Individual Lab Report - 1

THE
ROBOTICS
INSTITUTE

Lunar ROADSTER

Team |

Author: Simson D’Souza
Andrew ID: sjdsouza
E-mail: sjdsouza@andrew.cmu.edu

Teammate: Ankit Aggarwal Teammate: Deepam Ameria
ID: ankitagg ID: dameria
E-mail: ankitagg@andrew.cmu.edu E-mail: dameria@andrew.cmu.edu
Teammate: Bhaswanth Ayapilla Teammate: Boxiang (William) Fu
ID: bayapill ID: boxiangf
E-mail: bayapill@andrew.cmu.edu E-mail: boxiangf@andrew.cmu.edu

Supervisor: Dr. William “Red” Whittaker
Department: Field Robotics Center
E-mail: red@cmu.edu

February 7, 2025

o
» Carnegie Mellon University
m B Rrobotics Institute

Contents

1

Individual Progress

1.1 SensorsandMotorlLab,
1.1.1 DC Motor with Encoder
1.1.2 TMP36 Temperature Sensor

1.2 MRSD Project

Challenges
2.1 Sensorsand MotorlLab,
22 MRSD Project

Teamwork
3.1 Sensorsand MotorLab
3.2 MRSD Project

Plans
41 SensorsandMotorlLab
42 MRSD Project

Sensors and Motor Control Quiz

5.1 ReadingaDatasheet.
5.2 Signal Conditioning
5.3 Control e

© 00 NN (2B e o)) o~ b wWww DN = = -

Appendix 10
6.1 ArduinoCode 10
6.1.1 DC Motor with Encoder 10
6.1.2 TMP36 Temperature Sensor 11
6.1.3 Integrated code for the entire system 12

1 Individual Progress

1.1 Sensors and Motor Lab

My responsibilities included implementing DC motor control using an encoder with
position feedback and PID control, enabling users to control the motor through a GUI.
This allowed the motor to rotate by a specified number of degrees from an initial posi-
tion or operate at a user-defined velocity in either direction. The velocity could be set
within a range of 0 to 118 RPM, with positive and negative signs indicating direction,
while position control allowed inputs between 0 and 360 degrees, also with directional
control through sign convention. Additionally, | integrated a TMP36 temperature sensor
to convert raw sensor readings into temperature values in degrees Celsius, which were
displayed on the GUI. The motor control and temperature sensing operated indepen-
dently, each providing real-time data and control functionality through the interface.

1.1.1 DC Motor with Encoder

The initially provided DC motor with an encoder and L298 motor driver was not
used. Instead, a ServoCity planetary gear motor (SKU: 638324, 118 RPM @12VDC)
and a Roboclaw 2x15A motor controller were implemented. The Arduino Due was cho-
sen due to its extensive I/O capabilities, but as it could not supply sufficient power, an
external 12V high-voltage DC power supply was used to power the motor through the
Roboclaw.

To achieve precise motor control, encoder feedback was utilized, with 3416 encoder
ticks per revolution. The encoder values enabled two modes of operation:

1. Position Control: The motor could rotate by a user-specified number of degrees
from an initial position. The encoder readings were converted into ticks using the
relation:

3
Ticks = 360 x Degrees (1)

The RoboClaw’s PID position control was configured using Kp = 2.0, Ki = 0.5,
and Kd = 1.0 to ensure smooth and accurate movement. The target position was
continuously monitored, and the motor stopped within a tolerance of £15 ticks.
The target position is calculated based on the user-specified degrees, converted
into encoder ticks. The RoboClaw’s position PID controller then drives the motor
to the desired position while continuously monitoring encoder readings to stop
within a defined tolerance.

2. Velocity Control: The motor speed was set using encoder feedback, allowing
motion in either direction. The velocity was scaled to encoder counts per second
(Qpps) using.

UserSpeed x MAXQPPS @)

100

where MAXQPPS = 6718 was the maximum speed in counts per second. The

velocity PID parameters (Kp = 1.0, Ki = 0.5, Kd = 0.25) were tuned to provide

stable speed control. The user-input speed is mapped to encoder counts per
second and sent to the RoboClaw, which regulates motor speed using its built-in
velocity PID controller

Encoder Speed =

The RoboClaw library provides built-in functions to simplify motor control by han-
dling encoder data, speed, and position commands. It includes functions like Read-
EncM1() to read encoder counts, SpeedM1() to set motor velocity, and SpeedAc-
celDeccelPositionM1() to control position with acceleration and deceleration param-
eters. This ensures smooth motion in both directions based on the given commands.

