
Vol:.(1234567890)

Algorithmica (2020) 82:2474–2501
https://doi.org/10.1007/s00453-020-00693-8

1 3

The Approximability of Multiple Facility Location
on Directed Networks with Random Arc Failures

Refael Hassin1 · R. Ravi2 · F. Sibel Salman3 · Danny Segev4

Received: 13 March 2019 / Accepted: 24 February 2020 / Published online: 11 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We introduce and study the maximum reliability coverage problem, where multiple
facilities are to be located on a network whose arcs are subject to random failures.
Our model assumes that arcs fail independently with non-uniform probabilities,
and the objective is to locate a given number of facilities, aiming to maximize the
expected demand serviced. In this context, each demand point is said to be serviced
(or covered) when it is reachable from at least one facility by an operational path.
The main contribution of this paper is to establish tight bounds on the approximabil-
ity of maximum reliability coverage on bidirected trees as well as on general net-
works. Quite surprisingly, we show that this problem is NP-hard on bidirected trees
via a carefully-constructed reduction from the partition problem. On the positive
side, we make use of approximate dynamic programming ideas to devise an FPTAS
on bidirected trees. For general networks, while maximum reliability coverage is
(1 − 1∕e + �)-inapproximable as an extension of the max k-cover problem, even esti-
mating its objective value is #P-complete, due to generalizing certain network reli-
ability problems. Nevertheless, we prove that by plugging-in a sampling-based addi-
tive estimator into the standard greedy algorithm, a matching approximation ratio of
1 − 1∕e − � can be attained.

Keywords Facility location · Random arc failures · FPTAS · Dynamic
programming · Hardness

1 Introduction

In this paper, we introduce and study a multiple facility location problem on a net-
work whose arcs are subject to random failures. Specifically, a given number of
facilities should be located at the nodes of a directed graph, whose arcs may fail
independently with prespecified probabilities. The objective is to maximize the

 * Danny Segev
 segevd@stat.haifa.ac.il

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00693-8&domain=pdf

2475

1 3

Algorithmica (2020) 82:2474–2501

expected demand serviced, where the latter expectation is taken over the possible
network realizations, and a demand point is said to be serviced (or covered) when it
is reachable from at least one facility by an operational path. Problems of this nature
find practical applications in computer and telecommunications networks, where
arcs represent communication links. In these contexts, arc failures may occur due to
a random disruption in communication or due to transmission equipment malfunc-
tions, and service providers are to be located at selected nodes to guarantee the most
reliable data services to the demand nodes.

As facility location problems subject to stochastic network failures have attracted
a great deal of attention in the last two decades, it is beyond the scope of this paper
to provide an exhaustive overview of previous work. To avoid an overly-lengthy
exposition, we present a succinct summary of directly-related work in Sect. 1.2, and
refer the reader to the references therein for a comprehensive literature review.

Problem formulation Formally, an instance of the maximum reliability coverage
problem consists of a directed network G = (V ,E) , where each node v is associated
with a non-negative demand dv . After a stochastic disruption, each arc may exist in
either operational or non-operational state, which is referred to as the survival or
failure of that arc. To capture the randomness in a disruption event, we assume that
each arc e survives with probability pe , independently of other arcs.

An additional ingredient of the input is a parameter k, specifying an upper bound
on the number of facilities to be located. With respect to any realization of the sur-
viving network, a facility located at node v covers the demand of all nodes reachable
from v. For a set of facilities F ⊆ V , we use �v(F) to denote the probability that node
v is covered by at least one facility in F. With this notation, the expected demand
covered by F can be written as E(F) =

∑
v∈V dv ⋅ �v(F) . The objective of the maxi-

mum reliability coverage problem is to compute a set F ⊆ V of at most k facilities
that maximizes the expected demand covered E(F).

1.1 Our Results

The main contribution of this paper is to establish tight bounds on the approxima-
bility of maximum reliability coverage on bidirected trees as well as on general
directed networks.

Bidirected trees Quite surprisingly, unlike many k-facility location problems on
deterministic networks, random arc failures introduce a host of new computational
difficulties. Specifically, an interesting reduction from the partition problem enables
us to show in Sect. 2 that maximum reliability coverage is in fact NP-hard on bidi-
rected trees. We remind the reader that such networks are obtained by substituting
each edge of an undirected tree by two anti-parallel arcs, each potentially with a
survival probability of 0. On the positive side, we make use of approximate dynamic
programming ideas in Sect. 3 to devise a fully polynomial-time approximation
scheme (FPTAS) on bidirected trees. We mention in passing that most of the techni-
cal novelty of this paper resides in deriving these two results.

General networks When the underlying network is arbitrary, it is easy to verify
that maximum reliability coverage captures the max k-cover problem as a special

2476 Algorithmica (2020) 82:2474–2501

1 3

case. Therefore, maximum reliability coverage cannot be approximated within a
constant greater than 1 − 1∕e , unless P = NP [8]. On the positive side, one can also
verify that our expected demand coverage function E is monotone and submodular,
meaning that it can be approximated within factor 1 − 1∕e subject to the k-cardinal-
ity constraint (see, e.g., [1, 16]), given an oracle access to E . However, as explained
later on, the problem of estimating E is in fact #P-complete due to generalizing cer-
tain network reliability problems [3, 17, 20]. For this reason, we dedicate Sect. 4 to
showing that, by plugging-in a sampling-based estimator (with an additive error)
into the standard greedy algorithm, the maximum reliability coverage problem can
be approximated within factor 1 − 1∕e − � . Our Monte-Carlo algorithm is successful
with constant probability and its running time is polynomial in n and 1∕�.

Further discussion and open questions In light of the above-mentioned findings, a
natural question is whether our results carry over to undirected graphs. We conclude
by elaborating on this question and pinpoint specific directions for future research:

• Trees While the FPTAS proposed in Sect. 3 is clearly applicable in undirected
trees, our NP-hardness proof in Sect. 2 relies on associating anti-parallel arcs
with different survival probabilities. It would be interesting to examine whether
maximum reliability coverage remains NP-hard on undirected trees.

• Undirected graphs Similarly, on general directed networks, the straightforward
reduction from max k-cover, that gives an inapproximability bound of 1 − 1∕e
unless P = NP [8], also crucially depends on having asymmetric survival prob-
abilities. Interestingly, we show in “Appendix 2” that maximum reliability cover-
age remains APX-hard on undirected graphs via a reduction from minimum-car-
dinality vertex cover on cubic graphs [2]. A seemingly challenging direction for
future work would be to significantly narrow the gap between the upper bound
established by this reduction (which is very close to 1) and the approximation
ratio of 1 − 1

e
− � , attained by our sampling-based greedy algorithm in Sect. 4.

1.2 Related Work

Independent failures In the more widespread setting, edges or nodes are associated
with individual survival probabilities, and the underlying assumption is that these
components fail independently. Eiselt et al. [6] considered the setting of a single-
edge failure for the problem of locating multiple facilities to minimize the total
expected demand disconnected from these facilities. They provided an exact poly-
nomial-time algorithm and showed that locating a single facility is equivalent to the
1-median problem. Following up on this work, Eiselt et al. [7] proposed an exact
polynomial-time algorithm when either a single node or a single edge may fail.

Melachrinoudis and Helander [14] studied a single-facility location problem on
an undirected tree where multiple edges may fail simultaneously and independently.
Here, the objective is to maximize the expected number of demand nodes reach-
able by operational paths, for which the authors devised two exact polynomial-time
algorithms. It is worth noting that this setting is a special case of our model, with a
single facility, undirected tree, and unit demands. Interestingly, they stated that this

2477

1 3

Algorithmica (2020) 82:2474–2501

problem becomes extremely challenging for multiple-facility location on general
networks, which is indeed verified by our hardness and inapproximability results.
Later on, Xue [22] gave a linear-time algorithm for the problem studied by Mel-
achrinoudis and Helander [14] as well as for its maximin version. Additional work
along these lines includes that of Ding and Xue [5], who considered the same prob-
lem on a tree with unreliable nodes and provided a linear-time algorithm based on
dynamic programming ideas. This problem has also been studied by Colbourn and
Xue [4], who proposed a linear-time algorithm on partial 2-trees. Santivanez et al.
[18] also investigated a single-facility location problem under edge failures, with
certain restrictions on the network topology. They focused on the maximin objec-
tive, stipulating that the most reliable route should be used. Taking advantage of the
latter policy, which allows one to focus on a specific path between any two nodes,
the authors presented an exact polynomial-time algorithm. It is worth noting that
Nel and Colbourn [15] proved that the problem considered by Melachrinoudis and
Helander [14] is NP-hard on general networks.

Correlated failures Hassin et al. [11] considered correlated edge failures, moti-
vated by modeling how network links are affected by a disaster event. Their depend-
ency model first sorts the edges by their reliability values and then assumes that the
failure of an edge implies the failure of any lower-ranked edge. This linear ordering
makes the number of possible network realizations linear in the number of edges,
which enables one to avoid certain difficulties related to reliability computations.
Hassin et al. studied a multiple-facility location problem under multiple reliability
vectors, each inducing a separate linear ordering. Their objective function is that of
maximizing the expected total demand covered by the selected facilities, which is
similar to the one considered in the current paper. The authors provided exact algo-
rithms for one and two linear orderings by dynamic programming and linear pro-
gramming, respectively. From a hardness perspective, they proved that the problem
becomes NP-hard in the 3-ordering case and (1 − 1∕e + �)-inapproximable under an
arbitrary number of orderings. To our knowledge, other than having a similar objec-
tive function, the probabilistic model considered by Hassin et al. is very different in
nature than our independent-failures model, and in particular, algorithmic and hard-
ness results do not seem to migrate from one problem to the other.

