
A Matter of Degree: Improved Approximation Algorithms forDegree-Bounded Minimum Spanning Trees �J. K�onemann R. RaviAbstra
tIn this paper, we present a new bi
riteria approximation algorithm for the degree-bounded minimum spanning tree problem. In this problem, we are given an undire
tedgraph, a nonnegative 
ost fun
tion on the edges, and a positive integer B�, and the goal isto �nd a minimum 
ost spanning tree T with maximumdegree at most B�. In an n-nodegraph, our algorithm �nds a spanning tree with maximum degree O(B� + logn) and 
ostO( optB�) where optB� is the minimum 
ost of any spanning whose maximum degree isat most B�. Our algorithm uses ideas from Lagrangean duality in a novel way. We showhow a set of optimum Lagrangean multipliers yields bounds on both the degree and the
ost of the 
omputed solution.1 Introdu
tion1.1 Motivation and formulationIn the design of 
omputer networks a fundamental problem is that of transmitting a singleinformation pa
ket from a given sour
e-host to a set of re
ipient-hosts. This problem is widelyknown as the broad
ast or multi
ast problem, depending on whether we want to transmit thepa
ket to all other hosts or to a spe
i�
 subset of re
ipients. Both problems have beenwidely studied [3, 5, 16℄. In parti
ular, it is believed that the multi
ast problem will play anin
reasingly important role in data networks.A naive solution to the multi
ast problem would be to implement it as a series of uni
asts.In other words, the sour
e sends a single pa
ket to every re
ipient host. The routing isdone independently for ea
h of the uni
asts. However, the 
ost of this approa
h in terms ofbandwidth 
onsumption be
omes una

eptable if the number of hosts in the multi
ast groupgrows.Graph theoreti
 ideas have turned out to be essential in the design of eÆ
ient network routingproto
ols. A physi
al network 
an be modeled as a 
omplete graph where ea
h host is asso
i-ated with a node and an edge uv represents the virtual link between the 
orresponding hosts.Usually, edges of that graph are annotated by the transmission delay of the 
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1 INTRODUCTION 2virtual link. A standard solution to broad
asting and multi
asting problems is then to sendpa
kets along the edges of a minimum spanning tree rooted at the sour
e node [16℄. Everyinternal node dupli
ates the in
oming message and sends it to its 
hildren.However, a spanning tree might have a high fan-out out at 
ertain internal nodes. Swit
hesin point-to-point networks may vary in their ability to support multi
asting. That is, somerouters may not support multi
asting at all and others may only support a limited number of
opies they 
an make of an in
oming pa
ket [18℄. Bauer and Varma [1℄ show that it is naturalto model swit
h 
apabilities by node degrees in graphs.The pre
eding dis
ussion suggests that a solution to the multi
asting problem should minimizethe total transmission delay and the maximum degree of a vertex in the 
omputed solution.Traditional approa
hes for this kind of bi
riteria problem often 
ompute the minimum solutionunder a linear 
ombination of the two 
ost measures [2℄. However, in the 
ase of very disparateobje
tives these te
hniques do usually not produ
e useful solutions.In this paper, we address a natural budgeted version of the degree-bounded minimum spanningtree problem. Here, we are given an undire
ted graph G = (V;E), a 
ost fun
tion 
 : E ! IR+and a positive integer B � 2. We would like to �nd a spanning tree T of maximum vertexdegree at most B and minimum 
ost. This formulation was �rst introdu
ed in [15℄ and 
anbe modeled by the following integer linear program.optB = min Xe2E 
exe (IP)s.t x(Æ(v)) � B 8v 2 V (1)x 2 SPGHere, Æ(v) denotes the set of all edges of E that are in
ident to v and SPG is the spanningtree polyhedron, that is, the 
onvex hull of edge-in
iden
e ve
tors of spanning trees of G.1.2 Previous work and our resultRavi et al. [15℄ showed how to 
ompute a spanning tree T of maximum degree O(B log ( nB ))and total 
ost at most O(logn) optB . They generalize their ideas to Steiner trees, generalizedSteiner forests and the node-weighted 
ase.Another result that is related to our work is given in a paper by Khuller, Raghava
hari andYoung [11℄. The authors show how to 
ompute a spanning tree of n points in the plane thathas degree at most 3 (4) and weight at most 1:5 (1:25) that of a minimum weight spanningtree (without any degree 
onstraints).While the approximation fa
tor of O(logn) on the 
ost of the solution 
annot be improvedsubstantially (via redu
tions from the set 
overing problem [12℄) in the node-weighted 
ase,improvements for the edge-weighted 
ase were left open in [15℄. Our main result is su
h animprovement and is stated in the following theorem. We denote the degree of a node v in treeT by ÆT (v). Let the maximum node degree in a tree T be denoted by �(T ).