1.1.2 TMP36 Temperature Sensor

The TMP36 temperature sensor was connected to the Arduino Due with its Vcc pin
receiving 3.3V, GND connected to ground, and Vout linked to an analog input pin (A0)
for reading the output voltage. Since the sensor operates on a low voltage range of
2.7V to 5.5V and provides an analog voltage proportional to the temperature, it was
interfaced with an analog input to capture continuous variations in the output. The
Arduino’s 10-bit ADC (Analog-to-Digital Converter) converted this voltage into a digital
value between 0 and 1023. Given the 3.3V reference voltage, the sensor’s output
voltage was calculated as:

ADC'reading x 3.3

t =
Vou 1024

(3)

To derive the temperature in °C, the sensor’s scale factor of 10mV/°C with a 500mV
offset was applied, using the formula:

Temperature(°C’) = (Vout — 0.5) x 100 (4)

This conversion ensured accurate temperature readings based on the sensor’s out-
put voltage. The readings were displayed on the GUI.

1.2 MRSD Project

In the MRSD project, | contributed to the prototype dozer development alongside
Deepam, conducting preliminary teleoperation and grading tests. | collaborated with
Ankit to create the circuit diagram and worked with team members to set up the FARO
scanner and scan the Moon Pit.

For navigation, | processed the FARO scan data to generate an occupancy grid
map. Since the FARO scanner outputs data in (.fls) format, which is incompatible with
ROS, a conversion process was required. Using Recap Pro, | first exported the data to
(.pts) format and then converted it to (.pcd) for ROS compatibility. The Figure 1 below
show the visualization of the point cloud data of the Moon Pit.

Figure 1: FARO MoonPit Scan

The point cloud data was then downsampled using a Voxel grid to reduce complex-
ity. To create an occupancy grid map, a thresholding approach was applied, marking
large craters as occupied and traversable areas as free space based on depth vari-
ations. However, the initial occupancy grid lacked accuracy for navigation, requiring
further refinement, which | am currently working on.

2 Challenges

2.1 Sensors and Motor Lab

| faced several challenges related to sensor and motor control. One issue with the
TMP35 temperature sensor arose when it was supplied with 5V via the breadboard,
resulting in inaccurate readings. The shared Vcc and ground connections through
the breadboard caused interference, which not only led to noisy sensor data but also
made the motors jitter. To resolve this, | connected the sensor to the 3.3V pin of
the Arduino Due, which was not being used by other components, and the readings
became more accurate. For the motor, | had to fine-tune the PID controller parameters
to ensure smooth motion when reaching the target position. Additionally, interfacing
all the components together and controlling them via a GUI presented challenges, as
each component required different data types. To overcome this, | interfaced and tested
each component individually before combining them.

2.2 MRSD Project

One of the main challenges in the MRSD project was making the FARO scan data
of the Moon Pit compatible with ROS. The FARO data format could not be directly
converted, so | had to use PCL libraries to first convert it into a compatible format
before further conversion into a ROS-compatible format. Additionally, certain libraries
used for point cloud data processing were not compatible with the ROS2 Humble ver-
sion, requiring me to process the data step-by-step, including converting it into a grid
map, occupancy grid map, and 2D cost map—a tedious process. Another challenge
the team faced was the robot’s mobility on uneven terrain. During testing, issues with
suspension and the dozer’s effectiveness in creating a path raised concerns. As sand

3

accumulated in front, the robot stalled, leading us to explore solutions such as imple-
menting an active dozer mechanism, switching wheels, and using high-torque motors
to improve traction and reduce wheel slippage.

3 Teamwork

3.1

Sensors and Motor Lab

the contributions of my team members.

1.

Sensors & Motor Lab Controller

Motor Control

RC Servo Motor

Angle (degrees)

Stepper Motor

Switch Mode

Angle (degrees)

DC Motor

Velocity (RPM)

Position (degrees)

Output Reading (cm)
=)
o

RC Servo Motor Angle
i
Stepper Motor Angle
I
I
DC Motor RPM
i
DC Motor Angle
il
[}

Transfer Function

Given my contributions outlined in the Individual Progress section, the following are
Ankit: He worked on controlling the speed and direction of a stepper motor using
a potentiometer.

