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Abstract

In this paper, we present a new bicriteria approximation algorithm for the degree-
bounded minimum spanning tree problem. In this problem, we are given an undirected
graph, a nonnegative cost function on the edges, and a positive integer B*, and the goal is
to find a minimum cost spanning tree 7' with maximum degree at most B*. In an n-node
graph, our algorithm finds a spanning tree with maximum degree O(B* 4 logn) and cost
O( opt g.) where opt g. is the minimum cost of any spanning whose maximum degree is
at most B*. Our algorithm uses 1deas from Lagrangean duality in a novel way. We show
how a set of optimum Lagrangean multipliers yields bounds on both the degree and the
cost of the computed solution.

1 Introduction

1.1 Motivation and formulation

In the design of computer networks a fundamental problem is that of transmitting a single
information packet from a given source-host to a set of recipient-hosts. This problem is widely
known as the broadcast or multicast problem, depending on whether we want to transmit the
packet to all other hosts or to a specific subset of recipients. Both problems have been
widely studied [3, 5, 16]. In particular, it is believed that the multicast problem will play an
increasingly important role in data networks.

A naive solution to the multicast problem would be to implement it as a series of unicasts.
In other words, the source sends a single packet to every recipient host. The routing is
done independently for each of the unicasts. However, the cost of this approach in terms of
bandwidth consumption becomes unacceptable if the number of hosts in the multicast group
grows.

Graph theoretic ideas have turned out to be essential in the design of efficient network routing
protocols. A physical network can be modeled as a complete graph where each host is associ-
ated with a node and an edge uv represents the virtual link between the corresponding hosts.
Usually, edges of that graph are annotated by the transmission delay of the corresponding
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virtual link. A standard solution to broadcasting and multicasting problems is then to send
packets along the edges of a minimum spanning tree rooted at the source node [16]. Every
internal node duplicates the incoming message and sends it to its children.

However, a spanning tree might have a high fan-out out at certain internal nodes. Switches
in point-to-point networks may vary in their ability to support multicasting. That is, some
routers may not support multicasting at all and others may only support a limited number of
copies they can make of an incoming packet [18]. Bauer and Varma [1] show that it is natural
to model switch capabilities by node degrees in graphs.

The preceding discussion suggests that a solution to the multicasting problem should minimize
the total transmission delay and the maximum degree of a vertex in the computed solution.
Traditional approaches for this kind of bicriteria problem often compute the minimum solution
under a linear combination of the two cost measures [2]. However, in the case of very disparate
objectives these techniques do usually not produce useful solutions.

In this paper, we address a natural budgeted version of the degree-bounded minimum spanning
tree problem. Here, we are given an undirected graph G' = (V, F), a cost function ¢ : F — IR
and a positive integer B > 2. We would like to find a spanning tree T of maximum vertex
degree at most B and minimum cost. This formulation was first introduced in [15] and can
be modeled by the following integer linear program.

opty = min Zcexe (IP)
ek
st 2(d(v))<B YveV (1)
x € SPg

Here, §(v) denotes the set of all edges of E that are incident to v and SPgis the spanning
tree polyhedron, that is, the convex hull of edge-incidence vectors of spanning trees of G.

1.2 Previous work and our result

Ravi et al. [15] showed how to compute a spanning tree 7' of maximum degree O(Blog (%))
and total cost at most O(logn) optg . They generalize their ideas to Steiner trees, generalized
Steiner forests and the node-weighted case.

Another result that is related to our work is given in a paper by Khuller, Raghavachari and
Young [11]. The authors show how to compute a spanning tree of n points in the plane that
has degree at most 3 (4) and weight at most 1.5 (1.25) that of a minimum weight spanning
tree (without any degree constraints).

While the approximation factor of O(logn) on the cost of the solution cannot be improved
substantially (via reductions from the set covering problem [12]) in the node-weighted case,
improvements for the edge-weighted case were left open in [15]. Our main result is such an
improvement and is stated in the following theorem. We denote the degree of a node v in tree
T by d7(v). Let the maximum node degree in a tree 7' be denoted by A(T).



1 INTRODUCTION 3

Theorem 1 There is a polynomial-time approximation algorithm that, given a graph G =
(V, E), a nonnegative cost function ¢ : E — RY, a constant B* > 2 and a parameter w > 0,
computes a spanning tree T such that

1. A(T) < (14+w)bB* + logy n for any arbitrary constant b > 1

2. ¢(T) < (14 1/w)opt g«.

For instance, choosing w = 1/2 and b = 2 would yield a tree with degree at most 3B* +log, n
and cost at most 3 opt z..