1 INTRODUCTION 3Theorem 1 There is a polynomial-time approximation algorithm that, given a graph G =(V;E), a nonnegative 
ost fun
tion 
 : E ! IR+, a 
onstant B� � 2 and a parameter ! > 0,
omputes a spanning tree T su
h that1. �(T ) � (1 + !)bB�+ logb n for any arbitrary 
onstant b > 12. 
(T ) < (1 + 1=!)optB�.For instan
e, 
hoosing ! = 1=2 and b = 2 would yield a tree with degree at most 3B�+log2 nand 
ost at most 3 optB� .1.3 Te
hnique: Lagrangean DualityOur algorithm builds on the Lagrangean dual of (IP) resulting from dualizing the degree
onstraints. We denote its value by optLD(B) .max��0 minT2SPG f
(T ) +Xv2V �v(ÆT (v)� B)g: (LD(B))For any �xed � � 0, an optimum integral solution to IP is a feasible 
andidate for attainingthe inner minimum above. Sin
e the maximum degree of su
h a solution is at most B and� � 0, it follows that optLD(B) is a lower bound on optB .Proposition 1 [13℄ optLD(B) � optBThe interesting fa
t is that optLD(B) 
an be 
omputed in polynomial time [13℄. The result isa ve
tor �B of optimum Lagrangean multipliers on the nodes and a set of optimum trees OB,all of whi
h a
hieve the inner minimum for this set of multipliers. In other words, every treeTB 2 OB minimizes the following obje
tive:
(TB) +Xv2V �Bv (ÆTB(v)� B):Given �B, the task of �nding a tree T that minimizes the above obje
tive fun
tion is 
alledthe Lagrangean subproblem of LD(B).Using 
�B(uv) = 
(uv) + �Bu + �Bv the last expression 
an be restated as
�B(TB)� BXv2V �Bv (2)Noti
e that for a given �B and B, the se
ond term is a 
onstant. Hen
e, any minimumspanning tree of G under 
ost 
�B , denoted by MST(G; 
�B), is a solution for T .An important feature of our algorithm is to relax the degree 
onstraints slightly from B to(1 + !)B for some �xed ! > 0 and show that there is a tree T 2 O(1+!)B that satis�es the
onditions of Theorem 1.