Deepam: He handled the interfacing of an IMU sensor and a servo motor.

Bhaswanth: He integrated an ultrasonic range finder, implemented median/-
mode filtering and a transfer function.

. William: He contributed by developing the GUI and creating an Arduino template
code for seamless integration.

Figure 2: Integrated Circuit with Motors and Sensors

Sensor Readings
Potentiometer Sensor
m
M|
IMU Sensor Pitch Angle
I
M
Temperature (Celcius)
1
]
Ultrasonic Sensor (cm)

15 2
Input Voltage (V)

25 3

Figure 3: Graphical User Interface (GUI)

4

3.2 MRSD Project

Building on my contributions detailed in the Individual Progress section, my team
members played key roles in various aspects of the MRSD project.

1. Ankit: He worked on wheel design and printing, rover hardware setup and main-
tenance, and VectorNav IMU integration. Additionally, he collaborated with me on
the electrical circuit as shown in Figure 4, participated in preliminary testing with
the team, and contributed to project management.

2. Deepam: He and | worked together on the prototype dozer development and
preliminary tests for teleoperation and grading as shown in Figure 5, while he
also led the dozer blade and mechanism design and collaborated with the team
on the FARO scanner setup and Moon Pit scanning.

3. Bhaswanth: He set up the Jetson and encoder drivers, worked with William on
teleoperation and ZED camera integration, established the operations terminal,
and participated in the FARO scanning process alongside the team.

4. William: He contributed to Moon Pit crater distribution analysis, LAN setup, col-
laborated with Bhaswanth on teleoperation and ZED camera setup, and assisted
the team during FARO scanning.

Battery - 1
(20v)

— JT.

Boost
Converter
(20V->24V)

Wireless Power
Emeszgc;);ncy Switch Mgi:tts;y— 1 > Distribution
(FOB) Board

Motor Motor Motor
Controller - Controller - Controller - Fans
1 2 3
v v y
Front Drive Rear Drive Steering
Motor Motor Motors

Figure 4: Electrical circuit

Battery - 2
(20V)

Battery - 3
(20V)

Battery
Monitor - 2

Figure 5: Prototype dozer testing

4 Plans

4.1 Sensors and Motor Lab

The decision to change the DC motor and motor driver was based on the relevance
of the ServoCity planetary gear motor and RoboClaw motor controller to our project.
We also acquired high-torque motors, and the challenges faced during sensor and mo-
tor control will aid in integrating these new components. Additionally, troubleshooting
interfacing issues has reinforced a structured approach of testing one subsystem at a
time, which we will follow in the MRSD project during full system integration.

4.2 MRSD Project

Until the next lab demo, | plan to use the ZED camera instead of the FARO scan-
ner, as it offers better support and available packages for generating an occupancy grid
map for navigation. | will start by mapping the environment to obtain point cloud data,
which will then be processed into a 2D costmap. This will aid in localization and navi-
gation, aligning with our project schedule. Additionally, our team aims to complete the
preliminary design of the dozer and start working on the dozer mechanism for testing.
We will also replace the current motor with a high-torque motor to improve traction and
optimize cable management for a cleaner setup.

5 Sensors and Motor Control Quiz

5.1

1.

Reading a Datasheet

What is the sensor’s range?
The sensor’s measurement range is +3g.

. What is the sensor’s dynamic range?

The minimum dynamic range is 6g and maximum dynamic range is 7.2g.

What is the purpose of the capacitor CDC on the LHS of the functional block
diagram on p. 1? How does it achieve this?

The CDC capacitor, shown on the left side of the functional block diagram (Figure
1), functions as a decoupling capacitor. It filters out high-frequency noise from
the power supply, ensuring stable voltage delivery to the sensor. It achieves this
by blocking any sudden voltage spikes or drops, thereby ensuring smooth sensor
operation.

. Write an equation for the sensor’s transfer function.

The transform function is

Vout = 1.5V +0.3V/g*a (5)

where, a is applied acceleration in g

. What is the largest expected nonlinearity error in g?

