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Abstract

We introduce ViSER, a method for recovering articulated 3D shapes and dense
3D trajectories from monocular videos. Previous work on high-quality recon-
struction of dynamic 3D shapes typically relies on multiple camera views, strong
category-specific priors, or 2D keypoint supervision. We show that none of these
are required if one can reliably estimate long-range correspondences in a video,
making use of only 2D object masks and two-frame optical flow as inputs. ViSER
infers correspondences by matching 2D pixels to a canonical, deformable 3D
mesh via video-specific surface embeddings that capture the pixel appearance of
each surface point. These embeddings behave as a continuous set of keypoint
descriptors defined over the mesh surface, which can be used to establish dense
long-range correspondences across pixels. The surface embeddings are imple-
mented as coordinate-based MLPs that are fit to each video via consistency and
contrastive reconstruction losses. Experimental results show that ViSER compares
favorably against prior work on challenging videos of humans with loose clothing
and unusual poses as well as animals videos from DAVIS and YTVOS. Our code
is available at viser-shape.github.io.

1 Introduction

Reconstructing the world from a sequence of monocular frames is a long-standing task in computer
vision. While there has been tremendous progress in reconstructing rigid scenes (via SfM and
SLAM [7, 38, 42], or recent techniques based on neural rendering [27]), reconstructing dynamic
scenes with articulated objects remains elusive. For example, given a monocular video, it is still
challenging to reconstruct an everyday scene of a moving person with loose clothing. In this work,
we tackle the problem of estimating the deforming mesh of articulated objects given a segmented
monocular video of that object. Our method avoids the use of any mesh templates or category-specific
priors and generalizes to unknown deformable articulated objects in the wild.

Nonrigid shape recovery is highly under-constrained due to fundamental ambiguities between shape,
appearance, and time-varying deformation. Current approaches for addressing these challenges fall
into two camps: better data “likelihoods” or better “priors”. The first camp extracts richer sensor data,
via multi-camera studio setups [15] or depth sensors [29], but requires substantial efforts to work
in the wild. The second camp makes use of category-level priors over object shapes [18, 20] and is
particularly effective for human reconstruction. However, building such models requires considerable
offline efforts in the form of registered 3D scans [26] or manual keypoint annotations [12], both of
which are difficult to scale to arbitrary object categories.
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Figure 1: Given a long video (or multiple short videos), ViSER jointly learns articulated 3D shapes (represented
as a mesh with vertices �V and faces F) and joint pixel-surface embeddings (including a surface embedding
FS and a pixel embedding FI) that establishes dense long-range pixel correspondences over time. As a result,
ViSER produces accurate shapes, long term trajectories and meaningful part segmentation.

In this work, we use a practical but less explored variant of the data-likelihood camp: we use multiple
frames of a video rather than multiple cameras or depth sensors. This considerably complicates
analysis for dynamic, non-rigid scenes. Nonrigid structure-from-motion (NRSfM) [4, 37] attempts
to constrain the problem by relying on motion correspondences such as 2D point tracks. While 2D
correspondences over short time scales (i.e., optical flow) are relatively robust to extract, correspon-
dences over long time scales are notoriously difficult to estimate because of appearance variations
arising from viewpoint changes, occlusion and fast motion. In practice, this limits the applicability of
NRSfM methods to controlled lab sequences.

We propose ViSER (Video-Specific Surface Embeddings for Reconstruction), which establishes
long-range correspondence and reconstructs articulated 3D shapes from a monocular video. Fig. 1
shows a sample outdoor video and the corresponding ViSER results. The key insight behind ViSER
is to force long-range video pixel correspondences to be consistent with an underlying canonical 3D
mesh through the use of video-specific embeddings that capture the pixel appearance of each surface
point. These embeddings behave as a continuous set of keypoint descriptors defined over the surface
mesh, learned with coordinate-based MLPs that are fit to each video via contrastive reconstruction
losses. ViSER simultaneously optimizes the image CNN, surface MLP, and 3D shape so as to fit
the observed video frames. It reconstructs state-of-the-art articulated 3D shape and 3D trajectories
without using category-specific priors, making it easily scalable to diverse videos including humans
with challenging clothing and poses as well as animals. Lastly, we demonstrate that ViSER recovers
meaningful part segmentation and blend skinning weights from videos, which typically require
considerable manual effort from 3D artists.

2 Related Work

Dense video correspondence. Optical flow is a well-studied representation for short-term correspon-
dence between adjacent frames of a video. After decades of research, recent CNN models [39, 41, 47]
for optical flow have achieved an impressive level of accuracy as evidenced by the Sintel and KITTI
benchmarks [5, 9]. However, it is challenging to concatenate optical flow for reliable long-range
correspondence due to occlusions and strong appearance changes [32, 36, 40]. ViSER does not
concatenate optical flow but use it as a constraint to establishes long-range correspondence.

The layered approach [6, 14, 44] segments a video into different moving objects with coherent
motion, thereby establishing long-range correspondence for every frames through the shared layers.
Early layered methods assume parameter motion for each layer and can only handle limited scenes.
Unwrap Mosiacs [31] uses a dense 2D-to-2D mapping from a texture map to every input frame, and
editing operations on the texture map naturally transfers to each individual frame. However, the
2D representation cannot flexibly model complex 3D phenomena, such as occlusions. By contrast,
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