2 MINIMUM DEGREE SPANNING TREES 4This paper is organized as follows: in Se
tion 2 we review results on the related minimum-degree spanning tree problem. In parti
ular, we present the fundamental ideas from [4, 6℄. InSe
tion 3, we state our algorithm. Finally, we give the analysis of our pro
edure in Se
tion 4.2 Minimum Degree Spanning TreesRelated to the BMST problem is the problem of minimizing the maximum degree of a spanningtree in some graph G (MDST). This problem is NP-hard sin
e the Hamiltonian path problemis a spe
ial 
ase. In fa
t, it is NP-
omplete to de
ide for any k � 2 whether G 
ontains aspanning tree of maximum degree k [7℄.F�urer and Raghava
hari presented an approximation algorithm with an additive performan
eguarantee of one [6℄: i.e., they des
ribe a polynomial time algorithm that �nds a spanning treeT of G su
h that �(T ) � �� + 1, where �� denotes the minimum possible maximum degreeover all spanning trees. In the same paper the authors also give a lo
al sear
h algorithm for theMDST problem. This approa
h yields a tree with maximum degree at most b�� + logb n forany 
onstant b > 1. Later, Fis
her noted this pro
edure 
an be adapted to �nd a minimum-
ost spanning tree of approximately minimum maximum degree in an edge-weighted graph[4℄.The lo
al sear
h algorithms from [4, 6℄ play an important role in this paper. In this se
tion weshow a minor strengthening of these results that are 
ru
ial to the analysis of our algorithm.2.1 A lo
al improvement algorithmIn this se
tion, we explain the basi
 ideas from the lo
al sear
h algorithm for the MDSTproblem. We state the algorithm sin
e we use it later. The pro
edure starts with a spanningtree T and tries to improve it by swapping non-tree edges against tree edges.De�nition 1 Given a tree T and a non-tree edge uv. Let C(uv) be the unique 
y
le in T[fuvgand let wz 2 C(e). We 
all the swap huv; wzi an improvement for w ifmaxfÆT (u); ÆT (v)g+ 1 < ÆT (w):If an edge swap huv; wzi is an improvement step for either w or z then the maximum degreeof the nodes u; v; w and z de
reases as a result of the swap; We 
all su
h a swap simply animprovement.The algorithm in [6℄ performs improvement steps as long as possible. In fa
t, it is not hardto see that starting with an arbitrary tree, the number of possible improvements is �nite. Weend up with a lo
ally optimal tree.De�nition 2 A tree T is 
alled lo
ally optimal (LOT) if no vertex degree 
an be de
reasedby applying an improvement swap.



2 MINIMUM DEGREE SPANNING TREES 5Computing a lo
ally optimal tree might be too ambitious a goal however. In fa
t, it is notknown how to do this in polynomial time. However, the analysis in [6℄ shows that it is enoughto 
ompute a pseudo-optimal tree.De�nition 3 A tree T of maximum degree �(T ) is 
alled pseudo-optimal (POT) if for allverti
es v with �(T ) � dlogb ne � ÆT (v) � �(T ), no improvement step for v is appli
able.Here b is an arbitrary 
onstant bigger than one.Fis
her's adaptation [4℄ of the algorithm from [6℄ 
omputes a minimum-
ost spanning treeof approximately minimum maximum degree. To obtain his algorithm we have to make twosmall 
hanges to the pro
edure from [6℄. First, instead of starting with an arbitrary spanningtree, we start with a minimum-
ost spanning tree. Se
ond, an improvement step must be 
ostneutral. That is, for an improvement step huv; wzi to be appli
able we must have 
uv = 
wz .Algorithm 1 states the pro
edure.Algorithm 1 The algorithm PLo
al 
omputes a pseudo-optimal tree.1: Given: graph G = (V;E) and 
ost fun
tion 
 : E ! IR+2: T  MST(G; 
)3: while T is not pseudo optimal do4: Identify 
ost neutral improvement huv; wzi.5: T  T � wz + uv6: end while2.2 Analysis and running timeIn what follows we highlight and strengthen the major ideas of the analysis from [4, 6℄. Thestrengthening is due to �Eva Tardos [17℄ and leads to a shorter and simpler proof of Lemma 2than the one that appeared in the extended abstra
t [10℄.The fundamental underlying proof idea for the unweighted problem is based on an averagingargument that we introdu
e here. Let a setW � V be su
h that for a given graph G = (V;E),the graph G[V �W ℄ has t 
onne
ted 
omponents. A spanning tree of G has to 
onne
t theset 
omponents and the nodes from W . We need exa
tly t + jW j � 1 edges going between thenodes of W and the t 
onne
ted 
omponents to a

omplish this. Ea
h of these edges must bein
ident a node from W . Hen
e averaging yields a lower bound of (t + jW j � 1)=jW j on themaximum degree �� of T .Proposition 2 [6℄ Let W be a set of size w whose removal splits G into t 
omponents. Then�� � �w+t�1w �.The set W bears witness to the fa
t that �� � �w+t�1w � and is therefore referred to as awitness set.We now turn to the weighted 
ase, i.e. the MWST problem. The above mentioned strength-ening of the results from [4℄ is based on the following de�nitions.