The largest expected nonlinearity error in g is 7.2¢g * 0.3/100 = 0.0216g.

What is the sensor’s bandwidth for the X- and Y-axes?
The bandwidth for the X and Y axes is 0.5 Hz to 1600 Hz.

How much noise do you expect in the X- and Y-axis sensor signals when your
measurement bandwidth is 25 Hz? The typical noise of the ADXL335 is deter-
mined by (given on pg.11 of the datasheet)

rmsNoise = NoiseDensity x (VBW x 1.6) (6)

The noise density for X and Y axes is 150 ug v Hz rms. The RMS noise can be
calculated as:

rmsNoise = 150ugV Hz x (v/25 x 1.6) = 948.68311g = 0.949mg (7)

If you didn’t have the datasheet, how would you determine the RMS noise exper-
imentally? State any assumptions and list the steps you would take.
Assumptions:

» The sensor is stationary during the measurement.
» There are no external vibrations.

Steps:

» Place the accelerometer on a stable, non-vibrating surface.

7

* Record the output voltage of the X and Y axes over a period of time using
a data acquisition system. The sampling rate should be sufficiently high to
capture potential noise.

» Convert the voltage readings to acceleration using the known sensitivity (if
known) or an estimated value.

» Subtract the mean (zero-g bias) from the data to isolate the noise compo-
nent.

« Calculate RMS noise.

+ To limit the measurement to a specific bandwidth, apply a low-pass filter to
your data before recalculating the RMS noise. This step ensures that only
noise within the desired frequency range is considered.

5.2 Signal Conditioning
1. Filtering

* Name at least two problems you might have in using a moving average filter.
a. A moving average filter introduces a time delay in the output because it
averages multiple data points.

b. While smoothing out noise, a moving average filter can also soften or blur
sudden changes in the signal, potentially hiding sudden movements.

* Name at least two problems you might have in using a median filter.
a. Median filters require sorting data within the window to find the median
value, which is more computationally intensive than simple averaging.
b. Less effective at reducing random noise compared to other filters.

2. Opamps
For the given Opamp gain and offset circuit, the V,,; is
Ry Ry
V;m:inl -) = Vref\ 0>~
e =Vinll+ 1) = Vies (B) ®)

* Your uncalibrated sensor has a range of -1.5t0 1.0V (-1.5V should give a 0V
output and 1.0V should give a 5V output).
Here, Vi = V,ey and V2 =V,

Ry Ry

= —1.5(1+ =) - -

Ry Ry

=101+ - —L
5 0(1 + Ri)+wef(Ri) (10)

On solving, we get
Ry
=1

T (11)
‘/ref = -3V (12)

* Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V
output and 2.5V should give a 5V output).
Required Gain and Offset: To map -2.5V to 0V and 2.5V to 5V, the circuit
needs a gain of -1 and an offset of 2.5V.
Case 1: If V; is the input, solving the equations gives:

B _

-1
R;

This is not feasible because it cannot have a negative feedback ratio in this
configuration.

Case 2: If 5 is the input, solving results in:

By _

0
R;

This implies no amplification, which is also not practical.

Hence, calibration isn’t possible with this circuit because a single op-amp
can’t simultaneously achieve the required gain of -1 and the 2.5V offset
needed to shift the output range from 0V to 5V.

5.3 Control

1. If you want to control a DC motor to go to a desired position, describe how to form
a digital input for each of the PID (Proportional, Integral, Derivative) terms.
By applying the PID controller equation and feeding the sensor measurement
data as input, the controller will generate the necessary output value to adjust the
system accordingly.
Proportional (P): The input is the current error (difference between desired and
actual position). This is directly proportional to the error.
Integral (I): The input is the accumulated error over time, helping eliminate steady-
state error.
Derivative (D): The input is the rate of change of the error.

2. If the system you want to control is sluggish, which PID term(s) will you use and
why?
Use the Proportional (P) term, as it responds to the current error. Increasing the
proportional gain can make the system respond faster.

3. After applying the control in the previous question, if the system still has signifi-
cant steady-state error, which PID term(s) will you use and why?
Use the Integral (l) term, as it accumulates the error over time and drives the error
to zero, eliminating steady-state error.

4. After applying the control in the previous question, if the system still has over-
shoot, which PID term(s) will you apply and why?
Apply the Derivative (D) term to dampen the system’s response. This term reacts
to the rate of change in the error, helping to minimize overshoot.