1.3 Technique: Lagrangean Duality

Our algorithm builds on the Lagrangean dual of (IP) resulting from dualizing the degree
constraints. We denote its value by optypp)-

max min, {c(T)+ ; Ao(81(v) = B)}. (LD(B))

For any fixed A > 0, an optimum integral solution to IP is a feasible candidate for attaining
the inner minimum above. Since the maximum degree of such a solution is at most B and
A > 0, it follows that oPt;p(B) is a lower bound on opty.

Proposition 1 [13] opt;pp) < optp

The interesting fact is that opt;pg)can be computed in polynomial time [13]. The result is

a vector AP of optimum Lagrangean multipliers on the nodes and a set of optimum trees 0%,
all of which achieve the inner minimum for this set of multipliers. In other words, every tree
TP ¢ OP minimizes the following objective:

o(TP)+ > AP (6rs(v) - B).
veV

Given AP, the task of finding a tree T' that minimizes the above objective function is called
the Lagrangean subproblem of LD(B).

Using ¢*” (uv) = ¢(uv) + AP + AP the last expression can be restated as

M(TP)-BY AP (2)

veV

Notice that for a given A® and B, the second term is a constant. Hence, any minimum
spanning tree of G under cost C/\B7 denoted by MST(G, C/\B)7 is a solution for 7.

An important feature of our algorithm is to relax the degree constraints slightly from B to
(1 + w)B for some fixed w > 0 and show that there is a tree 7 € OU+“)F that satisfies the
conditions of Theorem 1.
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This paper is organized as follows: in Section 2 we review results on the related minimum-
degree spanning tree problem. In particular, we present the fundamental ideas from [4, 6]. In
Section 3, we state our algorithm. Finally, we give the analysis of our procedure in Section 4.

2 Minimum Degree Spanning Trees

Related to the BMST problem is the problem of minimizing the maximum degree of a spanning
tree in some graph G (MDST). This problem is A"P-hard since the Hamiltonian path problem
is a special case. In fact, it is A/P-complete to decide for any k& > 2 whether GG contains a
spanning tree of maximum degree k [7].

Fiirer and Raghavachari presented an approximation algorithm with an additive performance
guarantee of one [6]: i.e., they describe a polynomial time algorithm that finds a spanning tree
T of G such that A(T) < A* 4+ 1, where A* denotes the minimum possible maximum degree
over all spanning trees. In the same paper the authors also give a local search algorithm for the
MDST problem. This approach yields a tree with maximum degree at most bA* + log, n for
any constant b > 1. Later, Fischer noted this procedure can be adapted to find a minimum-
cost spanning tree of approximately minimum maximum degree in an edge-weighted graph

[4].
The local search algorithms from [4, 6] play an important role in this paper. In this section we
show a minor strengthening of these results that are crucial to the analysis of our algorithm.

2.1 A local improvement algorithm

In this section, we explain the basic ideas from the local search algorithm for the MDST
problem. We state the algorithm since we use it later. The procedure starts with a spanning
tree T and tries to improve it by swapping non-tree edges against tree edges.

Definition 1 Given a tree T' and a non-tree edge uv. Let C(uv) be the unique cycle in TU{uv}
and let wz € C(e). We call the swap {(uv,wz) an improvement for w if

max{dr(u),dr(v)}+ 1 < dr(w).

If an edge swap {(uv, wz) is an improvement step for either w or z then the maximum degree
of the nodes u,v,w and z decreases as a result of the swap; We call such a swap simply an
improvement.

The algorithm in [6] performs improvement steps as long as possible. In fact, it is not hard
to see that starting with an arbitrary tree, the number of possible improvements is finite. We
end up with a locally optimal tree.

Definition 2 A tree T' is called locally optimal (LOT) if no vertex degree can be decreased
by applying an improvement swap.
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Computing a locally optimal tree might be too ambitious a goal however. In fact, it is not
known how to do this in polynomial time. However, the analysis in [6] shows that it is enough
to compute a pseudo-optimal tree.

Definition 3 A tree T' of mazimum degree A(T') is called pseudo-optimal (POT) if for all
vertices v with A(T) — [logyn] < dr(v) < A(T), no improvement step for v is applicable.
Here b is an arbitrary constant bigger than one.

Fischer’s adaptation [4] of the algorithm from [6] computes a minimum-cost spanning tree
of approximately minimum maximum degree. To obtain his algorithm we have to make two
small changes to the procedure from [6]. First, instead of starting with an arbitrary spanning
tree, we start with a minimum-cost spanning tree. Second, an improvement step must be cost
neutral. That is, for an improvement step (uv,wz) to be applicable we must have ¢,, = cy..
Algorithm 1 states the procedure.

