
Revisiting RumbleBlocks with Apprentice Learning: Examining
and Learning Gameplay with AL

Cayden Codel
ccodel@andrew.cmu.edu

15-400 student

Ken Koedinger
krk@cs.cmu.edu

Advisor, Human-Computer
Interaction Institute

Erik Harpstead
eharpste@cs.cmu.edu

Advisor, Human-Computer
Interaction Institute

ABSTRACT
Apprentice learning has been shown to be an effective way to model
student learning in several educational contexts, such as fraction
addition. At CMU, the HCII has developed the Apprentice Learner
Architecture (AL) that models student learning. In my research,
I examine how AL learns and behaves in the educational game
RumbleBlocks. Initial results show that AL can learn the skills to
complete a few levels, but does not reach mastery given the current
training methods and data.

KEYWORDS
educational data mining, apprentice learning
ACM Reference Format:
Cayden Codel, Ken Koedinger, and Erik Harpstead. 2020. Revisiting Rum-
bleBlocks with Apprentice Learning: Examining and Learning Gameplay
with AL. In 15-400. ACM, New York, NY, USA, 4 pages. https://doi.org/XX.
XX/XXXXXX.XXXXXXX

1 INTRODUCTION
The Apprentice Learner (AL) Architecture has found success as a
cognitive model of student learning [3] [4], particularly for tasks
that can be performed in an intelligent tutoring system (ITS). The
goal of cognitive models such as AL is to create agents that can
solve problems in the same ways that humans do. Successful mod-
els are useful to researchers and educators in several ways. First,
good models give researchers insight into how humans learn. Sec-
ond, trained agents can test out new assignments and worksheets
that instructors have prepared. For example, a teacher can see if a
worksheet on fraction addition is too difficult for her students, or if
the ordering of problems best contributes to student learning [10].
Third, trained agents can be used to construct an expert model for
ITSs. [3] shows promise that using agents to author expert mod-
els in this way reduces overhead for instructors in both time and
training needed for export model creation.

Despite its success, AL in particular has been evaluated on only a
few general formats and a narrow range of tasks, almost all housed
in ITSs. Thus, there is an opportunity to test AL’s ability to learn
like humans for other tasks, in other mediums. One such medium
is educational video games.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
15-400 ’20, May 10, 2020, Pittsburgh, PA
© 2020 Association for Computing Machinery.
https://doi.org/XX.XX/XXXXXX.XXXXXXX

The goal of an educational video game is to teach students some-
thing in an interactive, fun way. And just like normal instruction,
the way an educational video game goes about teaching students
can range from almost classroom-like to a free sandbox environ-
ment with little direction or instruction. The wide range of game
types and appearances makes investigating how educational games
teach students an interesting field of study in and of itself. But here,
I examine how AL learns in an educational game format.

The game AL will be learning from is called RumbleBlocks. Rum-
bleBlocks is a game designed by master’s students in CMU’s Enter-
tainment Technology Center to teach young children how to build
stable towers [9]. The game presents players with a narrative of
aliens crash-landing their UFOs on planets, and players must use
differently sized blocks to construct towers that are high enough to
reach the aliens and wide enough to cover blue energy checkpoints,
but sturdy enough to survive an earthquake and keep the UFOs on
top of the towers. See Figure 1 for a screenshot of gameplay.

Figure 1: Screenshot of RumbleBlocks gameplay. Players
must stack building blocks to cover the energy checkpoints
and get the UFO to the alien. The tower must survive an
earthquake upon completion.