6 Appendix

6.1 Arduino Code

6.1.1 DC Motor with Encoder

#include <RoboClaw.h>

RoboClaw roboclaw (& Serial1i, 10000);
#define ADDRESS 0x80

#define ENCODER_TICKS PER REV 3416
#define DEGREE_TO TICKS (ENCODER TICKS PER REV / 360.0)

// PID Tuning Parameters
#define Kp_pos 2.0
#define Ki_pos 0.5
#define Kd_pos 1.0

#define Kp_vel 1.0
#define Ki_vel 0.5
#define Kd_vel 0.25

#define MAX_QPPS 6718

bool isMoving = false;
uint32_t targetPosition = 0;

void setup () {
Serial.begin(115200);
Seriall .begin(38400);

if (!roboclaw.ReadError (ADDRESS)) {

Serial.println ("RoboClaw connected successfully .

} else {
Serial.printin ("Error detected in RoboClaw!");
}

// Set PID values

roboclaw . SetM1VelocityPID (ADDRESS, Kp_vel, Ki_vel,
Kd_vel, MAX QPPS);

roboclaw . SetM1PositionPID (ADDRESS, Kp_pos, Ki_pos,
Kd_pos, Kp_vel, Ki_vel, Kd_vel, MAX_ QPPS);

roboclaw . SpeedM1 (ADDRESS, 0);
Serial.println ("Motor stopped at startup.");

}

void loop () {

10

if (isMoving) {
uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS) ;
if (abs((int32_t)(currentPos - targetPosition)) <= 15)
roboclaw . SpeedM1 (ADDRESS, 0); // Stop motor
Serial.println ("Target position reached.");
isMoving = false; // Reset movement flag

}

if (Serial.available()) {
String input = Serial.readStringUntil (’\n’);
input.trim (); // Remove leading/trailing spaces

if (input.startsWith ("M ")) {
int degrees = input.substring(2).tolnt();
moveMotorByDegrees (degrees);

} else if (input.startsWith("V ")) {
int speed = input.substring(2).tolnt();
setMotorVelocity (speed);

}

void moveMotorByDegrees(int degrees) {
uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS);
targetPosition = currentPos + (degrees = DEGREE_TO_TICKS);

Serial . print ("Moving motor to position: ");
Serial.println (targetPosition);

roboclaw . SpeedAccelDeccelPositionM1 (ADDRESS, 10000,
MAX_QPPS, 10000, targetPosition, 0);

isMoving = true;

}

void setMotorVelocity(int speed) {
int encoderSpeed = (speed » MAX QPPS) / 100;
roboclaw . SpeedM1 (ADDRESS, encoderSpeed);

Serial.print (" Setting motor speed to: ");
Serial.printlin (encoderSpeed);

6.1.2 TMP36 Temperature Sensor

int sensorPin = AO;
void setup ()

{
Serial .begin(9600);

11

}

void loop ()
{

int reading = analogRead(sensorPin);

float voltage = reading * 5.0;
voltage /= 1024.0;

Serial.print(voltage); Serial.println (" volts");
float temperatureC = (voltage - 0.5) = 100 ;

Serial.print (temperatureC); Serial.println ("
delay (1000);

degrees C");

6.1.3 Integrated code for the entire system

#include <Adafruit_Sensor.h>
#include <Adafruit MPU6050.h>
#include <Wire.h>

#include <Servo.h>

#include <SharpIR.h>
#include <RoboClaw.h>
#include <AccelStepper.h>

#define SERIAL PORT Serial
#define ADDRESS 0x80

/! Motor & Encoder parameters
#define ENCODER TICKS PER REV 3416
#define DEGREE_TO_TICKS (ENCODER_TICKS PER REV / 360.0)

// Position PID Tuning
#define Kp_pos 2.0
#define Ki_pos 0.5
#define Kd_pos 1.0

// Velocity PID Tuning
#define Kp_vel 1.0
#define Ki_vel 0.5
#define Kd_vel 0.25

// Maximum speed in encoder counts per second
#define MAX_QPPS 6718

/] Pins
#define EN_StepperDriver 2
#define Stp_StepperDriver 3

12

#define Dir_StepperDriver 4
#define servoPin 6

#define PushButtonPin 7
#define PotentiometerPin A0
#define temperaturePin A1
#define ultrasonicPin A2
#define PushbuttonPin 7