Algorithm 1 The algorithm PLocal computes a pseudo-optimal tree.
: Given: graph ¢ = (V, E)) and cost function ¢: £ — R*
. T+ MST(G,¢)
- while 7' is not pseudo optimal do

T« T —wz+uv

1
2
3
4:  ldentify cost neutral improvement (uv,wz).
5
6: end while

2.2 Analysis and running time

In what follows we highlight and strengthen the major ideas of the analysis from [4, 6]. The
strengthening is due to Eva Tardos [17] and leads to a shorter and simpler proof of Lemma 2
than the one that appeared in the extended abstract [10].

The fundamental underlying proof idea for the unweighted problem is based on an averaging
argument that we introduce here. Let a set W C V be such that for a given graph G' = (V, F),
the graph G[V — W] has t connected components. A spanning tree of G has to connect these
t components and the nodes from W. We need exactly ¢t + |[W| — 1 edges going between the
nodes of W and the t connected components to accomplish this. Each of these edges must be
incident a node from W. Hence averaging yields a lower bound of (¢t + |W| — 1)/|W| on the
maximum degree A* of T.

Proposition 2 [6] Let W be a set of size w whose removal splits G into t components. Then
A* > {Lt—l]
— w

The set W bears witness to the fact that A* > {%H] and is therefore referred to as a
witness set.

We now turn to the weighted case, i.e. the MWST problem. The above mentioned strength-
ening of the results from [4] is based on the following definitions.
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Definition 4 Given an undirected graph G = (V, F) and a non-negative cost function ¢ on

the edges, let O° be defined as

O =A{T:T is an MST under cost c}.

In the following we will be talking about convex combinations of spanning trees. Hence we
introduce some further simplifying notation.

Definition 5 Let TS = Y pcpe arT be a convex combination of minimum-weight spanning
trees of G with respect to cost function ¢, i.e. ar > 0 for all T and Y pcp.ar = 1. We
denote the fractional degree of vertez v in TS by

52(v) = > ardr(v).

TeOc

Finally we define the minimum maximum degree of convex combinations of spanning trees.

Definition 6 Given G = (V, F) and a non-negative weight function ¢ on the edges, let A
denote the minimum mazimum degree of any convexr combination of minimum-weight spanning
trees, i.e.

AT = min max 6. (v).
convexr comb. o« V€V

The following easy proposition will be used in the later analysis.

Proposition 3 [6] For any constant b > 1 and a tree T, let Sy be the set of nodes that have
degree at least d inT'. Then, there is a

de {Ar— [logbn]—l—l,...,AT}

such that |S4—1| < b]Sq|.
The main theorem is the following.

Theorem 2 [/, 6] If T is a pseudo-optimal MWST, then Ar < bA* + [log,n| for any
constant b > 1. Moreover, a pseudo-optimal MWS'T can be computed in polynomial time.

Proof: Given a constant b > 1, choose d as in Proposition 3. That is, we have [Sy_1| < b|.S4|.
Recall that Sy contains the nodes of degree at least d in the tree T.

Removing S; from T leaves us with a forest F. Let G be obtained from @ by contracting
each connected component of F'. Now notice that every minimum-weight spanning tree of G
contains a minimum-weight spanning tree of G.

Let (u,v) € E'— T be an edge that connects two components of F' such that u,v & S;_1, i.e.
both « and v have degree at most d — 2. We claim that such an edge cannot be included in
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any minimum spanning tree of G. To see that, let PuTW be the edges of the unique wu, v-path
in T and let P, be the subset of the edges of PuTW that are in G.

It follows from the pseudo-optimality of 7" that the cost of edge (u,v) must be higher than
the cost of each edge from PuTW. This means (u, v) cannot be a part of any minimum spanning
tree of G. Equivalently, a minimum-weight spanning tree of G must use edges incident to

S4_1 to connect the components of F' and the nodes of Sy.

By the definition of S;, we know that F' has at least
|Sd|d — 2(|Sd| — 1) = |Sd|(d — 2) + 2

trees. This is because every node in S; has degree at least d in 7 and there are at most
|S4] — 1 edges going between nodes of 5.

