is a pathPvi,v′ from vi to v′.
We can charge the part ofPvi,v′ within B(vi, tp) to pay the sharetp towardsMp.

(b) Assume there is no terminal inSMi outsideB(vi, tp). The cost share collected bySMi until
time tp is at leasttp. Thus, we can charge this cost share to pay towards growth ofMp until
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time tp. Since,SMi does not contain any terminal outsideB(vi, tp), the cost share collected by
SMi until tp is not charged by any other real component.

The following lemma proves that the cost shares can continueto pay for the growth of real facility moats
after the time facilities got opened in the ghost process.

Lemma 3.14 Consider a real componentR at time5t. Suppose5t > tp for all real facilities p ∈ R. The
demanding rate ofR at time5t can be satisfied by the cost shares collected by its set of contributors at some
timet′ ≤ t.

Proof: Consider a real componentR at time5t > tp,∀p ∈ R. There are at leastM contributing scenarios
in R. Let TR

i be the terminals of scenarioi in the set of contributors ofR at time5t. If there is an active
scenario moatM at timet in the ghost process of scenarioi such that the terminals ofM are contained
in TR

i , then (Lemma 3.12) the rate at whichM collects cost shares at timet is at most the contribution
requested fromR to scenarioi at time5t.

Thus, we can assume that every active scenario moat of scenario i at timet that contains terminals ofTR
i

is not contained inR. Among the moats containing terminals ofTR
i , consider the moatM′ that contained

a terminalu ∈ TR
i andv /∈ TR

i earliest, say at timetf . There exist a path fromu to v using the edges of
merge tree and holes. Suppose, the pathP(u, v) =< u = u0, x1, y1, u1, x2, y2, u2, . . . , xs, ys, us = v >,
whereui, i = 1, . . . , s is a scenario terminal andxi, yi are locations on the boundary of holeHi ⊂ M′.

We claim that for allj = 1, . . . , s, either bothxj , yj ∈ R or bothxj , yj /∈ R. This is because at time
tf both verticesxj , yj were part of some tentative facility moat and thus were contained in the same ghost
component. Thus, at time5t > 5t′ both vertices must be contained in the same real component (due to
Lemma 3.12). Thus, there must be an edge(uj−1, xj) or (yj, uj) that crossesR (wlog say(uj−1, xj)).
Thus, we can charge the demand ofR at time5t from scenarioi to the fractional cost of(uj−1, xj). The
fractionf(uj−1, xj) corresponding to the edge is greater than the demanding rateof R due to Lemma 3.12.

It is also clear that any two real componentsR andR′ cannot load the same portion of an edge of the merge
tree of scenarioi.

The charge to cost shares for the Steiner forest on the scenario terminals is8f1 (Lemma 3.7); the cost of the
portion of the Steiner tree on the open facilitiesp charged until timetp is 8f1 (Lemma 3.13). Finally, the
remaining portion of the tree costs charge to5 · 4(f1 + f2) + 5(f1 + f2) by Lemma 3.14. This gives the
following theorem.

Theorem 3.15 The above cost-sharing scheme is 2-competitive, cross-monotone and 41-budget balanced.

4 Cost Shares forCBTAN with Approximate Efficiency

In the previous section, we defined cost-shares for theCBTAN problem that were cross-monotonic, and
(approximately) budget-balanced. In addition to these twoproperties, one may also want the cost-shares to
give rise to Moulin mechanisms that result in high social welfare.

Definition 4.1 Suppose each playeri ∈ U has a private utilityui. For a setS ⊆ U , defineu(S) =
∑

i∈S ui.
Define thesocial costΠ(S) of a setS ⊆ U asΠ(S) = u(U \ S) + C(S). The Moulin mechanismM(ξ) is
said to beα-approximate[RS06] if

Π(SM ) ≤ α · Π(S) ∀S ⊆ U.
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whereSM is the final set of players computed by the Moulin mechanismM(ξ) onU .

We can also prove the following theorem:

Theorem 4.2 There existO(1)-budget-balanced cross-monotonic cost-shares which are also O(log2 k)-
approximate; i.e., their inefficiency is at mostO(log2 k) times the inefficiency of any cost-sharing mecha-
nism.