2 NP‑Hardness for Bidirected Trees

In what follows, we propose a reduction from the partition problem to maximum
reliability coverage, showing that the latter problem is NP-hard even when the
underlying network is a bidirected tree. For simplicity of presentation, it is conveni-
ent to start off in Sect. 2.1 with an intermediate reduction, where the survival prob-
abilities of certain arcs are either irrational or require a pseudo-polynomial number
of bits to be specified. With the basic ideas in place, we explain in Sect. 2.2 how
to “round” these probabilities into having only polynomially-many bits and how to

2478 Algorithmica (2020) 82:2474–2501

1 3

resolve additional numerical issues, while still being able to distinguish between
YES and NO instances of partition.

Theorem 2.1 Maximum reliability coverage is NP-hard on bidirected trees.

2.1 Reduction: Pseudo‑Polynomial Time

Our proof is based on a reduction from the partition problem, which is well known
to be NP-hard [9, 13]. Here, given a collection of positive integers a1,… , an , whose
sum is denoted by A, we wish to decide whether there exists a subset I ⊆ [n] for
which

∑
i∈I ai =

A

2
 . Given such an instance, we construct a corresponding instance of

maximum reliability coverage as follows:

• The network is a bidirected tree on 3n + 1 nodes, with a root r and n arms, where
the top-to-bottom node order on each arm i is xi , yi , and zi.

• The root r is connected to xi using bidirected arcs, such that the survival prob-
ability of (r, xi) is 1/2 whereas that of (xi, r) is 1 − e−ai∕A . Then, xi is connected to
yi by an arc (xi, yi) with survival probability 1, and similarly, zi is also connected
to yi , again by an arc (zi, yi) with probability 1. We mention in passing that the
arcs (yi, xi) and (yi, zi) do not exist.

• The respective demands of xi , yi , and zi are ai , �A , and �ai , where � =
2+3e−1∕2

4

and � = ⌈2(� + 2)⌉ . The root r has a demand of 0.
• At most n facilities can be located.

It is worth emphasizing that the above reduction is generally not polynomial in
logA , due to having probabilities of the form 1 − e−ai∕A , which may require Ω(A)
bits to be specified. In fact, since these probabilities (and �) are irrational numbers,
additional numerical complications are incurred when one wishes to ensure suffi-
cient accuracy. As previously mentioned, we deal with this issue in Sect. 2.2. For the
remainder of our analysis, we use F∗

⊆ V to denote a fixed optimal set of facilities
for the resulting instance of maximum reliability coverage. The next claim identifies
an important structural property of F∗ that will be useful later on.

Lemma 2.2 F∗ picks exactly one of the nodes xi and zi within each arm i ∈ [n].

Proof We begin by arguing that F∗ picks exactly one of xi , yi , and zi within each arm
i ∈ [n] . To this end, suppose that the latter property does not hold, meaning that due
to having |F∗| ≤ n there exists some j ∈ [n] for which F∗ does not pick any of xj , yj ,
and zj . In this case, yj can only be covered by facilities different from xj , yj , and zj ,
implying that the probability for yj being covered is
�yj

(F∗) = �r(F
∗) ⋅ p(r,xj) ⋅ p(xj,yj) ≤ 1∕2 , since p(r,xj) = 1∕2 . It follows that

2479

1 3

Algorithmica (2020) 82:2474–2501

where the last inequality holds since � = ⌈2(� + 2)⌉ . This contradicts the trivial
lower bound of E(F∗) ≥ n�A , attained by picking y1,… , yn as facilities.

We are now left with showing that F∗ does not pick yi within each arm i ∈ [n] .
For this purpose, suppose that there exists some j ∈ [n] for which F∗ picks yj . Then,
let us create a modified solution F̃∗ where this facility is relocated from yj to xj .
Clearly, 𝜋yj (F̃

∗) = 𝜋yj
(F∗) = 1 , 𝜋xj (F̃

∗) = 1 >
1

2
≥ 𝜋xj

(F∗) , and 𝜋v(F̃∗) ≥ 𝜋v(F
∗) for

any other node. As a result, E(F̃∗) − E(F) ≥ aj ⋅ (𝜋xj (F̃
∗) − 𝜋xj

(F∗)) > 0 , contradict-
ing the optimality of F∗ . ◻

Given the particular structure of optimal sets of facilities, as stated in Lemma 2.2,
we proceed by deriving a simple expression for the expected demand coverage of such
sets.

Lemma 2.3 Let F ⊆ V be a feasible set of facilities that picks exactly one
of xi and zi within each arm i ∈ [n] . Then, E(F) = n�A + �(

∑
i∈IF

ai) , where
IF = {i ∶ xi ∈ F} and � ∶ [0,A] → ℝ is the real-valued function defined by
�(x) = x + (A − x) ⋅ (� +

1

2
⋅ (1 − e−x∕A)).

Proof When exactly one of xi and zi is picked within each arm i ∈ [n] , the expected
demand coverage E(F) can be broken down into the following ingredients:

• y-nodes: A total demand of n�A is covered over y1,… , yn with probability 1.
• x-nodes with IF-indices: A total demand of

∑
i∈IF

ai is covered over {xi}i∈IF with
probability 1.

• z-nodes with non-IF-indices: A total demand of � ⋅
∑

i∉IF
ai is covered over {zi}i∉IF

with probability 1.
• x-nodes with non-IF-indices: The demand aj of each xj with j ∉ IF is covered with

probability 1
2
(1 − e

−
∑

i∈IF
ai∕A).

Therefore,

E(F∗) =
∑
i∈[n]

(
ai ⋅ �xi (F

∗) + �A ⋅ �yi
(F∗) + �ai ⋅ �zi(F

∗)
)

≤
∑

i∈[n]⧵{j}

(
ai + �A + �ai

)
+

(
aj +

�A

2
+ �aj

)

= n�A −
(
�

2
− (� + 1)

)
A

≤ (n� − 1)A ,

2480 Algorithmica (2020) 82:2474–2501

1 3

 ◻

We are now ready to show that the optimal expected demand coverage E(F∗) can
be used to distinguish between YES and NO instances of the partition problem:

• YES instances are mapped to E(F∗) ≥ n�A + �(
A

2
) . Suppose there exists a sub-

set I ⊆ [n] for which
∑

i∈I ai =
A

2
 . In this case, Lemma 2.3 implies that the set

of facilities F = {xi ∶ i ∈ I} ∪ {zi ∶ i ∉ I} has an expected demand coverage of
E(F) = n�A + �(

∑
i∈I ai) = n�A + �(

A

2
) . As a result, the optimality of F∗ guar-

antees that E(F∗) ≥ E(F) ≥ n�A + �(
A

2
).

• NO instances are mapped to E(F∗) ≤ n�A + �(
A

2
) −

1

25A
 . By combining Lem-

mas 2.2 and 2.3, it follows that the optimal expected demand coverage is
E(F∗) = n�A + �(

∑
i∈IF∗

ai) , where IF∗ = {i ∶ xi ∈ F∗} . However, one can eas-
ily verify by elementary calculus that the function � is concave, with a unique
maximizer at A

2
 . Moreover, as shown in Lemma 2.4 below, for any integer a ≠

A

2

we actually have �(a) ≤ �(
A

2
) −

1

25A
 . Consequently, due to considering a NO

instance,
∑

i∈IF∗
ai ≠

A

2
 , meaning that E(F∗) ≤ n�A + �(

A

2
) −

1

25A
.

Lemma 2.4 �(a) ≤ �(
A

2
) −

1

25A
 , for every integer a ≠

A

2
.

Proof As previously mentioned, � is concave, with a unique maximizer at A
2
 . For this

reason, it is sufficient to show that max{�(
A

2
− 1),�(

A

2
+ 1)} ≤ �(

A

2
) −

1

25A
 . First, in

order to bound �(A
2
− 1) , note that the (differentiable and concave) function � lies

below all of its tangents, meaning in particular that for the tangent at A
2
−

1

2
 we have

�(x) ≤ �(
A

2
−

1

2
) + �

�(
A

2
−

1

2
) ⋅ (x − (

A

2
−

1

2
)) . By substituting x = A

2
− 1 , it follows

that

E(F) = n�A +
�
i∈IF

ai + � ⋅

�
i∉IF

ai +
1

2
⋅

�
1 − e

−
∑

i∈IF
ai∕A

�
⋅

�
i∉IF

ai

= n�A + �

��
i∈IF

ai

�
.