My advisors have collected RumbleBlocks student play data for
the purposes of analyzing the structures students created to see if
the game was correctly teaching its concepts of structure stability
[6] [7]. Part of the original RumbleBlocks game was to present
constructed towers to students and ask them which would survive
the earthquake as a method of mid-game testing. Two structures
were pictured: one demonstrated one of the three concepts the

https://doi.org/XX.XX/XXXXXX.XXXXXXX
https://doi.org/XX.XX/XXXXXX.XXXXXXX
https://doi.org/XX.XX/XXXXXX.XXXXXXX


15-400 ’20, May 10, 2020, Pittsburgh, PA Cayden Codel, Ken Koedinger, and Erik Harpstead

game sought to teach its players (symmetry, wide bases, low center
of gravity), while the other was deficient in one of the three areas
and would fail to keep itself upright or the UFO on top. Students
were asked to select which tower was more stable. Additional work
has been done on that data to investigate whether AL is able to
classify towers with the same success as students. Experiments
showed that AL learned as well as students did on tower stability
classification [8].

However, classifying structures is an easier task than construct-
ing them from scratch. In this paper, I present the methods and
initial results of training AL to play RumbleBlocks. So far, the con-
tinuous game state and non-optimal game replay data is not as
effective as training AL, but by instilling enough prior knowledge
into AL and cleaning up the replay data, some progress has been
made towards getting AL to train quickly and play successfully.

2 REPLAYING RUMBLEBLOCKS
Like most machine learning algorithms, AL learns best when given
labeled examples. But AL is not a supervised learning agent. Instead,
AL learns through apprentice learning. At its core, apprentice learn-
ing reflects how students, traditionally those found in trade schools,
learn from their teachers. Through a close relationship of demon-
stration and correctness feedback on worked examples, apprentice
learning algorithms come to solve problems in the same ways as the
expert system that taught them. When the expert system is human
performance data, then apprentice learning algorithms come to
behave like humans in both how they solve problems and in the
errors they make. Part of developing cognitive models of human
learning is to get the agents to perform in the same ways as humans
do, and so apprentice learning lends itself as a good model of how
students learn.

The general goal, then, is to extract from human performance
data a typical model of how humans perform. In video game con-
texts, this is called a persona [1] [2]. For many games, a dominant
strategy exists for beating levels or winning the game, and AIs may
be trained to find that dominant strategy. For puzzle games such as
RumbleBlocks, it is likely easy to train agents to play the game flaw-
lessly, particularly using deep reinforcement learning techniques
(games with a much larger solution space, like chess and Go, have
been “solved” with RL AI like AlphaZero [5]). But training an agent
in this way gives an optimal player, not a persona. Unless humans
play optimally, other methods must be used to achieve an agent that
behaves like a human and not as an expert. The persona literature
finds that training agents on human gameplay provides a good
basis for creating personas. Thus, with RumbleBlocks play data in
hand, AL can be leveraged as a method for making RumbleBlocks
personas.

In order to play the game, AL must receive the game’s current
state, process it, and then send back the action it wishes to take.
Through the Selection, Action, Input (SAI) method, AL can extract
important relations between the various objects in the game. For
RumbleBlocks in particular, the selection is the block or item the
player or agent wishes to manipulate, the action is how that block
or item is manipulated (e.g. grabbing, dropping, rotating), and the
input is the game state that induced the player or agent to take that

action. See Figure 2 for an example of an SAI vector that is sent to
AL to request it to take an action.

Figure 2: An example ofRumbleBlocks state sent toAL. Note
the rounded position and rotation values, discussed below.

AL then consults the skills it has learned so far to determine if it
can take an action. If AL’s various learning mechanisms produce
two or more candidates, then AL takes the best one. The Rumble-
Blocks engine then performs this action and evaluates the state of
the game. If the level has been completed, then AL is given cor-
rectness feedback. If the game is not yet complete, more actions
are requested, or, if too many actions have been taken, the level is
ended early and AL is given feedback labelled “incorrect.”

If instead AL finds that it does not have enough knowledge to
take any actions, it sends back an empty response. RumbleBlocks
interprets this as AL needing a demonstration of what to do next,
and so the next human action in the replay sequence is performed.
This way, entire levels can be “played” by AL as demonstration for
how towers are constructed.