2 MINIMUM DEGREE SPANNING TREES 6De�nition 4 Given an undire
ted graph G = (V;E) and a non-negative 
ost fun
tion 
 onthe edges, let O
 be de�ned asO
 = fT : T is an MST under 
ost 
g:In the following we will be talking about 
onvex 
ombinations of spanning trees. Hen
e weintrodu
e some further simplifying notation.De�nition 5 Let T 
� = PT2O
 �TT be a 
onvex 
ombination of minimum-weight spanningtrees of G with respe
t to 
ost fun
tion 
, i.e. �T � 0 for all T and PT2O
 �T = 1. Wedenote the fra
tional degree of vertex v in T 
� byÆ�
 (v) = XT2O
 �T ÆT (v):Finally we de�ne the minimum maximum degree of 
onvex 
ombinations of spanning trees.De�nition 6 Given G = (V;E) and a non-negative weight fun
tion 
 on the edges, let ��
denote the minimum maximum degree of any 
onvex 
ombination of minimum-weight spanningtrees, i.e. ��
 = min
onvex 
omb. � maxv2V Æ�
 (v):The following easy proposition will be used in the later analysis.Proposition 3 [6℄ For any 
onstant b > 1 and a tree T , let Sd be the set of nodes that havedegree at least d in T . Then, there is ad 2 f�T � dlogb ne+ 1; : : : ;�Tgsu
h that jSd�1j � bjSdj.The main theorem is the following.Theorem 2 [4, 6℄ If T is a pseudo-optimal MWST, then �T < b��
 + dlogb ne for any
onstant b > 1. Moreover, a pseudo-optimal MWST 
an be 
omputed in polynomial time.Proof: Given a 
onstant b > 1, 
hoose d as in Proposition 3. That is, we have jSd�1j � bjSdj.Re
all that Sd 
ontains the nodes of degree at least d in the tree T .Removing Sd from T leaves us with a forest F . Let bG be obtained from G by 
ontra
tingea
h 
onne
ted 
omponent of F . Now noti
e that every minimum-weight spanning tree of G
ontains a minimum-weight spanning tree of bG.Let (u; v) 2 E � T be an edge that 
onne
ts two 
omponents of F su
h that u; v 62 Sd�1, i.e.both u and v have degree at most d � 2. We 
laim that su
h an edge 
annot be in
luded in



2 MINIMUM DEGREE SPANNING TREES 7any minimum spanning tree of bG. To see that, let PTu;v be the edges of the unique u; v-pathin T and let dPTu;v be the subset of the edges of PTu;v that are in bG.It follows from the pseudo-optimality of T that the 
ost of edge (u; v) must be higher thanthe 
ost of ea
h edge from dPTu;v . This means (u; v) 
annot be a part of any minimum spanningtree of bG. Equivalently, a minimum-weight spanning tree of G must use edges in
ident toSd�1 to 
onne
t the 
omponents of F and the nodes of Sd.By the de�nition of Sd, we know that F has at leastjSdjd� 2(jSdj � 1) = jSdj(d� 2) + 2trees. This is be
ause every node in Sd has degree at least d in T and there are at mostjSdj � 1 edges going between nodes of Sd.This means that we need at leastjSdj(d� 2) + 2 + jSdj � 1 = jSdj(d� 1) + 1edges to 
onne
t up the 
omponents of F and the nodes of Sd in any spanning tree. By thepre
eeding argument ea
h of these edges has to be in
ident to at least one node of degree atleast d� 1 in an MWST. Hen
e the the average degree of a node of Sd�1 in any MWST isjSdj(d� 1) + 1jSd�1j :Moreover, the average degree of a node in Sd�1 in any 
onvex 
ombination of MWSTs is alsoat least the above ratio. Sin
e ��
 denotes the minimum possible maximum degree of anyfra
tional MWST, it follows that ��
 > d� 1b :Using the range of d we obtain �(T ) < b��
 + dlogb ne.For the running time we follow [6℄. Note that ea
h improvement step 
an be implementedin polynomial time. We need to bound the number of iterations. The proof uses a potentialfun
tion argument. De�ne the potential of a vertex v as�(v) = 3ÆT (v)where T is the 
urrent tree. The total potential is the sum over all vertex potentials, that is�(T ) = Xv2V �(v):Now, an improvement step in Algorithm 1 improves the degree of a vertex v 2 Sd withÆT (v) = d and d � �(T )� dlogb ne + 1. Hen
e, the redu
tion in the potential is going to beat least (3d + 2 � 3d�2)� 3 � 3d�1 = 2 � 3d�2:Using the range of d we 
an lower bound the right hand side of the last equality by3�(T )�logb n�1 = 
 3�(T )n ! :