2481

1 3

Algorithmica (2020) 82:2474–2501

where the second inequality holds since � is maximized at A
2
 . Now, in order to

bound �(A
2
+ 1) , we make use of the tangent at A

2
+

1

2
 , which provides the bound

�(x) ≤ �(
A

2
+

1

2
) + �

�(
A

2
+

1

2
) ⋅ (x − (

A

2
+

1

2
)) . Here, by substituting x = A

2
+ 1 , it fol-

lows that

 ◻

2.2 Reduction: Truly Polynomial Time

We now turn our attention to ensuring that the survival probability of each arc is
sufficiently large, and moreover, can be specified using polynomially-many bits
via a simple and efficient calculation. The technical idea for “rounding” these

�

�
A

2
− 1

�
≤�

�
A

2
−

1

2

�
−

1

2
⋅ �

�
�
A

2
−

1

2

�

≤�

�
A

2

�
−

1

2
⋅

�
1

2
− � + e−x∕A ⋅

�
1 −

x

2A

������x= A

2
−

1

2

=�

�
A

2

�
−

1

2
⋅

�
−
3e−1∕2

4
+ e

−
1

2
+

1

2A ⋅

�
3

4
+

1

4A

��

=�

�
A

2

�
+

e−1∕2

8
⋅

⎛⎜⎜⎜⎜⎝
3 − 3e

1

2A

⏟⏞⏟⏞⏟

≤0

−
1

A
e

1

2A

⏟⏟⏟

≥1∕A

⎞⎟⎟⎟⎟⎠
≤�

�
A

2

�
+

e−1∕2

8
⋅
1

A

≤�

�
A

2

�
−

7

100A
,

�

�
A

2
+ 1

�
≤�

�
A

2
+

1

2

�
+

1

2
⋅ �

�
�
A

2
+

1

2

�

≤�

�
A

2

�
+

1

2
⋅

�
1

2
− � + e−x∕A ⋅

�
1 −

x

2A

������x= A

2
+

1

2

=�

�
A

2

�
+

1

2
⋅

�
−
3e−1∕2

4
+ e

−
1

2
−

1

2A ⋅

�
3

4
−

1

4A

��

=�

�
A

2

�
−

e−1∕2

8
⋅

⎛⎜⎜⎜⎜⎝
3 − 3e−

1

2A

⏟⏞⏞⏟⏞⏞⏟

≥0

+
1

A
e
−

1

2A

⏟⏟⏟

≥e−1∕2∕A

⎞⎟⎟⎟⎟⎠
≤�

�
A

2

�
−

1

8e
⋅
1

A

≤�

�
A

2

�
−

1

25A
.

2482 Algorithmica (2020) 82:2474–2501

1 3

probabilities as well as the irrational parameter � =
2+3e−1∕2

4
 is based on Maclaurin

series approximation for the exponential function, which states that
�ex −∑T

t=0

xt

t!
� = O(

xT+1

(T+1)!
) for any x ∈ ℝ (see, e.g., [19, Chap. 20]). In particular,

specializing the latter bound to x ∈ [−1, 1] , we have �ex −∑T

t=0

xt

t!
� = O(

1

2T∕2
) , with

room to spare. As a result, by taking T(K) = Θ(logK) , one has �ex −∑T(K)

t=0

xt

t!
� ≤ 1

K
 ,

which we instantiate with K = 200nA2 . Therefore, rather than associating each
arc (xi, r) with a survival probability of 1 − e−ai∕A , we use 1 −MT(K)(−

ai

A
) instead,

where MT(K)(x) =
∑T(K)

t=0

xt

t!
 . With this definition, the probability MT(K)(−

ai

A
)

requires only O(log(nA)) bits to be specified and can be computed (by definition)
in polynomial time, which makes our overall reduction polynomial. Similarly,
rather than � =

2+3e−1∕2

4
 , we will be using �̃� =

2+3⋅MT(K)(−1∕2)

4
.

That said, we still have to show that one can indeed distinguish between YES
and NO instances of partition based on the optimal expected demand coverage,
which is precisely what Lemmas 2.5 and 2.7 below argue. To avoid confusion,
we denote by ̃E the expected demand coverage function with respect to the result-
ing instance (with rounded probabilities and �̃�), while keeping E for the analo-
gous function with respect to the original (pre-rounding) instance. In addition, it
is worth pointing out that F∗ is now denoting an optimal facility set for the new
objective function, ̃E.

Lemma 2.5 (YES instances) Suppose there exists a subset I ⊆ [n] for which ∑
i∈I ai =

A

2
 . Then, ̃E(F∗) ≥ n𝜇A + 𝜑(

A

2
) −

1

100A
.

Proof By repeating the proof of Lemma 2.3, where each of the survival probabilities
1 − e−ai∕A are replaced by their rounded version 1 −MT(K)(−

ai

A
) and � is replaced by

�̃� , it follows that the set of facilities F = {xi ∶ i ∈ I} ∪ {zi ∶ i ∉ I} has an expected
demand coverage of

where the second inequality follows from the next technical claim, whose proof is
provided in “Proof of Claim 2.6” section of “Appendix 1”.

̃E(F) = n𝜇A +
�
i∈I

ai + �̃� ⋅

�
i∉I

ai +
1

2
⋅

�
1 −

�
i∈I

MT(K)

�
−
ai

A

��
⋅

�
i∉I

ai

≥ n𝜇A +
�
i∈I

ai +
�
𝜆 −

1

K

�
⋅

�
i∉I

ai +
1

2
⋅

�
1 −

�
i∈I

�
e−ai∕A +

1

K

��
⋅

�
i∉I

ai

≥ n𝜇A +
�
i∈I

ai +
�
𝜆 −

1

K

�
⋅

�
i∉I

ai +
1

2
⋅

�
1 − e−

∑
i∈I ai∕A −

1

100A2

�
⋅

�
i∉I

ai

≥ n𝜇A + 𝜑

��
i∈I

ai

�
−

1

100A

= n𝜇A + 𝜑

�
A

2

�
−

1

100A
,

2483

1 3

Algorithmica (2020) 82:2474–2501

Claim 2.6
∏

i∈I(e
−ai∕A +

1

K
) ≤ e−

∑
i∈I ai∕A +

1

100A2
.

As a result, the optimality of F∗ guarantees that
̃E(F∗) ≥ ̃E(F) ≥ n𝜇A + 𝜑(

A

2
) −

1

100A
 . ◻

Lemma 2.7 (NO instances) Suppose that
∑

i∈I ai ≠
A

2
 for every subset I ⊆ [n] . Then,

̃E(F∗) ≤ n𝜇A + 𝜑(
A

2
) −

3

100A
.

Proof Once again, by repeating the proof of Lemma 2.3 with the rounded probabili-
ties and �̃� plugged-in, and by defining IF∗ = {i ∶ xi ∈ F∗} , it follows that

where the second inequality follows from the next technical claim, whose proof is
provided in “Proof of Claim 2.8” section of “Appendix 1”.

Claim 2.8
∏

i∈I(e
−ai∕A −

1

K
) ≥ e−

∑
i∈I ai∕A −

1

100A2
.

Now, as shown at the end of Sect. 2.1, NO instances of the partition problem are
mapped to E(F∗) ≤ n�A + �(

A

2
) −

1

25A
 , and therefore, ̃E(F∗) ≤ n𝜇A + 𝜑(

A

2
) −

3

100A
 .

 ◻

3 FPTAS for Bidirected Trees

In what follows, we utilize approximate dynamic programming ideas to devise an
FPTAS for the maximum reliability coverage problem on bidirected trees. Here,
the underlying tree T = (V ,E) can easily be transformed into a binary one, with

̃E(F∗) = n𝜇A +
�
i∈IF∗

ai + �̃� ⋅

�
i∉IF∗

ai +
1

2
⋅

�
1 −

�
i∈IF∗

MT(K)

�
−
ai

A

��
⋅

�
i∉IF∗

ai

≤ n𝜇A +
�
i∈IF∗

ai +
�
𝜆 +

1

K

�
⋅

�
i∉IF∗

ai

+
1

2
⋅

�
1 −

�
i∈IF∗

�
e−ai∕A −

1

K

��
⋅

�
i∉IF∗

ai

≤ n𝜇A +
�
i∈IF∗

ai +
�
𝜆 +

1

K

�
⋅

�
i∉IF∗

ai

+
1

2
⋅

�
1 − e

−
∑

i∈IF∗
ai∕A +

1

100A2

�
⋅

�
i∉IF∗

ai

≤ n𝜇A + 𝜑

��
i∈IF∗

ai

�
+

1

100A

= E(F∗) +
1

100A
,

2484 Algorithmica (2020) 82:2474–2501

1 3

a pair of anti-parallel arcs connecting every node to each of its children; these
arcs are potentially associated with zero survival probabilities. Essentially, when
a node has m ≥ 3 children, we replace the connecting arcs by an O(logm)-depth
binary tree with m leaves, each corresponding to a different child. Arcs adjacent
to such leaves are identical to those connecting the original child to its parent,
whereas all other (interior) arcs survive with probability 1.

For ease of exposition, we present our algorithm and its analysis in an incre-
mental way. First, Sect. 3.1 provides an exact dynamic program for the special
case where T is a line. Then, Sect. 3.2 extends these ideas to arbitrary trees while
making use of a continuous state space of coverage probabilities. This leads to a
non-algorithmic characterization of optimal facility sets. Finally, the main nov-
elty of our method is revealed in Sect. 3.3, where we show how to discretize the
state space into polynomially-many coverage probabilities, while losing only a
negligible factor in optimality and still preserving the correctness of our dynamic
program.

3.1 Warm‑Up: Exact Dynamic Program on the Line

Preliminaries We begin by rooting the path T at one of its endpoints rup , where the
opposite endpoint is designated by rdown ; the underlying number of nodes in T will
be denoted by n. The important property we exploit in the context of line networks
is that, with respect to any set of facilities F ⊆ V , each node v has only O(n) possible
values for the probability to be covered by a facility located on the path rup ⇝ �(v) ,
from the root rup to �(v) , the parent of v. This probability is precisely
pfup⇝�(v) ⋅ p(�(v),v) , where fup ∈ F is the maximum-depth facility located on
rup ⇝ �(v) and p

⋅⇝⋅
 stands for the survival probability of a given path; when no

facilities are located on rup ⇝ �(v) , the probability in question is clearly 0. As a
result, by defining Pv

up
= {pu⇝�(v) ⋅ p(�(v),v) ∶ u ∈ V(rup ⇝ �(v))} ∪ {0} , we obtain

an O(n)-sized set that contains any possible probability of v being covered by a facil-
ity located on rup ⇝ �(v) , noting that this construction is independent of F. Simi-
larly, one can easily construct an analogous O(n)-sized set Pv

down
 containing any pos-

sible probability of v being covered by a facility located on rdown ⇝ v . In this case,
we also consider v itself as a potential node to locate a facility, meaning that
P
v
down

= {pu⇝v ∶ u ∈ V(rdown ⇝ v)} ∪ {0}.
The dynamic program For every node v ∈ V , number of facilities k, and pair of

probabilities (pup, pdown) ∈ P
v
up
× P

v
down

 , we define the function value
E(v, k, pup, pdown) as the maximum expected demand coverage collected over all
nodes in the subpath Tv rooted at v, given that the coverage probability of v by a
facility located on rup ⇝ �(v) is pup , under the following conditions: (1) The number
of facilities located in Tv is at most k; and (2) The coverage probability of v by a
facility located on rdown ⇝ v is pdown . With these definitions, since the coverage
probability of the root rup by any set of facilities necessarily resides within Prup

down
 , the

optimal expected demand coverage corresponds to
max{E(rup, k, 0, pdown) ∶ pdown ∈ P

rup

down
}.