Due to lack of space, all the details are given in Appendix B. This result extends the recent result of
Roughgarden and Sundararajan [RS], who presented a cross-monotonic cost-sharing scheme for the Single-
Source Rent-or-Buy (SSRoB) problem with an approximate efficiency ofO(log2 k). We end by noting
that while we can define these cost-shares which are cross-monotone and even have a better budget balance
factor than the cost shares defined in section 3, we do not yet have an efficient algorithm to compute these
cost shares.
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A A Primal-Dual Algorithm for CBTAN

A.1 LP formulation

Here, we present a primal dual algorithm for theCBTAN problem for which the LP relaxation can be
formulated as follows.

min M
∑

e∈E ce · x
0
e +

∑l
i=1

∑

e∈E ce · x
i
e

∑

e∈δ(S)(x
i
e + x0

e) ≥ 1 ∀S : Si ( S,∀i = 1, . . . , l

x0
e, x

i
e ≥ 0 ∀e ∈ E,∀i = 1, . . . , l

A setS crossesSi if S∩Si 6∈ {∅, Si}, and we denote it byS⊙Si. Then the dual of the above linear program
is

max
∑l

i=1

∑

S:S⊙Si
βS,i

∑

S:S⊙Si,e∈δ(S) βS,i ≤ ce ∀e ∈ E,∀i = 1, . . . , l (1)
∑l

i=1

∑

S:S⊙Si,e∈δ(S) βS,i ≤ M · ce ∀e ∈ E,∀i = 1, . . . , l (2)
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For simplicity, we assume that a facility can be opened anywhere along an edge. We show later how to
remove this assumption incurring no additional cost.

A.2 The primal-dual algorithm

The algorithm runs in two phases. In the first phase, it identifies the locations to open facilities and connects
the demand points to some open facility and in the second phase it builds a Steiner tree on the open facilities.
The basic intuition behind the algorithm is simple: since the edges connecting the open facilities costM
times more than the edges connecting the demands to the facilities, the algorithm opens a facility only after
it has succeeded in clustering demands fromM different scenarios. This allows us to associate at least
M different scenarios for each open facility and thus we can pay for the costlier connection between open
facilities. Given this simple intuition, we need to flesh outthe details, which we do in the following section.

A.2.1 The Algorithm: Phase I.

In this phase, we use the dual-ascent schema as in [AKR95, GW95]. For each scenarioi, we maintain a
separate Steiner forestEi. We start with active components for each scenario as singleton terminals of that
scenario. At timet = 0, all the variablesβS,i are zero, and all the forestsEi = ∅. We start raising the dual
values for active components uniformly until one of the following events happen.

i. (Edge becomes tight.)For some active componentS of scenarioi and edgee ∈ δ(S), the constraint
(1) becomes tight. We include the edgee in the forestEi for scenarioi and update the active com-
ponents, possibly merging two or more active components of scenarioi. If the new componentS′

contains an open facility, wefreezethe componentS′ (i.e., we do not increase the dual variablesβS′,i

any further).

ii. (M scenarios meet.)For some locationj, components from at leastM different scenarios contain
the locationj. In this case, wefreezeall the active components containingj and create atentative
facility at j (thereby addingj to a setF of tentative facilities).

We continue this process of raising duals of active components until all active components are frozen. We
sometimes call these growing componentsscenario components or moats. At the end of Phase I, we are left
with a subgraphEi for each scenarioi which connects each terminal in scenarioi to some tentative facility
in F , and let{βS,i} be the final dual solution. Phase I of the algorithm proceeds as follows.

I -1. (Opening facilities.) Let F be the set of tentative facilities and lettj be the time whenj ∈ F was
declared a tentative facility. We consider facilities in increasing order of opening timestj, and declare
some tentative facilityj to be anopen (real) facilityif there is no open facilityj′ with tj′ ≤ tj and
distanced(j, j′) ≤ 4tj . Let F ′ be the set of open facilities. We include root as an open facility in F ′.