3 THE BMST-ALGORITHM 8The potential �(T ) of the tree T is at most n3�(T ). This implies that the overall de
rease ofthe potential due to the improvement step is
��(T )n2 �In other words, we redu
e the potential by at least a polynomial fa
tor in ea
h iteration. InO(n2) iterations the redu
tion is by a 
onstant fa
tor. Hen
e, the algorithm needs O(n3)improvement steps in total.3 The BMST-AlgorithmIn this se
tion, we des
ribe our algorithm for the BMST problem. It uses the Lagrangeanformulation LD(B) from the introdu
tion and Algorithm 1.The input to our algorithm 
onsists of a graph G, a non-negative 
ost fun
tion 
, a degreebound B� and a positive 
onstant !. Let B = (1 + !)B�.Algorithm 2 Our algorithm for the BMST problem1: Given: graph G = (V;E), a 
ost fun
tion 
 : E ! IR+, a degree bound B� � 2 and aparameter ! > 0.2: B  (1 + !)B�3: �B  Solve(LD(B))4: T a  PLo
al(G; 
�B)Sin
e the optimum Lagrange multipliers and pseudo-optimal MWSTs 
an be 
omputed inpolynomial time [6, 13℄, Algorithm 2 runs in polynomial time.Re
all that 
�B denotes the original 
ost fun
tion 
 augmented by the Lagrangean multipliers�B, i.e. 
�Buv = 
uv + �u + �v. We use OB to denote the set of all minimum-weight spanningtrees of G for 
ost fun
tion 
�B .4 AnalysisIn this se
tion we prove Theorem 1. First we show that the 
ost 
(T a) of the tree output byAlgorithm 2, T a, is small. Then, we prove that T a has low maximum degree. Our proofs relyon te
hniques from Lagrangean duality.4.1 The 
ost of T aRe
all that optLD(B) � optB from Proposition 1. Unfortunately, optLD(B) = optB is nottrue in general. There might be a duality gap. However, it 
an be shown that optLD(B) equalsthe optimum obje
tive fun
tion value of the relaxation of (IP). The proof is insightful andhen
e we present it here.



4 ANALYSIS 9Theorem 3 [13℄ optLD(B) = minf
(T ) : T 2 SPG ; 8v 2 V : ÆT (v) � BgProof: We 
an restate (LD(B)) as the following linear program in variables � and �. Re
allthat we denote its maximum obje
tive fun
tion value by optLD(B) .max � (3)s.t. � � 
(T )�Xv2V �v(B � ÆT (v)) 8T 2 SPG� � 0The �rst blo
k of 
onstraints states that � is at most the 
ost of any spanning tree T of Gwith respe
t to the Lagrangean fun
tion (2). The maximization obje
tive of (3) for
es � toattain the best possible 
ost. Writing down the dual of the last program yieldsmin 
( XT2SPG �TT ) (4)s.t. XT2SPG �T = 1XT2SPG �T ÆT (v) � B XT2SPG �T = B 8v 2 V� � 0Note that T� = PT2SPG �TT is a 
onvex 
ombination of trees in SPG . Also, observethat PT2SPG �T ÆT (v) is pre
isely the degree Æ�(v) of this fra
tional tree at node v. Theseobservations yield the theorem.The theorem has two ni
e 
orollaries that we use. In the following, let �B denote the ve
torof optimum Lagrangean multipliers for (LD(B)). Re
all that OB is the set of minimum-
ostspanning trees under 
�B .Corollary 1 There exists a 
onvex 
ombination T� = PT2OB �TT su
h that 8v 2 V :Æ�
�B (v) � B and �Bv > 0 only if Æ�
�B (v) = B.Proof: This follows from 
omplementary sla
kness applied to the optimum solutions of thedual linear programs (3) and (4).The se
ond 
orollary gives a bound on ��
�B .Corollary 2 ��
�B � BProof: By Corollary 1, we know that there is a 
onvex 
ombination T� of trees from OB su
hthat Æ�
�B (v) � B for all v. Hen
e��
�B = min� maxv2V Æ�
�B (v) � B:We now prove that 
(T a) is small.