2485

1 3

Algorithmica (2020) 82:2474–2501

Recursive equation for E(v, k, pup, pdown) We begin by considering the scenario
where pdown < 1 . Here, we must avoid locating a facility at the node v (or otherwise,
pdown = 1), which leads to an expected demand coverage of

where u is the single child node of v. This equation states that v is covered with
probability 1 − (1 − pup) ⋅ (1 − pdown) , and it remains to decide how the k facilities
are located in Tu . We note that states where pdown

p(u,v)
> 1 are not considered.

Now, in the opposite scenario where pdown = 1 , the above-mentioned option is
still feasible; by plugging in the value of pdown , we obtain an expected demand cov-
erage of

Yet another option is to locate a facility at v, leading to an expected demand cover-
age of

In this case, the node v is covered with probability 1, resulting in a demand of dv ,
and it remains to decide how the k − 1 remaining facilities are located in Tu . As a
result, E(v, k, pup, 1) is attained by taking the maximum of (2) and (3).

Termination Terminal states of our recursion involve the bottom endpoint rdown .
In this case, when a facility is located at rdown , we obtain an expected demand cover-
age of drdown . Otherwise, when one avoids locating a facility at rdown , the expected
demand coverage is pup ⋅ drdown . Consequently, we have E(rdown, k, pup, 1) = drdown
for k ≥ 1 and E(rdown, k, pup, 0) = pup ⋅ drdown for k ≥ 0 . All other states of the form
E(rdown, ⋅, ⋅, ⋅) are impossible.

Summary As a preprocessing step, the sets Pv
up

 and Pv
down

 over all nodes can be
constructed in time O(n2) . In addition, based on the preceding discussion, the param-
eters pup and pdown take O(n) values each, while the current root and the remaining
number of facilities take O(n) and O(k) values, respectively. Therefore, our dynamic
program consists of O(n3k) states, each evaluated in O(n) time, thus leading to the
next theorem.

Theorem 3.1 On bidirected lines, the maximum reliability coverage problem can
be solved to optimality in O(n4k)time.

(1)(1 − (1 − pup) ⋅ (1 − pdown)) ⋅ dv + E

(
u, k, pup ⋅ p(v,u),

pdown

p(u,v)

)
,

(2)dv + E

(
u, k, pup ⋅ p(v,u),

1

p(u,v)

)
.

(3)dv +max
{
E(u, k − 1, p(v,u), p̂down) ∶ p̂down ∈ P

u
down

}
.

2486 Algorithmica (2020) 82:2474–2501

1 3

3.2 Exact Dynamic Program on Trees: Continuous State Space

Preliminaries We begin by rooting the tree T at an arbitrary node r. Unlike the special
case of line networks, simple examples demonstrate that there are bidirected trees on n
nodes where the probability of a given node to be covered takes Ω(2Ω(n)) possible val-
ues. For instance, consider a complete binary tree on n leaves, where all down-going
arcs have zero survival probability and all up-going arcs survive with probability 1,
other than those adjacent to leaves, whose survival probabilities are 1 − 1

q1
,… , 1 −

1

qn
 .

Here, q1 < ⋯ < qn is the sequence of n smallest prime numbers, noting that the binary
representation of these probabilities is logarithmic in n, as qn ∼ n log n by the Prime
Numbers Theorem [10, 21]. Clearly, picking different subsets of leaves as facilities
results in different coverage probabilities for the root r. In particular, for k = ⌊ n

2
⌋ facili-

ties, the number of such probabilities is
� n

⌊n∕2⌋
�
= Ω

�
2
n√
n

�
 , where the latter transition

follows from Stirling’s approximation. Motivated by this observation, we operate for
the time being while allowing a continuum of coverage probabilities, taking any value
in [0, 1], which leads to a characterization of optimal facility sets by means of continu-
ous dynamic programming. As previously mentioned, the algorithmic implications of
this characterization are discussed in Sect. 3.3.

The dynamic program For every node v ∈ V , number of facilities k, and pair of
probabilities (pup, pdown) ∈ [0, 1]2 , we define the function value E(v, k, pup, pdown)
as the maximum expected demand coverage collected over all nodes in the subtree
Tv rooted at v, given that the coverage probability of v by a facility located in T⧵Tv
is pup , under the following conditions: (1) The number of facilities located in Tv is
at most k; and (2) The coverage probability of v by a facility located in Tv is pdown .
With these definitions, the optimal expected demand coverage corresponds to
max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]}.

Recursive equation for E(v, k, pup, pdown) Let u
�
 and ur be the left and right children

of v, respectively. When k ≥ 1 , the first option is to locate a facility at v, and to obtain
an expected demand coverage of

Here, the node v is covered with probability 1, resulting in a demand of dv , and it
remains to decide how the k − 1 remaining facilities are divided between the left and
right subtrees, Tu

�
 and Tur , using the decision variables k

�
 and kr . Clearly, this option

is relevant only when pdown = 1 . As a side note, due to having recursive equations
with multiple constraints, each will be denoted by (C(⋅)

⋅
) , where superscripts refer

to the corresponding equation number and subscripts refer to the internal indexing
between constraints.

(4)

dv +max
{
E(u

�
, k

�
, p(v,u

�
), pdown,�) + E(ur, kr, p(v,ur), pdown,r)

}

such that: (C
(4)

1
) k

�
+ kr = k − 1

(C
(4)

2
) pdown,� , pdown,r ∈ [0, 1]

variables: k
�
, kr, pdown,� , pdown,r

2487

1 3

Algorithmica (2020) 82:2474–2501

The second option is to avoid locating a facility at v, which leads to an expected
demand coverage of

In this case, v is covered with probability
1 − (1 − pup) ⋅ (1 − pdown,𝓁 ⋅ p(u

𝓁
,v)) ⋅ (1 − pdown,r ⋅ p(ur ,v)) , and it remains to decide

how the k facilities are divided between the left and right subtrees. As a result,
E(v, k, pup, pdown) is attained by taking the maximum of (4) and (5). When k = 0 , the
first option mentioned above is not possible, in which case E(v, 0, pup, pdown) is given
by (5).

Termination Terminal states of our recursion involve leaves of the tree.
Similarly to bidirected paths, when a facility is located at a leaf v, we obtain an
expected demand coverage of dv . Without a facility at v, the expected demand
coverage is pup ⋅ dv . Consequently, we have E(v, k, pup, 1) = dv for k ≥ 1 and
E(v, k, pup, 0) = pup ⋅ dv for k ≥ 0 . All other states of the form E(v, ⋅, ⋅, ⋅) are impos-
sible whenever v is a leaf.

3.3 Approximate Dynamic Program on Trees: Discretized State Space

Unfortunately, the dynamic program proposed in Sect. 3.2 makes use of a continu-
ous state space, due to allowing the probabilities pup and pdown as well as the deci-
sion variables pup,� , pup,r , pdown,� , and pdown,r to take any value in [0, 1]. In what fol-
lows, our objective is to discretize the latter state space in order to obtain a dynamic
program that can be solved in polynomial time. For this purpose, note that for any
path without arcs that fail with probability 1, its survival probability is trivially
lower-bounded by pn−1

min
 , where pmin stands for the minimum non-zero survival prob-

ability, i.e., pmin = min{pe ∶ pe > 0, e ∈ E} . Therefore, any non-zero probability
that would be incurred during the overall computation resides within [pn−1

min
, 1] . We

proceed by showing how to discretize this interval such that, as formally explained
later on, when the true probabilities are “rounded” accordingly, the overall error
accumulated throughout the recursive calls would be provably negligible.