I -2. (Removing Redundant edges.)For every scenario i, we remove the redundant edges from the Steiner
forestEi; i.e. for each componentC ∈ Ei, we select a minimal subgraphT that spans the terminals
in C belonging to scenarioi. Note thatT may not contain an open facility at this point, so we let
j ∈ F be the tentative facility in the componentC with the smallesttj . We add a path connectingT
to this facility j in the subgraphEi and delete the rest of the edges ofC.

I -3. (Rerouting components.)Since only a subset of the tentative facilities are opened, acomponentT
from scenarioi may not have any open facility in it, so we add a shortest path from T to its closest
open facility to the edges inEi.
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The result of the above operations is a setF ′ of open facilitiesand a set of forestsEi (one for each scenario)
such that each node inSi is connected via edges inEi to some open facility inF ′. Before we describe
Phase II, we present two simple lemmas that bound the cost of these forestsEi; proofs of these lemmas
follow from standard primal-dual arguments, see e.g. [AKR95, GW95].

Lemma A.1 (Cost of Step I-2) For any scenarioi, let T be a component obtained after stepI-2 in the
above procedure. Thenc(T ) ≤ 2

∑

S(T βS,i.

Lemma A.2 (Cost of Step I-3) Let T be a component inEi after StepI-2, which happens to contain no
open facility. Then the cost of connectingT to the closest open facility inF ′ is at most4

∑

S⊂T βS,i

Proof: Let the treeT be obtained by removing redundant edges from some componentC; by construction,
treeT contains a tentative facilityj in C with the smallesttj. Due totj being the smallest, each terminal
v ∈ C must be in an active componentS ⊂ T at any time instantt < tj. Hence

∑

S:S⊂T βS,i ≥ tj.
Moreover, sincej is not opened in StepI -1, there is an open facility within distance4tj of j, and hence the
rerouting cost is bounded by4tj ≤ 4

∑

S⊂T βS,i.

A.2.2 The Algorithm: Phase II.

We now go on to Phase II of the algorithm, where we build a Steiner tree connecting the open facilities.
A little notation: each open facilityj ∈ F ′ has at leastM different scenario components that containj.
Let Kj ⊆ [l] be the set of scenarios whose Steiner components containj. For each such scenarioi ∈ Kj,
consider the componentCi

j containingj, and the terminalvi
j ∈ Ci

j closest toj. LetBi
j = B(vi

j, tj) be a ball
of radiustj around the terminalvi

j . Let K ′
j ⊆ Kj be theM scenarios inKj in order of increasing distance

d(j, vi
j) of the closest terminalvi

j from the open facilityj.

Lemma A.3 Let j, j′ be two facilities, withi ∈ K ′
j andi′ ∈ K ′

j′ . ThenBi
j andBi′

j′ are disjoint.

Proof: Supposev ∈ Bi
j ∩Bi′

j′ . Thus,d(v, vi
j) ≤ tj andd(v, vi′

j′) ≤ tj′ . Also,d(j, vj
i ) ≤ tj andd(j′, vi′

j′) ≤
t′j. Thus, the distance between facilitiesj andj′ is at most(d(j, v)+d(v, j′)) ≤ 2tj +2tj′ ≤ 4max{tj, tj′}
which contradicts the rule of opening facilities.

The algorithm of Phase II is particularly simple.

II-1 . (Define Initial Moats.) Define aninitial active moataround the open facilityj asMj = B(j, tj)
wheretj is the time of opening ofj. By Lemma A.3, the moats for two open facilitiesj andj′ must
be disjoint.

II-2 . (Connect Facilities.) Starting with initial moatsMj , run the Steiner tree algorithm of [AKR95,
GW95] to connect all open facilities inF ′.

The following lemma proves when we run the primal-dual algorithm in Step II-2 , the dualsβ′ we create
actually form a feasible dual for the problem.

Lemma A.4 The cost of Steiner treeTF on the open facilities is at most4
∑l

i=1

∑

S⊂V β′
S,i, whereβ′ is a

feasible dual.