4 ANALYSIS 10Lemma 1 For all trees T 2 OB we have 
(T ) < (1 + 1=!)optB�.Proof: Re
all that we de�ned B = (1 + !)B�The following inequality holds for every T 2 OB:Xv2V �Bv (ÆT (v)� B�) � 
(T ) +Xv2V �Bv (ÆT (v)�B�) (5)� optLD(B�)In the �rst inequality we just added 
(T ). Note, that the right hand side of the �rst line isjust the Lagrangean obje
tive fun
tion (2) for B�. Re
all that T is a minimum spanning treewith respe
t to 
�B . Moreover, �B is a feasible set of multipliers for (LD(B�)). Hen
e, these
ond inequality follows.We also have 
(T ) = 
(T ) +Xv2V �Bv (ÆT (v)� B�) +Xv2V �Bv (B� � ÆT (v))� opt LD(B�) +Xv2V �Bv (B� � ÆT (v))where the inequality follows from (5). Applying Proposition 1 and the fa
t that ÆT (v) � 1 forall v 2 V leads to 
(T ) < optB� + B�Xv2V �Bv :In the remainder of this proof we will derive the inequality B�Pv2V �Bv � optB�=!. Thisyields the lemma. From Corollary 1, we know that there is a 
onvex 
ombinationT� = XT2OB �TTsu
h that �Bv > 0 only if Æ�
�B (v) = B.We derive a new inequality by summing over all T 2 OB , �T times the inequality (5) for ea
hT . We obtain XT2OB �T  Xv2V �Bv (ÆT (v)�B�)! � optLD(B�) XT2OB �T (6)The right hand side is equivalent to opt LD(B�) be
ause PT2OB �T = 1. Reordering the lefthand side yields Xv2V �Bv 0�0� XT2OB �T ÆT (v)1A� B�1A



5 CONCLUSIONS 11Instead of summing over all v 2 V it suÆ
es to sum over v, where �Bv > 0. For su
h v, wehave Æ�
�B = XT2OB �T ÆT (v) = Bby Corollary 1. Using B = (1 + !)B� it follows that the left hand side of (6) is equivalent to!B�Xv2V �Bvand this �nishes the proof of the lemma.4.2 The Maximum Degree of T aLemma 2 �Ta � (1 + !)bB� + dlogb ne for 
onstants b > 1 and !.Proof: T a is a pseudo-optimal minimum-weight spanning tree with respe
t to 
ost fun
tion
�b. From Theorem 2 we know that�Ta � b��
�B + dlogb ne:An appli
ation of Corollary 2, noting B = (1 + !)B� yields the lemma.5 Con
lusions5.1 Summary and remarksIn this paper we developed an improved approximation algorithm for the degree-boundedminimum spanning tree problem. For a positive 
onstant B� and an n-node graph, ourmethod 
omputes a spanning tree whose 
ost is at most a 
onstant fa
tor worse than the
ost of the optimum degree-B�-bounded minimum spanning tree. Additionally, we provedthat the maximum degree of the resulting tree is O(B� + log n). Our pro
edure solves aLagrangean relaxation of the BMST integer program for slightly relaxed degree 
onstraints((1 + !)B� instead of B�). We showed how this sla
k helps to prove low 
ost of the resultingtree. Our algorithm also makes use of a lo
al sear
h te
hnique from [4, 6℄. We showed how aslight strengthening of the results in [4, 6℄ 
an be used to prove low maximum degree of theresulting tree.As a side note, the reader should noti
e that in Algorithm 2 we assumed the exa
t solutionof (LD(B)). However, for pra
ti
al purposes a reasonable approximation to the optimumLagrangean multipliers is suÆ
ient. To 
ompute su
h an approximation, we 
ould employsubgradient optimization te
hniques from [8, 9, 14℄.
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