During training, raw game state containing position and rotation
vectors of the blocks and the UFO “as-is” confused AL, leading to
little to no actions taken. The lack of actions fromAL during training
was determined to come from the floating-point precision of the
position vectors, as serializing the JSON objects the game state
was stored in would obscure, for example, orthogonal relationships
between the blocks that would be present if the positions were
instead integers. Thus, the positions and rotations are rounded to a
configurable value before being given to AL.

In addition to the general replay-action-feedback loop, AL can
be given defined prior knowledge of how to play the game before
training. Given enough prior knowledge, AL could theoretically
play the game from the start, but some of the learning mechanisms,
particularly the when-learner, has not yet associated the skills with
the conditions necessary to fire them. Among these skills are the
ability to rotate blocks, place blocks orthogonally to each other,
and to snap blocks to energy checkpoints necessary to complete a
subset of the levels. While prior knowledge speeds up training, it is
also a method of “cheating,” and so the fewer prior skills AL needs
at the start of training in order to develop into an agent capable of
playing like a human, the better.

3 EVALUATING AL’S PERFORMANCE
Ideally, after each of AL’s actions, AL receives feedback based on
how correct the action was. Earlier versions of AL all but demanded
feedback after each action to ensure training would go smoothly.
More recent versions do allow for backpropagating correctness feed-
back, which the end-of-level correctness labelling uses. However,



Revisiting RumbleBlocks with Apprentice Learning: Examining and Learning Gameplay with AL 15-400 ’20, May 10, 2020, Pittsburgh, PA

training is generally streamlined when given immediate feedback.
Thus, RumbleBlocks has a toggle that allows for immediate feed-
back of actions taken by AL. To facilitate the conditions necessary
to complete a level, AL is rewarded for covering energy checkpoints
and is punished for removing blocks from previously lit checkpoints.
The full reward is received when all checkpoints are covered.

Along with rewarding checkpoint covering, AL is punished for
taking the same action more than once. The RumbleBlocks replay
engine tracks all actions taken by AL, and if it detects that the
action is identical to one made before, then AL receives immediate
feedback with negative reward. In theory, this should dissuade AL
from getting stuck in a loop. In practice, however, AL may continue
to take the same actions over and over, even in face of the negative
rewards. To prevent such a loop, the game engine also has an option
for training to force the next human action to be taken instead of
AL’s if the same action is seen too many times in a row. This policy
ensures that levels are completed in a finite amount of time.

Finally, to “incentivize” AL to complete levels in as few actions
as possible, various mechanisms could be used, including a dimin-
ishing reward on level completion based on the number of actions
taken. The type of AL learner used in the latter half of the semester
has an internal reinforcement learning model which has a discount
factor built in, already persuading AL to take as few actions as
possible. Therefore, the toggle to diminish the weight of the cor-
rectness feedback on level completion was not implemented, as its
function was already present in the AL agent being trained.

4 PARSING HUMAN DATA
This semester, I had access to data from play sessions conducted
several years ago. At the time of the user studies, as students played,
any interactions made in the game environment were recorded. The
interactions that were cause for a snapshot of the game state in-
cluded any time a block collided with another block or the ground,
any time a block was rotated or removed from inventory, or when-
ever the UFO changed position. Such “diff”-based recording allows
for accurate playback of student actions, recreating the structures
the students made at a pace controllable by the RumbleBlocks game
engines and configurable settings.

However, as a way to train AL, the student play data had far too
many extraneous actions. Often, blocks would be dragged across the
ground, or a tower would topple halfway through its construction.
During end-of-level training, AL would essentially be taught that
these intermediate actions or mistakes are “correct,” which inhibits
training (or, at least, training AL to play the game). To ameliorate
this, a toggle was added to the replayer engine to take only those
actions that were “meaningful” by running through the human
play data backwards and taking only the last occurrence of block
manipulation for each block ID. With the option enabled, the tower
is constructed more directly, and as a bonus, AL trains much faster.