Construction of P Given an error parameter � ∈ (0,
1

3
) , the discretized set of

“probabilities” P consists all (non-positive) integer powers of � = 1 +
�

n2
 within the

(5)

max
{
(1 − (1 − pup) ⋅ (1 − pdown,𝓁 ⋅ p(u

𝓁
,v)) ⋅ (1 − pdown,r ⋅ p(ur ,v))) ⋅ dv

+ E(u
𝓁
, k

𝓁
, pup,𝓁 , pdown,𝓁) + E(ur, kr, pup,r, pdown,r)

}

such that: (C
(5)

1
) k

𝓁
+ kr = k

(C
(5)

2
) pup,𝓁 = p(v,u

𝓁
) ⋅ (1 − (1 − pup) ⋅ (1 − p(ur ,v) ⋅ pdown,r))

(C
(5)

3
) pup,r = p(v,ur) ⋅ (1 − (1 − pup) ⋅ (1 − p(u

𝓁
,v) ⋅ pdown,𝓁))

(C
(5)

4
) pdown = 1 − (1 − pdown,𝓁 ⋅ p(u

𝓁
,v)) ⋅ (1 − pdown,r ⋅ p(ur ,v))

(C
(5)

5
) pup,𝓁 , pup,r, pdown,𝓁 , pdown,r ∈ [0, 1]

variables: k
𝓁
, kr, pup,𝓁 , pup,r, pdown,𝓁 , pdown,r

2488 Algorithmica (2020) 82:2474–2501

1 3

interval [�pn
min

, 1] ; we also add 0 to this set. It is worth emphasizing that the left end-
point �pn

min
 of the latter interval was purposely chosen to be smaller than the previ-

ously-mentioned lower bound of pn−1
min

 on any non-zero probability incurred in
Sect. 3.2. As we explain later on, this feature will be important to analyze the perfor-
mance guarantee of our algorithm. Note that
|P| = O(log

�

1

�pn
min

) = O(
n2

�

⋅ (log
1

�

+ n log
1

pmin

)) , which is polynomial in the input
size and in 1

�

.
Approximate dynamic program For every node v ∈ V , number of facilities k, and

pair of probabilities (pup, pdown) ∈ P
2 , we explain how to compute ̃E(v, k, pup, pdown) ,

which constitutes a lower bound on E(v, k, pup, pdown) . When k ≥ 1 , the former func-
tion is defined by taking the maximum of (6) and (7) below. The first of these sub-
problems is a restricted version of (4), with pup,⋅ and pdown,⋅ variables for the left and
right subtrees, forced to reside in P:

It is easy to verify that, when condition (C
(6)

3
) is replaced by

pup,� , pup,r, pdown,� , pdown,r ∈ [0, 1] , an optimal solution would necessarily set
pup,� = p(v,u

�
) and pup,r = p(v,ur) , leading back to subproblem (4). Similarly, the sec-

ond subproblem is a restricted version of (5), defined by:

Here, the only differences are substituting [0, 1] by P in condition (C(5)

5
) and using

inequalities in conditions (C(5)

2
)–(C(5)

4
) rather than equalities. When k = 0 , the first

option mentioned above is not possible, in which case ̃E(v, 0, pup, pdown) is given
by (7). Moreover, terminal states for the approximate value function ̃E are treated

(6)

dv +max
{
̃E(u

�
, k

�
, pup,� , pdown,�) +

̃E(ur, kr, pup,r, pdown,r)
}

such that: (C
(6)

1
) k

�
+ kr = k − 1

(C
(6)

2
) pup,� ≤ p(v,u

�
), pup,r ≤ p(v,ur)

(C
(6)

3
) pup,� , pup,r, pdown,� , pdown,r ∈ P

variables: k
�
, kr, pup,� , pup,r, pdown,� , pdown,r

(7)

max
{
(1 − (1 − pup) ⋅ (1 − pdown,𝓁 ⋅ p(u

𝓁
,v)) ⋅ (1 − pdown,r ⋅ p(ur ,v))) ⋅ dv

+ ̃E(u
𝓁
, k

𝓁
, pup,𝓁 , pdown,𝓁) +

̃E(ur, kr, pup,r, pdown,r)
}

such that: (C
(7)

1
) k

𝓁
+ kr = k

(C
(7)

2
) pup,𝓁 ≤ p(v,u

𝓁
) ⋅ (1 − (1 − pup) ⋅ (1 − p(ur ,v) ⋅ pdown,r))

(C
(7)

3
) pup,r ≤ p(v,ur) ⋅ (1 − (1 − pup) ⋅ (1 − p(u

𝓁
,v) ⋅ pdown,𝓁))

(C
(7)

4
) pdown ≤ 1 − (1 − pdown,𝓁 ⋅ p(u

𝓁
,v)) ⋅ (1 − pdown,r ⋅ p(ur ,v))

(C
(7)

5
) pup,𝓁 , pup,r, pdown,𝓁 , pdown,r ∈ P

variables: k
𝓁
, kr, pup,𝓁 , pup,r, pdown,𝓁 , pdown,r

2489

1 3

Algorithmica (2020) 82:2474–2501

identically to Sect. 3.2. Namely, when v is a leaf, ̃E(v, k, pup, 1) = dv for k ≥ 1 and
̃E(v, k, pup, 0) = pup ⋅ dv for k ≥ 0.

Intermediate summary Based on the preceding discussion, the resulting dynamic
program consists of O(nk ⋅ |P|2) states, whereas the time to evaluate ̃E for each state
is O(k ⋅ |P|4) . Since |P| = O(

n2

�

⋅ (log
1

�

+ n log
1

pmin

)) , the overall running time is

which is polynomial in the input size and in 1
�

 . Consequently, we can construct in
polynomial time a feasible set of facilities with an expected demand coverage of at
least max{̃E(r, k, 0, pdown) ∶ pdown ∈ P} . However, the interesting question is: Since
the dynamic program ̃E is restricted to using “probabilities” from the discrete set
P , while the exact continuous program operates without this restriction, why are
we guaranteed that max{̃E(r, k, 0, pdown) ∶ pdown ∈ P} nearly matches the optimal
expected demand coverage max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} ? The remainder of
this section is devoted to proving the next theorem.

Theorem 3.2 max{̃E(r, k, 0, pdown) ∶ pdown ∈ P} ≥ (1 − 52𝜖) ⋅max{E(r, k, 0, pdown)

∶ pdown ∈ [0, 1]}.

Notation For a real number x ∈ [pn
min

, 1] and an integer t ≤ 2n , we use ⌊x⌋t to
denote the value obtained by rounding x

�
t
 down to the nearest (non-zero) number in

P . This operator is indeed well-defined, since P was constructed with respect to the
interval [�pn

min
, 1] , and since

where the last inequality holds for any � ≤ 1∕3.
Defining the solution Let F∗ be an optimal set of facilities, with an expected

demand coverage of max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} . For each node v ∈ V , let
p∗
down,v

 be the probability that v is covered by a facility in F∗ ∩ Tv , and let p∗
up,v

 be the
probability that v is covered by a facility in F∗ ∩ (T⧵Tv) . Finally, let L(v) be the level
of v in the tree T, i.e., the root r is at level 0, its two children are at level 1, so on and
so forth.

We create a candidate solution to the dynamic program ̃E as follows. First, facili-
ties are located at F∗ . Given this decision, our goal is to define “rounded” probabili-
ties in P that approximate the true ones, p̃down,v ≈ p∗

down,v
 and p̃up,v ≈ p∗

up,v
 , in order

to ensure two basic properties:

• Feasibility: (F∗, p̃) is a feasible solution to ̃E.
• Near-optimality: The expected demand coverage of (F∗, p̃) is within factor

1 − 52� of max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]}.

O
(
nk2 ⋅ |P|6) = O

(
n19k2

�
6

⋅ log6
(

1

�pmin

))
,

pn
min

�
2n

=
pn
min

(1 + �∕n2)2n
≥ pn

min
⋅ e−2�∕n ≥ pn

min
⋅

(
1 −

2�

n

)
≥ �pn

min
,

2490 Algorithmica (2020) 82:2474–2501

1 3

As it turns out later on, the difficult conditions to satisfy are (C(7)

2
)–(C(7)

4
) . A close

inspection of condition (C(7)

4
) reveals that rounding errors would accumulate through

the dynamic program ̃E in a bottom-up way, meaning that our approximation p̃down,v for
p∗
down,v

 should be tighter as the distance from v to the root grows. Therefore, we will
make use of p̃down,v = ⌊p∗

down,v
⌋n−L(v) . Having fixed this decision, by analyzing how the

rounding error accumulates with respect to conditions (C(7)

2
) and (C(7)

3
) , we would have

the opposite trend, and will consequently use p̃up,v = ⌊p∗
up,v

⌋n+L(v) . Note that
n + L(v) ≤ 2n − 1 for every v ∈ V , and therefore p̃down,v and p̃up,v are well-defined.

Analysis As shown below, these definitions are sufficient to establish feasibil-
ity, regardless of the value of � , whose powers within [�pn

min
, 1] were used to define

P . In fact, any choice of the parameter 𝜇 > 1 works in this context. However, for the
expected demand coverage of (F∗, p̃) to be near-optimal, this parameter needs to be
accurate enough, and our choice of � = 1 +

�

n2
 will be shown to be sufficient. With

respect to subproblems (6) and (7), the conditions (C(6)

1
) , (C(7)

1
) , (C(6)

2
) , (C(6)

3
) , and (C(7)

5
)

are clearly satisfied. The more challenging conditions to prove are (C(7)

2
)–(C(7)

4
) , in addi-

tion to deriving a lower bound on the objective function.

Lemma 3.3 The solution (F∗, p̃) satisfies condition (C(7)

4
).

Proof Let us focus on some node v ∉ F∗ . Then,

 ◻

1 − (1 − p̃down,𝓁 ⋅ p(u
𝓁
,v)) ⋅ (1 − p̃down,r ⋅ p(ur ,v))

= p̃down,𝓁 ⋅ p(u
𝓁
,v) + p̃down,r ⋅ p(ur ,v) − p̃down,𝓁 ⋅ p(u

𝓁
,v) ⋅ p̃down,r ⋅ p(ur ,v)

= ⌊p∗
down,𝓁

⌋n−L(u
𝓁
) ⋅ p(u

𝓁
,v) + ⌊p∗

down,r
⌋n−L(ur) ⋅ p(ur ,v)

− ⌊p∗
down,𝓁

⌋n−L(u
𝓁
) ⋅ p(u

𝓁
,v) ⋅ ⌊p∗down,r⌋n−L(ur) ⋅ p(ur ,v)

≥
p∗
down,𝓁

𝜇
n−L(u

𝓁
)+1

⋅ p(u
𝓁
,v) +

p∗
down,r

𝜇
n−L(ur)+1

⋅ p(ur ,v)

−
p∗
down,𝓁

𝜇
n−L(u

𝓁
)
⋅ p(u

𝓁
,v) ⋅

p∗
down,r

𝜇
n−L(ur)

⋅ p(ur ,v)

≥
1

𝜇
n−L(u

𝓁
)+1

⋅

�
p∗
down,𝓁

⋅ p(u
𝓁
,v) + p∗

down,r
⋅ p(ur ,v)

−p∗
down,𝓁

⋅ p(u
𝓁
,v) ⋅ p

∗
down,r

⋅ p(ur ,v)

�

=
p∗
down,v

𝜇
n−L(v)

≥ ⌊p∗
down,v

⌋n−L(v)
= p̃down,v.