This means that we need at least
|Sa|(d—2) 4+ 24 [S4| —1=|Sql(d=1)+1

edges to connect up the components of F' and the nodes of .S; in any spanning tree. By the
preceeding argument each of these edges has to be incident to at least one node of degree at
least d — 1 in an MWST. Hence the the average degree of a node of Sy_; in any MWST is

[Sal(d = 1) + 1
|Sa—t]

Moreover, the average degree of a node in Sy_; in any convex combination of MWSTs is also
at least the above ratio. Since A} denotes the minimum possible maximum degree of any

fractional MWST, it follows that
e
P>
Using the range of d we obtain A(T) < bA* 4 [log, n].
For the running time we follow [6]. Note that each improvement step can be implemented
in polynomial time. We need to bound the number of iterations. The proof uses a potential

function argument. Define the potential of a vertex v as
P(v) = 377
where T is the current tree. The total potential is the sum over all vertex potentials, that is
(T) =) (v).
veV

Now, an improvement step in Algorithm 1 improves the degree of a vertex v € Sy with
dr(v) =d and d > A(T) — [logy n| + 1. Hence, the reduction in the potential is going to be
at least

(3742.3972) —3.3971 =2.3%72,

Using the range of d we can lower bound the right hand side of the last equality by
A(T
3A(T)—logbn—1 =Q (3 ( )) ]

n
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The potential ®(T) of the tree T is at most n32(T). This implies that the overall decrease of
the potential due to the improvement step is

°(%)

In other words, we reduce the potential by at least a polynomial factor in each iteration. In
O(n?) iterations the reduction is by a constant factor. Hence, the algorithm needs O(n?)
improvement steps in total. |

3 The BMST-Algorithm

In this section, we describe our algorithm for the BMST problem. It uses the Lagrangean
formulation LD(B) from the introduction and Algorithm 1.

The input to our algorithm consists of a graph (7, a non-negative cost function ¢, a degree
bound B* and a positive constant w. Let B = (1 4+ w)B*.

Algorithm 2 Our algorithm for the BMST problem

1: Given: graph G = (V, E), a cost function ¢ : £ — IR, a degree bound B* > 2 and a
parameter w > 0.

2. B« (1 —I—w)B*

3: AP < Solve(LD(B))

4 T% « PLocal(G, ")

Since the optimum Lagrange multipliers and pseudo-optimal MWSTs can be computed in
polynomial time [6, 13], Algorithm 2 runs in polynomial time.

Recall that ¢*” denotes the original cost function ¢ augmented by the Lagrangean multipliers
)\B, ie. cif = Cuo + Ay + Ay. We use OF to denote the set of all minimum-weight spanning
trees of G for cost function ¢”.

4 Analysis

In this section we prove Theorem 1. First we show that the cost ¢(7T?) of the tree output by
Algorithm 2, T, is small. Then, we prove that T has low maximum degree. Our proofs rely
on techniques from Lagrangean duality.

4.1 The cost of T*

Recall that opt; gy < opt g from Proposition 1. Unfortunately, opt; gy = optp is not
true in general. There might be a duality gap. However, it can be shown that opPtyp(B) equals
the optimum objective function value of the relaxation of (IP). The proof is insightful and
hence we present it here.
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Theorem 3 [13] optyppy = min{c(T): T € SF;,Yv €V : 0r(v) < B}

Proof: We can restate (LD(B)) as the following linear program in variables n and A. Recall
that we denote its maximum objective function value by oPtrp(B) -

max 7 (3)
st. n<e(T Z)\ B —ér(v)) VI € SPs
veV
A>0

The first block of constraints states that n is at most the cost of any spanning tree T of (¢
with respect to the Lagrangean function (2). The maximization objective of (3) forces 5 to
attain the best possible cost. Writing down the dual of the last program yields

min ¢ Z arT) (4)
TeSPs

s.t. Z ar =1

TeSP;

S arir)<B Y ar=B VeV

TeSP; TeSP;
a>0

Note that T¢ = ZTG SP, a7l is a convex combination of trees in SPg;. Also, observe
that 3 7 gp. ardr(v) is precisely the degree 6%(v) of this fractional tree at node v. These
observations yield the theorem. |

The theorem has two nice corollaries that we use. In the following, let AP denote the vector
of optimum Lagrangean multipliers for (LD(B)). Recall that OP is the set of minimum-cost
spanning trees under ¢*”

Corollary 1 There exists a convexr combination T® = 3 rcosarl such that Yv € V :
6% 5 (v) < B and AP > 0 only if 6° 5 (v) = B.

Proof: This follows from complementary slackness applied to the optimum solutions of the
dual linear programs (3) and (4). |

The second corollary gives a bound on A* 4

Corollary 2 A* ;, < B

Proof: By Corollary 1, we know that there is a convex combination 7% of trees from OF such
that 6 5 (v) < B for all v. Hence
A% 5 = minmax 6% 5 (v) < B.
a yeV e?