5 INTERACTIVE TRAINING
Early in its development, the RumbleBlocks replayer had an in-
teractive training feature, which was deprecated. The interactive
training feature allowed for more fine-grained feedback and demon-
stration from a human trainer, essentially making the human play
data “live.” I liked the concept, especially given the issues discussed

above regarding the human data I had at my disposal. However, I
couldn’t get the interactive training feature to work after a bit of
tinkering, so I let it be and left it for future work.

6 INITIAL RESULTS
Getting AL to correctly play RumbleBlocks is difficult, given the
open-endedness of the game and the continuous nature of the
2D environment the blocks exist in. What’s more, AL has trouble
producing “original” x- and y-coordinate values, and can only take
actions based on the state provided to it and those states derivable
from there, e.g. through provided primitive operations such as
addition of an x-coordinate by 1 or through defined prior skills.
While the manipulation of state through primitive operations works
well for integral or numerical tasks, such as fraction addition, in a
game environment, it limits the actions AL can naturally take.

I attempted to combat the restricted action output of AL in several
ways. The first was to give AL a primitive operation of shifting any
block one unit an any orthogonal direction. Aligning the unit of
shift to the unit used to discretize the state space effectively gives
AL the ability to take any action in the action space. A few things
hampered this method, though. One issuewas that, given the option,
AL prefers to manipulate the state in “working memory” before
committing to an action, allowing for multiple operation actions to
be performed. But given the high degree of freedom available to AL
when given the opportunity to shift blocks by fractions of its width
will send AL into a “thinking spiral,” where it spends all its time in
its working memory and not taking actions. While this behavior
may eventually resolve itself due to the discount factors in the RL
portion of its algorithm, the training I conducted on my computer
didn’t indicate it ever would, so I looked for other solutions.

The next was to restrict the action space to only those actions
that are meaningful to completing RumbleBlocks levels. This was
encapsulated in the prior skills given to AL. In theory, the only
skills needed to complete levels were knowing how to place blocks
in checkpoints and how to stack blocks next to and on top of each
other. However, when training, AL matches these prior skills to the
SAI inputs it is given, and student play data didn’t always line up
with the prior skills given to AL. Thus, while the prior skills were
sufficient for completing levels, they weren’t expressive enough
for AL to copy what humans did, limiting the effectiveness of the
human actions during training.

Even with the complications of matching human play data to
prior skills, AL did show some signs of learning during training.
On simpler levels, AL would often be able to place the first block or
two of a more complex structure that would be able to complete a
level. See Figure 3 and Figure 4 below. So while AL never completed
an entire level on its own, it did make progress towards it.

In general, though, AL is still a ways off from learning how to
play RumbleBlocks. But through careful tweaking of prior skills,
human play data vetting, and immediate feedback rewards, it seems
very possible that AL could learn to play RumbleBlocks, and if
given enough examples, could learn to play much like the humans
it trains on do.



15-400 ’20, May 10, 2020, Pittsburgh, PA Cayden Codel, Ken Koedinger, and Erik Harpstead

Figure 3: An instance where AL demonstrated positive be-
havior. The block is placed to cover both energy check-
points.

Figure 4: Another instance where AL demonstrated positive
behavior. To complete the level, two sets of two blocks need
to be stacked like the pair pictured here.

7 FUTUREWORK
Currently, the bottleneck in training lies in how AL interprets and
manipulates the game state to take its actions. The closer AL gets
to being able to take exactly those actions taken by students, the
better. There are various ways of accomplishing this feat.

The first is to pick out those gameplay sequences that are “nice,”
in that the structures made by the students are orderly, built step-
by-step, and can be expressed using the prior skills given to AL.
Unfortunately, classifying which sequences are “nice” would likely
have to be done by hand and vastly limits the number of training
examples available to AL.

Another method would be to increase the expressiveness of prior
skills to more closely match the actions taken by students. While
this would increase AL’s solution space, it provides the greatest
change of getting AL to play RumbleBlocks “from scratch,” at least
with how the replayer is designed at the current moment.