AccelStepper stepper(AccelStepper ::DRIVER,
Stp_StepperDriver, Dir_StepperDriver);

// GLOBAL VARIABLES
unsigned long previousMillis
const unsigned long interval =

I
- O
o\.-
o

Adafruit_ MPU6050 mpu;
Servo servo;
RoboClaw roboclaw (& Serial1i, 10000);

int servoAngle = 0;

int dc_motor_speed = 0;
int dc_motor_angle = 0;
double cm = 0.0;

int PotControlFlag = O0;

volatile int PotVal = 0;
volatile int globalStepperValue
volatile int globalStepperAngle

0;
0;

/! Debounce variables

volatile unsigned long lastDebounceTime = O0;
const unsigned long debounceDelay = 100;
const int incrementServo = 30;

bool isMoving = false;
uint32_t targetPosition = 0;

void setup () {
SERIAL_PORT . begin(9600);
Seriall.begin(38400);
while (!SERIAL_PORT) {
/" Wait for the serial port to be ready
}

/1 IMU

if (!mpu.begin()) {
Serial.println ("Failed to find MPUB050 chip");
while (1)

bl

13

}

/! Servo Motor
servo. attach (servoPin);
servo.write (0);

/1 Push Button
attachlinterrupt(digitalPinTolnterrupt (PushbuttonPin),
pushlSR, FALLING);

// DC Motor
unsigned long startTime = millis ();

/] Stepper

pinMode (EN_StepperDriver, OUTPUT);

digitalWrite (EN_StepperDriver, LOW); // enable stepper(s)
stepper.setMaxSpeed(2000);

stepper.setAcceleration(1000);

stepper.setSpeed(0);

roboclaw . SetM1VelocityPID (ADDRESS, Kp_vel,

Ki_vel, Kd_vel, MAX QPPS);

roboclaw . SetM1PositionPID (ADDRESS, Kp_pos,

Ki_pos, Kd _pos, Kp_vel, Ki_vel, Kd_vel, MAX QPPS);

roboclaw . SpeedM1 (ADDRESS, 0);
/1 Serial.println ("Motor stopped at startup.");

SERIAL_PORT. print ("Arduino Due Serial is ready!;");

void loop () {
if (isMoving) {
uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS) ;
if (abs((int32_t)(currentPos - targetPosition)) <= 15)
{ // Position tolerance
roboclaw . SpeedM1 (ADDRESS, 0);
/1 Serial.println ("Target position reached.");
isMoving = false; // Reset movement flag
}
}

// Check if data is available to read from the serial port
if (SERIAL_PORT. available () > 0) {

// Read the incoming string

String receivedString = SERIAL_PORT.readStringUntil (’;’);

/1 /! Echo the string back to the serial port
/1 SERIAL_PORT. print (" Arduino received command: ");

14

/1 SERIAL_PORT. print (receivedString);
/1 SERIAL_PORT. print (";");
/1 SERIAL_PORT. flush ();

if (receivedString.length() > 1) {
char commandType = receivedString.charAt(0);

String valueString = receivedString.substring(1);
if (isNumeric(valueString)) {
int commandValue = valueString.tolnt ();
handleCommand (commandType, commandValue);
}

}
}

unsigned long currentMillis = millis ();

if (currentMillis — previousMillis >= interval) {
previousMillis = currentMillis;
timerCallback ();

}

stepperCallback ();
}

void timerCallback () {
/! SERIAL_PORT. print ("Timer callback executed at: ");
/1 SERIAL_PORT. print (previousMillis);
// SERIAL _PORT. print (";");

/I A "$" is used to indicate the serial port return is a command

String serialReturn;
serialReturn.concat("$");

int servoMotorState = servoMotorStateCallback ();
serialReturn.concat(servoMotorState);
serialReturn.concat(",");

int stepperMotorState = stepperMotorStateCallback ();
serialReturn.concat(stepperMotorState);
serialReturn.concat(",");

int veIDCMotorState = velDCMotorStateCallback ();
serialReturn.concat(velDCMotorState);
serialReturn.concat (" ,");

int angleDCMotorState = angleDCMotorStateCallback ();

serialReturn.concat(angleDCMotorState);
serialReturn.concat (" ,");