2491

1 3

Algorithmica (2020) 82:2474–2501

Lemma 3.4 The solution (F∗, p̃) satisfies conditions (C(7)

2
) and (C(7)

3
).

Proof For the left subtree, condition (C(7)

2
) is met since:

The argument for the right subtree and condition (C(7)

3
) is symmetrical. ◻

Concluding the proof of Theorem 3.2 In order to establish the theorem, it suffices to
argue that the solution (F∗, p̃) , whose feasibility has just been proven, attains an objec-
tive value of at least (1 − 52�) ⋅max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} with respect to
our approximate dynamic program ̃E . We begin by observing that the latter quantity
can be written as

Now, for every v ∈ F∗ , the solution (F∗, p̃) covers v with probability 1. In addition,
for every v ∉ F∗ , the probability that v is covered by (F∗, p̃) can be lower bounded in
terms of �v(F∗) as follows:

p(v,u
𝓁
) ⋅ (1 − (1 − p̃up,v) ⋅ (1 − p(ur ,v) ⋅ p̃down,r))

= p(v,u
𝓁
) ⋅

�
p̃up,v + p(ur ,v) ⋅ p̃down,r − p̃up,v ⋅ p(ur ,v) ⋅ p̃down,r

�

= p(v,u
𝓁
) ⋅

�
⌊p∗

up,v
⌋n+L(v) + p(ur ,v) ⋅ ⌊p∗down,r⌋n−L(ur)

−⌊p∗
up,v

⌋n+L(v) ⋅ p(ur ,v) ⋅ ⌊p∗down,r⌋n−L(ur)
�

≥ p(v,u
𝓁
) ⋅

�
p∗
up,v

𝜇
n+L(v)+1

+ p(ur ,v) ⋅
p∗
down,r

𝜇
n−L(ur)+1

−
p∗
up,v

𝜇
n+L(v)

⋅ p(ur ,v) ⋅
p∗
down,r

𝜇
n−L(ur)

�

≥
p(v,u

𝓁
)

𝜇
n+L(v)+1

⋅

�
p∗
up,v

+ p(ur ,v) ⋅ p
∗
down,r

− p∗
up,v

⋅ p(ur ,v) ⋅ p
∗
down,r

�

=
p∗
up,𝓁

𝜇
n+L(u

𝓁
)

≥ ⌊p∗
up,𝓁

⌋n+L(u
𝓁
)

= p∗
up,𝓁

.

(8)

max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} = E(F∗) =
∑
v∈V

�v(F
∗) ⋅ dv

=
∑
v∈F∗

dv +
∑
v∉F∗

�v(F
∗) ⋅ dv.

2492 Algorithmica (2020) 82:2474–2501

1 3

Here, the fourth inequality hold since �n = (1 +
�

n2
)n ≤ e�∕n ≤ 1 +

2�

n
 , where in the

last transition we are using ex ≤ 1 + 2x for x ∈ [0, 1] ; similarly, �2n ≤ 1 +
4�

n
 and

�
3n+1 ≤ 1 +

6�

n
+

2�

n2
≤ 1 + 8� . The term 44�

n
 in the fifth inequality results from using

�

n
 as an upper bound on both (

�

n
)2 and (

�

n
)3 in the expansion of

(1 +
4�

n
− p∗

up,v
) ⋅ (1 +

2�

n
− p∗

down,𝓁
⋅ p(u

𝓁
,v)) ⋅ (1 +

2�

n
− p∗

down,r
⋅ p(ur ,v)) , noting that all

p
⋅
 and p∗

⋅
 parameters are non-negative. The last equality is obtained by observing

that �v(F
∗) = 1 − (1 − p∗

up,v
) ⋅ (1 − p∗

down,𝓁
⋅ p(u

𝓁
,v)) ⋅ (1 − p∗

down,r
⋅ p(ur ,v)) for every

v ∉ F∗.
To summarize, we can now derive a lower bound on the optimal value of our

dynamic program, max{̃E(r, k, 0, pdown) ∶ pdown ∈ P} , via the expected demand cov-
erage attained by (F∗, p̃) , implying that

1 − (1 − p̃up,v) ⋅ (1 − p̃down,𝓁 ⋅ p(u
𝓁
,v)) ⋅ (1 − p̃down,r ⋅ p(ur ,v))

= 1 − (1 − ⌊p∗
up,v

⌋n+L(v)) ⋅ (1 − ⌊p∗
down,𝓁

⌋n−L(u
𝓁
) ⋅ p(u

𝓁
,v))

⋅ (1 − ⌊p∗
down,r

⌋n−L(ur) ⋅ p(ur ,v))

≥ 1 −

�
1 −

p∗
up,v

𝜇
n+L(v)+1

�
⋅

�
1 −

p∗
down,𝓁

𝜇
n−L(u

𝓁
)+1

⋅ p(u
𝓁
,v)

�

⋅

�
1 −

p∗
down,r

𝜇
n−L(ur)+1

⋅ p(ur ,v)

�

≥
1

𝜇
3n+L(v)−L(u

𝓁
)−L(ur)+3

⋅

�
1 −

�
𝜇
n+L(v)+1 − p∗

up,v

�

⋅

�
𝜇
n−L(u

𝓁
)+1 − p∗

down,𝓁
⋅ p(u

𝓁
,v)

�

⋅

�
𝜇
n−L(ur)+1 − p∗

down,r
⋅ p(ur ,v)

��

≥
1

𝜇
3n+1

⋅

�
1 −

�
𝜇
2n − p∗

up,v

�
⋅

�
𝜇
n − p∗

down,𝓁
⋅ p(u

𝓁
,v)

�
⋅

�
𝜇
n − p∗

down,r
⋅ p(ur ,v)

��

≥ (1 − 8𝜖) ⋅
�
1 −

�
1 +

4𝜖

n
− p∗

up,v

�
⋅

�
1 +

2𝜖

n
− p∗

down,𝓁
⋅ p(u

𝓁
,v)

�

⋅

�
1 +

2𝜖

n
− p∗

down,r
⋅ p(ur ,v)

��

≥ (1 − 8𝜖) ⋅
�
1 −

�
1 − p∗

up,v

�
⋅

�
1 − p∗

down,𝓁
⋅ p(u

𝓁
,v)

�

⋅

�
1 − p∗

down,r
⋅ p(ur ,v)

�
−

44𝜖

n

�

= (1 − 8𝜖) ⋅
�
𝜋v(F

∗) −
44𝜖

n

�
.

2493

1 3

Algorithmica (2020) 82:2474–2501

where the last inequality results from combining (8) with the observation that
dv ≤ E(F∗) = max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} for every node v ∈ V .

Theorem 3.5 On bidirected trees, the maximum reliability coverage problem
admits an FPTAS. The running time of our algorithm is O(n

19k2

�
6

⋅ log6(
1

�pmin

)).

4 General Networks

In what follows, we present a sampling-based greedy algorithm for approximating
the maximum reliability coverage problem on general networks. This result is for-
mally stated in the next theorem, where n and m respectively designate the number
of nodes and arcs of the input graph, while k stands for the number of facilities to be
located.

Theorem 4.1 For any 𝜖 > 0 , there is a Monte-Carlo algorithm that computes a
(1 − 1∕e − �)-approximation for the maximum reliability coverage problem with
probability at least 1/2. The running time of this algorithm is O((nk)

3
⋅(n+m)⋅log n

�
2

).

It is worth pointing out that, as mentioned in Sect. 1.1, one can easily show that
the expected demand coverage function E ∶ 2V → ℝ+ is monotone and submodular.
For completeness, we establish this claim in “Properties of � ” section of “Appen-
dix 1”. Consequently, a natural approach for maximizing this function subject to the
k-cardinality constraint on the allowed number of facilities is to utilize the standard
greedy algorithm [16]. The resulting approximation ratio, 1 − 1∕e , would be best-
possible since maximum reliability coverage generalizes the max k-cover problem,
that cannot be approximated within a constant greater than 1 − 1∕e , unless P = NP
[8]. Nevertheless, to implement the greedy algorithm in a straightforward way, one
should be equipped with an oracle access to E . Unfortunately, the existence of an
exact polynomial-time algorithm to evaluate E implies, in particular, that we can
efficiently compute the probability that two given vertices, u and v, in an undirected
graph remain connected subject to random independent edge failures; this estima-
tion problem is known to be #P-complete [3, 17, 20]. The latter reduction works by
setting the demand of v to 1 and that of any other node to 0. It is easy to verify that
E({u}) is precisely the probability that u and v remain connected.

max{̃E(r, k, 0, pdown) ∶ pdown ∈ P}

≥
∑
v∈F∗

dv + (1 − 8𝜖) ⋅
∑
v∉F∗

(
𝜋v(F

∗) −
44𝜖

n

)
⋅ dv

≥ (1 − 8𝜖) ⋅

(∑
v∈F∗

dv +
∑
v∉F∗

𝜋v(F
∗) ⋅ dv

)
−

44𝜖

n
⋅

∑
v∉F∗

dv

≥ (1 − 52𝜖) ⋅max{E(r, k, 0, pdown) ∶ pdown ∈ [0, 1]} ,

2494 Algorithmica (2020) 82:2474–2501

1 3

4.1 Estimating the Function E

To go around the above-mentioned difficulties, we propose a sampling-based esti-
mator for the expected demand coverage function E up to a certain additive error,
which will be shown to be good enough for our purposes. To this end, given an
accuracy level 𝜖 > 0 , we begin by setting the value of two parameters, � =

�

2nk
 and

M = ⌈ ln(4kn2)

2�2
⌉ . For a set of facilities F ⊆ V and a node v ∈ V , let �̃�v(F) be an esti-

mator for the coverage probability �v(F) , defined as follows: Out of M indepen-
dently-generated surviving networks, �̃�v(F) is the (random) proportion of those
where v is covered by at least one facility in F. By Hoeffding’s inequality [12],

Now, by plugging-in �̃�v(F) instead of �v(F) into the definition E(F) , we obtain our
estimator ̃E(F) =

∑
v∈V �̃�v(F) ⋅ dv . It is easy to verify that the latter quantity can be

computed in O(M ⋅ (n + m)) time. The next claim provides a concentration bound
for ̃E(F) with respect to additive deviations in terms of the optimal expected demand
coverage.