A third would be to give AL the meta-skills/primitive operations
needed to access the full action space, but put mechanisms in place
to limit the number of non-actions AL can take in its working
memory before being forced to take an action. This would be an
edit on AL’s side, rather than in the RumbleBlocks engine, and so
would be more core to the computational model and not necessarily
how it is trained.

The way the game state is discretized could also be played around
with, as well as how AL handles continuous action spaces. After
all, not every task can be reproduced in an ITS with a well-defined
interface.

8 LESSONS LEARNED
Inheriting software from any source, research or industry, brings
with it the risk of out-of-date versioning, and I certainly faced that
this semester. RumbleBlocks was developed in a prior version of
the Unity game engine, and a nontrivial amount of time was spent
updating RumbleBlocks to the newer versions, as it would not
work on my computer in its original version. Thus, I have learned
that, moving forward, I should budget more time to installing and
becoming familiar with third-party pipelines.

In general, I got to read literature in the cognitive modeling
and human learning fields, which I haven’t been exposed to in my
studies here at CMU. I even got to read a paper by Newell and
Simon!

ACKNOWLEDGMENTS
I would like to thank my mentors, Dr. Koedinger and Dr. Harpstead,
and particularly thank Dr. Harpstead’s weekly meetings with me to
diagnose problems with AL and the replayer in general. I hope that
we can get AL playing RumbleBlocks sometime in the future —or
at least prepare the groundwork for AL to play some other game.

REFERENCES
[1] Alessandro Canossa Anders Tychsen. 2008. Defining Personas in Games Using

Metrics. FuturePlay (Nov. 2008).
[2] Antonios Liapis Julian Togelius Christoffer Holmgard, Michael Cerny Green.

2019. Automated Playtesting With Procedural Personas Through MCTS with
Evolved Heuristics. IEEE Transactions on Games (July 2019).

[3] Rony Patel Kenneth R. Koedinger Christopher MacLellan, Erik Harpstead. [n.d.].
The Apprentice Learner Architecture: Closing the Loop Between Learning The-
ory and Educational Data. In Proceedings of the 9th International Conference on
Educational Data Mining.

[4] Erik Harpstead Christopher MacLellan Napol Rachatasumrit Kenneth
R. Koedinger Daniel Weitekamp, III. [n.d.]. Toward Near Zero-Parameter
Prediction Using a Computational Model of Student Learning. In Proceedings of
the 12th International Conference on Educational Data Mining.

[5] et al. David Silver, Thomas Hubert. 2017. Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm. arXiv:cs.AI/1712.01816v1

[6] Kenneth R. Koedinger Erik Harpstead, Christopher MacLellan. [n.d.]. Investigat-
ing the Solution Space of an Open-Ended Educational Game Using Conceptual
Feature Extraction. In Proceedings of the 6th International Conference on Educa-
tional Data Mining.

[7] Vincent Aleven Erik Harpstead, Brad Myers. [n.d.]. In Search of Learning: Facili-
tating Data Analysis in Educational Games. In CHI 2013.

[8] Christopher MacLellan. 2017. Computational models of Human Learning: Ap-
plications for Tutor Development, Behavior Prediction, and Theory Testing. Ph.D.
Dissertation. Carnegie Mellon University, Pittsburgh, PA.

[9] Bryan Maher Erik Harpstead et al. Michael Christel, Scott Stevens. [n.d.]. Rum-
bleBlocks: Teaching science concepts to young children through a Unity game.
In 17th International Conference on Computer Games.

[10] Kenneth R. Koedinger Rony Patel, Ran Liu. 2016. Evidence Against Teaching
Fraction Addition before Fraction Multiplication. CogSci (July 2016).

http://arxiv.org/abs/cs.AI/1712.01816v1

	Abstract
	1 Introduction
	2 Replaying RumbleBlocks
	3 Evaluating AL’s Performance
	4 Parsing Human Data
	5 Interactive Training
	6 Initial Results
	7 Future Work
	8 Lessons Learned
	Acknowledgments
	References