15

int potentiometerSensorState = potentiometerSensorCallback ();
serialReturn.concat(potentiometerSensorState);
serialReturn.concat (" ,");

double imuSensorState = imuSensorCallback ();
serialReturn.concat(imuSensorState);
serialReturn.concat (" ,");

double temperatureSensorState = temperatureSensorCallback ();
serialReturn.concat(temperatureSensorState);
serialReturn.concat(",");

int ultrasonicSensorState = ultrasonicSensorCallback ();
serialReturn.concat(ultrasonicSensorState);
serialReturn.concat(",");

double electricallnput = analogRead(ultrasonicPin);
double transferFunctionState =
transferFunctionCallback (electricallnput);

double electricalVoltage =

analogRead (ultrasonicPin) = (5.0 / 1023.0);

serialReturn.concat(electricalVoltage);
serialReturn.concat (":");
serialReturn.concat(transferFunctionState);

SERIAL_PORT. print (serialReturn);
SERIAL_PORT. print (";");

void handleCommand(char commandType, int value) {
switch (commandType) {

case 'R’:
servoMotorController(value);
break;

case 'S’:
stepperMotorController(value);
break;

case 'V’
velDCMotorController(value);
break;

case 'A’:
angleDCMotorController (value);
break;

case 'B’:
buttonStepperMotorController (value);
break;

default:

16

break ;

bool isNumeric(String str) {
if (str.length() == 0) return false;

int startlndex = 0;

if (str[0] == "=") {
if (str.length() == 1) return false;
startlndex = 1;
}
for (unsigned int i = startlndex; i < str.length(); i++) {

if (lisDigit(str[i])) {
return false;
}
}

return true;

}

/1 CONTROLLER FUNCTIONS

void servoMotorController(int control) {
/ %
INPUT: Integer in min/max range of 0 to 180
corresponding to desired angle
OUTPUT: Void
*/

SERIAL_PORT. print ("Servo motor controller
received command: ");

SERIAL_PORT. print (control);

SERIAL_PORT. print (";");

// TODO: IMPLEMENT FUNCTION BELOW
servoAngle = control;

servo.write (servoAngle);

}

void stepperMotorController(int control) {
/ *
INPUT: Integer in min/max range of -180 to 180
corresponding to desired angle
OUTPUT: Void
*/

17

}

SERIAL PORT. print (" Stepper motor controller
received command: ");

SERIAL_PORT. print (control);

SERIAL_PORT. print (";");

// TODO: IMPLEMENT FUNCTION BELOW
if (PotControlFlag == 0) {

globalStepperValue = map(control, -180, 180, -1600,

globalStepperAngle = control;
}

void velDCMotorController(int control) {

}

/ *

INPUT: Integer in min/max range of -118 to 118
corresponding to desired RPM

OUTPUT: Void

*/

SERIAL_PORT. print (" Velocity DC motor controller
received command: ");

SERIAL_PORT. print (control);

SERIAL_PORT. print (";");

// TODO: IMPLEMENT FUNCTION BELOW

/!l Set motor velocity (positive for forward,
negative for reverse)

int dc_motor_speed = (control / 118.0) « 100.0;

int encoderSpeed = (dc_motor_speed « MAX QPPS) / 100;

roboclaw . SpeedM1 (ADDRESS, encoderSpeed);

void angleDCMotorController(int control) {

/ *

INPUT: Integer in min/max range of -360 to 360
corresponding to desired angle

OUTPUT: Void

*/

/! SERIAL_PORT. print ("
received command: ");
/1 SERIAL_PORT. print(control);
// SERIAL PORT. print (";");

// TODO: IMPLEMENT FUNCTION BELOW
uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS) ;

Angle DC motor controller

1600);

targetPosition = currentPos + (control = DEGREE_TO TICKS);

/1 Serial.print ("Moving motor to position: ");

18

}

/1 Serial.println(targetPosition);

roboclaw . SpeedAccelDeccelPositionM1 (ADDRESS,
10000, MAX_QPPS, 10000, targetPosition, 0);

isMoving = true; // Set flag for movement tracking

void buttonStepperMotorController(int control) {

/

SERIAL _PORT. print ("Button controller received command: ");
SERIAL PORT. print(control);