Lemma 4.2 Let F∗ be an optimal set of facilities. Then, for any F ⊆ V ,

Proof By the union bound and inequality (9), with probability at least 1 − 2ne−2M�
2

we have |�̃�v(F) − 𝜋v(F)| ≤ 𝛿 , simultaneously for all nodes v ∈ V . We now show that,
given this event, |̃E(F) − E(F)| ≤ 𝛿n ⋅ E(F∗) . For this purpose, note that

where the last inequality holds since E(F∗) ≥ dv for every v ∈ V . The other direc-
tion, ̃E(F) ≤ E(F) + 𝛿n ⋅ E(F∗) , can be derived by nearly identical arguments. ◻

4.2 The Greedy Algorithm

In order to derive Theorem 4.1, we proceed by showing that the additive estima-
tor ̃E can be employed as an approximate oracle for E within the standard greedy
algorithm. Specifically, starting with an empty set of facilities, this algorithm

(9)Pr
[||�̃�v(F) − 𝜋v(F)

|| ≥ 𝛿

]
≤ 2e−2M𝛿

2

.

Pr
[|| ̃E(F) − E(F)|| ≤ 𝛿n ⋅ E(F∗)

]
≥ 1 − 2ne−2M𝛿

2

.

̃E(F) =
∑
v∈V

�̃�v(F) ⋅ dv

≥
∑
v∈V

(
𝜋v(F) − 𝛿

)
⋅ dv

= E(F) − 𝛿 ⋅

∑
v∈V

dv

≥ E(F) − 𝛿n ⋅ E(F∗) ,

2495

1 3

Algorithmica (2020) 82:2474–2501

picks in each step a facility whose addition maximizes the estimated coverage
function over all unpicked facilities:

• Initialize F0 = �.
• For � ← 1 to k:

– For every v ∈ V⧵F
�−1 , let ̃E

𝜅−1,v be a realization of ̃E(F
𝜅−1 ∪ {v}).

– Set F
�
= F

�−1 ∪ {f
�
} , where f

𝜅
= argmaxv∈V⧵F

𝜅−1

̃E
𝜅−1,v.

• Return Fk.

It is worth noting that, due to using a randomized oracle, the sequence of sets
F0,… ,Fk is obviously random as well. In addition, as far as running time is
concerned, each of the estimators ̃E

𝜅−1,v is computed in O(M ⋅ (n + m)) time.
For this reason, the greedy algorithm requires an overall running time of
O(Mnk ⋅ (n + m)) = O(

(nk)3⋅(n+m)⋅log n

�
2

) , by recalling that M = ⌈ ln(4kn2)

2�2
⌉ and � =

�

2nk
.

4.3 Analysis

To prove that, with constant probability, the resulting set of facilities Fk guarantees
an expected demand coverage of at least (1 − 1∕e − �) ⋅ E(F∗) , our arguments fol-
low the classic analysis of Nemhauser, Wolsey, and Fisher [16] for maximizing a
monotone submodular function subject to a cardinality constraint. However, suitable
adaptations are required to account for using the randomized oracle ̃E rather than E.

Lemma 4.3 Let F ⊆ V be a set of facilities with F∗⧵F ≠ � . Then, there exists a
node v ∈ F∗⧵F satisfying

Proof Letting F∗⧵F = {v1,… , vt} , we have

where the first and second inequalities follow from the monotonicity and submodu-
larity of E , respectively. Therefore,

 ◻

E(F ∪ {v}) − E(F) ≥
E(F∗) − E(F)

|F∗⧵F| .

E(F∗) − E(F) ≤ E(F∗ ∪ F) − E(F)

=

t∑
�=1

(
E(F ∪ {v1,… , v

�
}) − E(F ∪ {v1,… , v

�−1})
)

≤

t∑
�=1

(
E(F ∪ {v

�
}) − E(F)

)
,

max
1≤�≤t

(
E(F ∪ {v

�
}) − E(F)

)
≥

1

t
⋅

t∑
�=1

(
E(F ∪ {v

�
}) − E(F)

)
≥

E(F∗) − E(F)

|F∗⧵F| .

2496 Algorithmica (2020) 82:2474–2501

1 3

Lemma 4.4 E(Fk) ≥ (1 −
1

e
− �) ⋅ E(F∗) with probability at least 1/2.

Proof By the union bound and Lemma 4.2, the estimate ̃E
𝜅−1,v resides within the

interval E(F
�−1 ∪ {v}) ± �n ⋅ E(F∗) , simultaneously for all steps 1 ≤ � ≤ k and nodes

v ∈ V⧵F
�−1 , with probability at least 1 − 2kn2e−2M�

2

≥ 1∕2 , where the last inequal-
ity holds since M = ⌈ ln(4kn2)

2�2
⌉ . Given this event, we prove the desired claim by show-

ing that, for every 0 ≤ � ≤ k,

The proof works by induction on � . The base case � = 0 is trivial: Since F0 = � ,
we have E(F0) = 0 , and the right-hand-side of the above inequality evaluates to 0 as
well. For the general case of � ≥ 1 , we have

where the third inequality follows from Lemma 4.3, instantiated with F = F
�−1 .

Therefore, by the induction hypothesis,

where the last equality is obtained by substituting � =
�

2nk
 . ◻

E(F
�
) ≥

(
1 −

(
1 −

1

k

)�

−
��

k

)
⋅ E(F∗).

E(F
𝜅
) = E(F

𝜅−1 ∪ {f
𝜅
})

≥ ̃E
𝜅−1,f

𝜅

− 𝛿n ⋅ E(F∗)

= max
v∈V⧵F

𝜅−1

̃E
𝜅−1,v − 𝛿n ⋅ E(F∗)

≥ max
v∈V⧵F

𝜅−1

E(F
𝜅−1 ∪ {v}) − 2𝛿n ⋅ E(F∗)

≥ E(F
𝜅−1) +

E(F∗) − E(F
𝜅−1)

|F∗⧵F
𝜅−1| − 2𝛿n ⋅ E(F∗) ,

E(F
�
) ≥

((
1 −

1

|F∗⧵F
�−1|

)
⋅

(
1 −

(
1 −

1

k

)�−1

−
(� − 1) ⋅ �

k

)

+
1

|F∗⧵F
�−1| − 2�n

)
⋅ E(F∗)

=

(
1 −

(
1 −

1

k

)�−1

−
(� − 1) ⋅ �

k

+
1

|F∗⧵F
�−1| ⋅

((
1 −

1

k

)�−1

+
(� − 1) ⋅ �

k

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

−2�n

)
⋅ E(F∗)

≥

(
1 −

(
1 −

1

k

)�

−
(� − 1) ⋅ �

k
− 2�n

)
⋅ E(F∗)

=

(
1 −

(
1 −

1

k

)�

−
��

k

)
⋅ E(F∗) ,

2497

1 3

Algorithmica (2020) 82:2474–2501

Appendix 1: Additional Proofs

Proof of Claim 2.6

To obtain the desired inequality, note that

Here, the first inequality is obtained by observing that e−
∑

i∈S ai∕A ≤ 1 . In the third
inequality we are using ex ≤ 1 + 2x for x ∈ [0, 1] . Finally, the last inequality holds
since |I| ≤ n and K = 200nA2.

Proof of Claim 2.8

The proof is similar to that of Claim 2.6, and we provide it for completeness. To this
end, note that

�
i∈I

�
e−ai∕A +

1

K

�
= e−

∑
i∈I ai∕A +

�
S⊊I

e−
∑

i∈S ai∕A

K�I�−�S�

≤ e−
∑

i∈I ai∕A +

�I�−1�
s=0

��I�
s

�
⋅

1

K�I�−s

= e−
∑

i∈I ai∕A +
�
1 +

1

K

��I�
− 1

≤ e−
∑

i∈I ai∕A + e�I�∕K − 1

≤ e−
∑

i∈I ai∕A +
2 ⋅ �I�
K

≤ e−
∑

i∈I ai∕A +
1

100A2
.

�
i∈I

�
e−ai∕A −

1

K

�
= e−

∑
i∈I ai∕A +

�
S⊊I

⋅
e−

∑
i∈S ai∕A

(−K)�I�−�S�

≥ e−
∑

i∈I ai∕A −
�
S⊊I

1

K�I�−�S�

= e−
∑

i∈I ai∕A −

�I�−1�
s=0

��I�
s

�
⋅

1

K�I�−s

= e−
∑

i∈I ai∕A −
�
1 +

1

K

��I�
+ 1

≥ e−
∑

i∈I ai∕A − e�I�∕K + 1

≥ e−
∑

i∈I ai∕A −
2 ⋅ �I�
K

≥ e−
∑

i∈I ai∕A −
1

100A2
.