We now prove that ¢(T?) is small.



4 ANALYSIS 10

Lemma 1 For all trees T € OF we have ¢(T) < (14 1/w) opt gx.

Proof: Recall that we defined B = (1 4 w)B*
The following inequality holds for every T € OF:

Y A(r(v) = BY) < (D) + Y AT (0r(v) - BY) (5)

veV veV
< 0Pt pBY

In the first inequality we just added ¢(7'). Note, that the right hand side of the first line is
just the Lagrangean objective function (2) for B*. Recall that 7" is a minimum spanning tree
with respect to ¢*”. Moreover, AP is a feasible set of multipliers for (LD(B*)). Hence, the
second inequality follows.

We also have

o(T) = o(T)+ > Al (Er(v) = B+ Y AJ(B™ = dr(v)
veV veV
< optypn ‘|‘Z)\B " —dr(v))
veV

where the inequality follows from (5). Applying Proposition 1 and the fact that é7(v) > 1 for
all v € V leads to

c(T) < opt g« + B* Z AB,
veV

In the remainder of this proof we will derive the inequality B*} A3 < opt gu/w. This

yields the lemma. From Corollary 1, we know that there is a convex combination

such that AP > 0 only if 0% 5 (v) = B.

We derive a new inequality by summing over all T € OP, ar times the inequality (5) for each
T. We obtain

> ar (Z X (37 (v) - B >) < optppgaey . a1 (6)
TeOB veV TeoB

The right hand side is equivalent to opt j (g« because Y rcos ar = 1. Reordering the left
hand side yields

Z)\UB Z arér(v) | — B”

veV TeOB
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Instead of summing over all v € V it suffices to sum over v, where A® > 0. For such v, we
have

0% = Y ardr(v)=B

TecOB

by Corollary 1. Using B = (1 + w) B~ it follows that the left hand side of (6) is equivalent to

wB” Z \B

veV

and this finishes the proof of the lemma. |

4.2 The Maximum Degree of T

Lemma 2 Aga < (14 w)bB* + [log, n| for constants b > 1 and w.

Proof: T® is a pseudo-optimal minimum-weight spanning tree with respect to cost function
¢\". From Theorem 2 we know that

ATa S bAzXB + ﬂogb n-|

An application of Corollary 2, noting B = (1 4+ w)B* yields the lemma. |

5 Conclusions

5.1 Summary and remarks

In this paper we developed an improved approximation algorithm for the degree-bounded
minimum spanning tree problem. For a positive constant B* and an n-node graph, our
method computes a spanning tree whose cost is at most a constant factor worse than the
cost of the optimum degree- B*-bounded minimum spanning tree. Additionally, we proved
that the maximum degree of the resulting tree is O(B* + logn). Our procedure solves a
Lagrangean relaxation of the BMST integer program for slightly relaxed degree constraints
((1+w)B~ instead of B*). We showed how this slack helps to prove low cost of the resulting
tree. Our algorithm also makes use of a local search technique from [4, 6]. We showed how a
slight strengthening of the results in [4, 6] can be used to prove low maximum degree of the
resulting tree.

As a side note, the reader should notice that in Algorithm 2 we assumed the exact solution
of (LD(B)). However, for practical purposes a reasonable approximation to the optimum
Lagrangean multipliers is sufficient. To compute such an approximation, we could employ
subgradient optimization techniques from [8, 9, 14].
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5.2 Extensions and open questions

An interesting open question is whether our results extend to the case of Steiner trees and
general Steiner networks. The central difficulty of such an extension stems from the fact that,
in the Steiner case, the subproblem that arises from dualizing the degree constraints (the
minimum cost Steiner tree problem) is A'P-hard itself.

Another avenue for extending our work is to examine if our approach capable of handling
individual node degrees? In the current version, node degrees are assumed to be uniform.
Lemma 2 relies on the pseudo-optimality of tree T* from Algorithm 2 and on results from
[4, 6]. These results do not apply to non-uniform degrees. Is there an extention of the known
MDST algorithms to handle individual degree bounds?

We believe that the techniques used in this paper can be generalized to apply to a broader class
of multicriteria problems. A central point in the development of a more general framework is
the identification of key properties of suitable optimization problems; in the BMST problem,
the dualization of the degree constraints yields a tractable subproblem. Furthermore, the
compact form of the objective function of this subproblem proved to be a key for the analysis.

Acknowledgments We thank Eva Tardos for permitting us to include her simpler proof of
Lemma 2 in the paper.
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