Proof: (Sketch) There are two components in the cost of the trees connecting the real facilities that must be
accounted for - the portion of edges not inside the initial moats can be accounted for within a factor of two of
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the growing dualsβ′ as in a standard primal dual argument; The portion of the treewithin the initial moats is
more problematic. Note that the initial moat around a real facility i that was opened atti contains at leastM
different scenario moats that have been accumulating dualsfor at least timeti for a total dual ofMti. Since
every pairi, j of real open facilities are pairwisemax(4ti, 4tj) apart, each initial moat aroundi is active
accumulating dual for at least anotherti time. We can charge the portion of edges of lengthti inside the
initial moat i to the portion of the same edge along the firstti time of growth around this initial moat, thus
arguing that the cost of the full tree including the portionsinside the initial moats is at most twice the cost
of the portions outside them. (This charging idea is analogous to one in [RS99], and reused in [GKK+01].)
Since the portions outside have been argued to be at most twice the accumulated dual (which can be seen to
be feasible), the overall cost of the tree is at most four times a feasible dual as claimed.

Theorem A.5 The primal-dual algorithm forCBTAN is a 8-approximation algorithm.

B Cost-Shares with Approximate Efficiency

In Section 3, we defined cost-shares for theCBTAN problem that were cross-monotonic, and (approxi-
mately) budget-balanced. In addition to these two properties, one may also want the cost-shares to give rise
to Moulin mechanisms that result in high social welfare. Letus restate the theorem we want to prove:

Theorem 4.2 There existO(1)-budget-balanced cross-monotonic cost-shares which are also O(log2 k)-
approximate; i.e., their inefficiency is at mostO(log2 k) times the inefficiency of any cost-sharing mecha-
nism.

The results of this section extend the recent result of Roughgarden and Sundararajan [RS], who presented
a cross-monotonic cost-sharing scheme for the Single-Source Rent-or-Buy (SSRoB) problem with an ap-
proximate efficiency ofO(log2 k). (The fact that our result is an extension of the result forSSRoB follows
from the fact that theSSRoB problem is the same as theCBTAN problem where the scenarios are singleton
vertices; see, e.g., [IKMM04].) The cost-sharing scheme wewill define is based on the “boosted sampling”
technique proposed in [GPRS04] forStocST, which we now describe.

B.1 TheBoost-and-Sample Framework

The Boost and Sample framework was proposed in [GPRS04] to obtain an algorithm for the two-stage
stochastic versionStoc(Π) of some combinatorial optimization problemΠ, given an algorithm for the orig-
inal problemΠ itself:

Algorithm B.1 TheBoost-and-Sample Algorithm:

B-1. Boosted Sampling: Sampleσ times from the set of scenarios to get sets of terminalsS1, . . . , Sσ.

B-2. Building First Stage Solution: Build anα-approximate solution for the clientsS =
⋃

i Si.

B-3. Building recourse: When actual future in the form of a setT of clients appears, augment the solution
of StepB-2 to a feasible solution forT .

A crucial role in the analysis of this technique is played by the notion ofstrictness[GKPR03, GPRS04]:

Definition B.2 Given anα-approximation algorithmA for the problemΠ, the functionξ : 2U ×U → R≥0

is aβ-strict cost sharing function if the following properties hold:
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1. (voluntary participation. ) For a setS ⊆ U , ξ(S, j) > 0 only for j ∈ S.

2. (fairness) For a setS ⊆ U ,
∑

j∈S ξ(S, j) ≤ C(OPT (S)).

3. (strictness) If S′ = S ∪ T , then
∑

j∈T ξ(S′, j) ≥ (1/β)× cost ofaugmentingthe solutionA(S) to a
solution ofS′ at cost at mostβ

∑

j∈T ξ(S′, j).

Theorem B.3 ([GPRS04])Given a combinatorial optimization problemΠ that is sub-additive, letA be an
α-approximation algorithm for its deterministic version with aβ-strict cost-sharing function. ThenBoost-
and-Sample is an(α + β)-approximation forStoc(Π).

B.2 Defining the Cost Shares

Let us use the MST-heuristic to approximate the Steiner treecomputed in StepB-2; i.e., we find a minimum
spanning tree on the metric completionG(S) of the vertex setS. (In the following, we abuse notation
slightly and assume the root vertexr is part ofS.) It is well-known that a minimum spanning tree onG(S)
is a2-approximation of the optimal Steiner tree onS (see, e.g., [Vaz01]).