2498 Algorithmica (2020) 82:2474–2501

1 3

Properties of E

Lemma 5.1 The expected demand coverage function E ∶ 2V → ℝ+ is monotone and
submodular.

Proof We begin by observing that it suffices to prove that each of the functions
{�v}v∈V is monotone and submodular, since E(F) =

∑
v∈V dv ⋅ �v(F) is a non-nega-

tive weighted sum of these functions. To this end, recall that �v(F) stands for the
probability that node v is covered by at least one facility in F. Put differently, letting
DF⇝v be the event where a least one of the directed paths connecting a facility in
F to the node v survives, we have �v(F) = Pr[DF⇝v] . With this representation, we
derive the desired properties as follows:

• Monotonicity of �v : For two subsets of facilities F1 ⊆ F2 , since DF1⇝v ⊆ DF2⇝v ,

• Submodularity of �v : For two subsets of facilities F1 and F2 ,

 where the inequality above holds since DF1∩F2⇝v ⊆ (DF1⇝v ∩DF2⇝v).
 ◻

Appendix 2: APX‑Hardness for Undirected Graphs

Theorem 6.1 The maximum reliability coverage problem on undirected graphs is
APX-hard.

Proof We describe a gap-preserving reduction from the minimum-cardinality vertex
cover problem on cubic graphs (henceforth, VCC), which is known to be APX-hard
[2]. In other words, for some constant 𝛼 > 0 , it is NP-hard to distinguish between
graphs with �(G) ≤ k and those with �(G) ≥ (1 + �)k , where �(G) stands for the
minimum size of a vertex cover in G. Given an instance of VCC, consisting of a
cubic graph G = (V ,E) on n vertices and a parameter k ≥ |E|∕3 , we construct an
instance of maximum reliability coverage on the same underlying graph as follows:

�v(F1) = Pr
[
DF1⇝v

]
≤ Pr

[
DF2⇝v

]
= �v(F2).

�v(F1 ∪ F2) =Pr
[
DF1∪F2⇝v

]

=Pr
[
DF1⇝v ∪DF1⇝v

]

=Pr
[
DF1⇝v

]
+ Pr

[
DF2⇝v

]
− Pr

[
DF1⇝v ∩DF2⇝v

]

≤Pr
[
DF1⇝v

]
+ Pr

[
DF2⇝v

]
− Pr

[
DF1∩F2⇝v

]

=�v(F1) + �v(F2) − �v(F1 ∩ F2) ,

2499

1 3

Algorithmica (2020) 82:2474–2501

• Each vertex has a demand of 1.
• Each edge has a survival probability of 1/2.
• At most k facilities can be located.

Under this reduction, letting F∗ be an optimal set of facilities, we proceed by proving
the following claims:

1. If �(G) ≤ k then E(F∗) ≥
7n

8
+

k

8
.

2. If �(G) ≥ (1 + �)k then E(F∗) ≤
7n

8
+

k

8
−

�n

64
.

These claims imply that, unless P = NP , maximum reliability coverage on undi-
rected graphs cannot be approximated within factor greater than

Proof of Claim 1 Since �(G) ≤ k , there exists a vertex cover U ⊆ V with |U| = k .
Now, when we locate facilities at U, each v ∈ U is covered with probabil-
ity �v(U) = 1 , and each vertex v ∉ U is covered with probability �v(U) = 7∕8 .
To understand the latter claim, note that since U is a vertex cover, when
v ∉ U its set of neighbors N(v) is necessarily a subset of U, in which case
�v(U) = 1 − (1∕2)|N(v)| = 1 − (1∕2)3 . As a result,

Proof of Claim 2 With respect to the optimal set of facilities F∗ , as before, each
v ∈ F∗ is covered with probability �v(F∗) = 1 . On the other hand, each v ∉ F∗ has
|N(v) ∩ F∗| facilities within its set of neighbors as well as |N(v)⧵F∗| facility-free
neighbors. Therefore, to derive a simple bound on �v(F∗) , note that this probabil-
ity can only increase when we replace the two neighbors (different from v) of each
u ∈ N(v)⧵F∗ by two auxiliary vertices that are connected only to u, while locating
facilities in both. In this setting, it is easy to verify that we obtain an upper bound of

Consequently,

7n

8
+

k

8
−

�n

64

7n

8
+

k

8

= 1 −
�n

8 ⋅ (7n + k)
≤ 1 −

�

64
.

E(F∗) ≥ E(U) = |U| ⋅ 1 + |V⧵U| ⋅ 7
8
= k + (n − k) ⋅

7

8
=

7n

8
+

k

8
.

�v(F
∗) ≤ 1 −

(
1

2

)|N(v)∩F∗|
⋅

(
1 −

1

2
⋅
3

4

)|N(v)⧵F∗|
= 1 −

1

8
⋅

(
5

4

)|N(v)⧵F∗|
.

E(F∗) ≤ |F∗| ⋅ 1 + ∑
v∈V⧵F∗

(
1 −

1

8
⋅

(
5

4

)|N(v)⧵F∗|)

≤ |F∗| + (|V| − |F∗| − �k) ⋅
7

8
+ �k ⋅

27

32

=
7n

8
+

k

8
−

�k

32

≤
7n

8
+

k

8
−

�n

64
.

2500 Algorithmica (2020) 82:2474–2501

1 3

The second inequality holds since the number of vertices v ∈ V⧵F∗ for which
N(v)⧵F∗ ≠ � is at least �k . Otherwise, by adding these vertices to F∗ we obtain a
vertex cover in G with cardinality strictly smaller than |F∗| + �k ≤ (1 + �)k , which
contradicts the case hypothesis, �(G) ≥ (1 + �)k . The last inequality follows by
recalling that k ≥ |E|∕3 = n∕2 , as G is a cubic graph. ◻

References

 1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algorithms with
proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

 2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci.
237(1–2), 123–134 (2000)

 3. Ball, M.O.: Computational complexity of network reliability analysis: an overview. IEEE Trans.
Reliab. 35(3), 230–239 (1986)

 4. Colbourn, C.J., Xue, G.: A linear time algorithm for computing the most reliable source on a series–
parallel graph with unreliable edges. Theor. Comput. Sci. 209(1), 331–345 (1998)

 5. Ding, W., Xue, G.: A linear time algorithm for computing a most reliable source on a tree network
with faulty nodes. Theor. Comput. Sci. 412(3), 225–232 (2011)

 6. Eiselt, H.A., Gendreau, M., Laporte, G.: Location of facilities on a network subject to a single-edge
failure. Networks 22(3), 231–246 (1992)

 7. Eiselt, H.A., Gendreau, M., Laporte, G.: Optimal location of facilities on a network with an unreli-
able node or link. Inf. Process. Lett. 58(2), 71–74 (1996)

 8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
 9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-

ness. W. H. Freeman and Company, New York (1979)
 10. Hadamard, J.: Sur la distribution des zéros de la fonction � (s) et ses conséquences arithmétiques.

Bull. Soc. Math. Fr. 24, 199–220 (1896)
 11. Hassin, R., Ravi, R., Salman, F.S.: Multiple facility location on a network with linear reliability

order of edges. J. Comb. Optim. 34(3), 931–955 (2017)
 12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.

58(301), 13–30 (1963)
 13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.,

Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
 14. Melachrinoudis, E., Helander, M.E.: A single facility location problem on a tree with unreliable

edges. Networks 27(3), 219–237 (1996)
 15. Nel, L.D., Colbourn, C.J.: Locating a broadcast facility in an unreliable network. INFOR Inf. Syst.

Oper. Res. 28(4), 363–379 (1990)
 16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing sub-

modular set functions—I. Math. Program. 14(1), 265–294 (1978)
 17. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a

graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)
 18. Santivanez, J., Melachrinoudis, E., Helander, M.E.: Network location of a reliable center using the

most reliable route policy. Comput. Oper. Res. 36(5), 1437–1460 (2009)
 19. Spivak, M.: Calculus, 3rd edn. Cambridge University Press, Cambridge (1967)
 20. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–

421 (1979)
 21. Vallée-Poussin, C.: Recherches analytiques sur la théorie des nombres premiers. Ann. Soc. Sci.

Brux. 20, 183–256 (1896)
 22. Xue, G.: Linear time algorithms for computing the most reliable source on an unreliable tree net-

work. Networks 30(1), 37–45 (1997)

2501

1 3

Algorithmica (2020) 82:2474–2501

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Refael Hassin1 · R. Ravi2 · F. Sibel Salman3 · Danny Segev4

 Refael Hassin
 hassin@post.tau.ac.il

 R. Ravi
 ravi@cmu.edu

 F. Sibel Salman
 ssalman@ku.edu.tr

1 Department of Statistics and Operations Research, Tel Aviv University, 69978 Tel Aviv, Israel
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
3 College of Engineering, Koç University, Sariyer, Istanbul, Turkey
4 Department of Statistics, University of Haifa, 31905 Haifa, Israel

	The Approximability of Multiple Facility Location on Directed Networks with Random Arc Failures
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 NP-Hardness for Bidirected Trees
	2.1 Reduction: Pseudo-Polynomial Time
	2.2 Reduction: Truly Polynomial Time

	3 FPTAS for Bidirected Trees
	3.1 Warm-Up: Exact Dynamic Program on the Line
	3.2 Exact Dynamic Program on Trees: Continuous State Space
	3.3 Approximate Dynamic Program on Trees: Discretized State Space

	4 General Networks
	4.1 Estimating the Function
	4.2 The Greedy Algorithm
	4.3 Analysis

	References