One way of computing the MST on a set of points is to bidirect every undirected edge, run Edmonds’ primal-
dual algorithm [Edm67] to compute a minimum cost arborescence, and then to simply discard the directions
on edges. We can associate the standard notion of time with Edmonds’ primal-dual algorithm onS, and at
time t, usesj(t) to denote the number of vertices in the strongly connected component containingj. We
defineβj(t) = 1/sj(t) if the component containingj does not contain the root, andβj(t) = 0 otherwise.
Jain and Vazirani [JV01] showed the cost sharesαj = 1

2

∫ ∞
0 βj(t)dt are cross-monotonic and2-budget-

balanced for the Steiner tree game. (We refer to these cost-shares as theJV cost sharesin the following
discussion.)

It is natural to consider the playerj’s randomcost share (with respect to the random setS) as

αS,j =

{

∫ ∞
0

1
2βj(t)dt if j ∈ S, and

0 if j /∈ S.
(B.3)

Then the cost-shareξ(S, j) can be defined as

ξ(S, j) = ES [αS,j].

Following the arguments presented in [LS04, GST04] for theSSRoB problem, one can infer that the cost
sharesξ are competitive and cross-monotonic for theCBTAN problem. In order to prove that they are also
budget balanced forCBTAN, we need to prove that they are both approximated and strict.

Lemma B.4 The cost shares defined by Jain and Vazirani [JV01] for the Steiner tree problem are2-
approximated and2-strict.

Proof: JV cost shares are2-approximated [JV01]. For proving2-strictness, consider sets of terminalsS,
T , andS′ = S ∪ T and the execution of the branching algorithm of Edmonds onS′. Let C be a strongly
connected componentC ⊆ T that connects at timet to vertexv of a componentC ′ that either contains the
rootr or a vertex ofS. We know that the total cost share collected by the vertices of C till time t is sufficient
to pay for at least half a spanning tree ofC and half the cost of the edge connectingC to vertexv. For the
base of the induction, the lemma is proved ifv = r or if v ∈ S. For the inductive step, ifv ∈ T , assume
that the total cost share collected by the vertices ofT ∩ C ′ till time t is sufficient to pay for the connection

16



to vertices ofS ∩C ′ or to rootr ∈ C ′. The claim then follows since vertexv will allow the vertices ofC to
connect tor or to a vertex ofS ∩ C ′. This implies 2-strictness of JV cost-shares.

We finally prove that the cost-sharesξ(S, j) are approximately efficient forCBTAN. Roughgarden and Sun-
dararajan [RS06] proved that the Moulin mechanismM(ξ) is (α + β)-approximate andβ-budget balanced
if ξ is α-summableandβ-budget balanced. The summability of a cost sharing method is defined as follows:
Assume we are given an arbitrary permutationσ on the players inU and a subsetS ⊆ U of players. We
assume that the players inS are ordered according toσ, i.e.,S = {i1, . . . , i|S|} whereij ≺σ ik if and only
if 1 ≤ j < k ≤ |S|. We defineSj ⊆ S as the (ordered) set of the firstj players ofS according to the order
σ.

Definition B.5 A cost sharing methodξ is α-summableif for every orderingσ and every subsetS ⊆ U

|S|
∑

j=1

ξij(Sj) ≤ α · C(S). (B.4)

whereSj is the set of the firstj players, andij is thejth player according to the orderingσ.

Lemma B.6 Cost sharesξ(S, j) areO(log2 k)-summable for theCBTAN cost function.

Proof: The expected cost of the solution provided by theBoost-and-Sample algorithm is related by a
constant factor to the expected cost of a Steiner tree computed on a setS =

⋃σ
i=1 Si. The proof then reduce

to the summability of the Steiner tree cost function, i.e., given a fix orderσ of players inS,

|S|
∑

j=1

ξij(Sj) = O(log2 k) · CST (S), (B.5)

whereSj is the set of the firstj players,ij is thejth player according to the orderingσ, andCST (S) is
the cost function of a Steiner tree connectingS to the rootr. The claim the follows from theO(log2 k)-
summability of JV’s cost shares [RS06].

We therefore conclude with

Theorem B.7 Cost sharesξ(S, j) are cross-monotonic, 4-approximated andO(log2 k)-approximately effi-
cient for theCBTAN problem.
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