SERIAL_PORT. print (";");

// TODO: IMPLEMENT FUNCTION BELOW

PotControlFlag = control;

/ CALLBACK FUNCTIONS

int servoMotorStateCallback () {

}

[*
INPUT: Void

OUTPUT: Integer in min/max range of 0 to 180 corresponding
to servo motor angle
*/

// TODO: IMPLEMENT FUNCTION BELOW
return servoAngle;

int stepperMotorStateCallback () {

}

/
INPUT: Void

OUTPUT: Integer in min/max range of -180 to 180

corresponding to stepper motor angle
*/

// TODO: IMPLEMENT FUNCTION BELOW

return globalStepperAngle;

int velIDCMotorStateCallback () {

/ *
INPUT: Void
OUTPUT: Integer in min/max range of -118 to 118

corresponding to DC motor RPM
*/

19

// TODO: IMPLEMENT FUNCTION BELOW

int speed = roboclaw.ReadSpeedM1 (ADDRESS) ;
speed = speed = 118 / 6718;

return speed;

}

int angleDCMotorStateCallback () {

/%

INPUT: Void

OUTPUT: Integer in min/max range of -360 to 360
corresponding to DC motor angle

*/

// TODO: IMPLEMENT FUNCTION BELOW

int enc = roboclaw.ReadEncM1 (ADDRESS) ;
int angle = (enc = 360) / 3416;
angle = angle % 360;

return angle;

}

int potentiometerSensorCallback () {

/ *

INPUT: Void

OUTPUT: Integer corresponding to potentiometer reading
*/

// TODO: IMPLEMENT FUNCTION BELOW
PotVal = analogRead(PotentiometerPin);

if (PotControlFlag == 1) {
globalStepperValue map(PotVal, 0, 1022, -1600, 1600);
globalStepperAngle map(globalStepperValue, -1600,
1600, -180, 180);

}

return PotVal;

}

double imuSensorCallback () {
/ %
INPUT: Void
OUTPUT: Double corresponding to sensed IMU pitch reading
*/

// TODO: IMPLEMENT FUNCTION BELOW

20

sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);

// Pitch using accel data
double pitchAccel = atan2(a.acceleration.x,
a.acceleration.z) = 180 / PI;

return pitchAccel;

}

double temperatureSensorCallback () {
/%
INPUT: Void
OUTPUT: Double corresponding to temperature
reading (degree celsius)
*/

// TODO: IMPLEMENT FUNCTION BELOW

int reading = analogRead(temperaturePin);
double voltage = reading = 3.3;

voltage /= 1024.0;

double temperatureC = (voltage - 0.5) = 100;

return temperatureC;

}

int ultrasonicSensorCallback () {

/ *

INPUT: Void

OUTPUT: Integer corresponding to ultrasonic reading (cm)
*/

// TODO: IMPLEMENT FUNCTION BELOW
cm analogRead(ultrasonicPin);
cm transferFunctionCallback (cm);

return int(cm);

}

// OTHER FUNCTIONS
void pushISR() {

[«
INPUT: Void
OUTPUT: Void
*/

// TODO: IMPLEMENT FUNCTION BELOW
unsigned long currentTime = millis ();
if ((currentTime - lastDebounceTime) > debounceDelay) {

21

}

servoAngle += incrementServo;

if (servoAngle > 180) {
servoAngle = 0;

}

lastDebounceTime = currentTime;

servo.write (servoAngle);

}

double transferFunctionCallback (double electricallnput) {

}

/%
INPUT: Double corresponding to electrical input voltage

OUTPUT: Double corresponding to ultrasonic reading (cm)
*/

// TODO: IMPLEMENT FUNCTION BELOW
double val = electricallnput » 0.498 » 2.54;

return val;

void stepperCallback () {

/%

INPUT: Void
OUTPUT: Void
*/

// TODO: IMPLEMENT FUNCTION BELOW
stepper.moveTo(globalStepperValue);
stepper.run();

22

	Individual Progress
	Sensors and Motor Lab
	DC Motor with Encoder
	TMP36 Temperature Sensor

	MRSD Project

	Challenges
	Sensors and Motor Lab
	MRSD Project

	Teamwork
	Sensors and Motor Lab
	MRSD Project

	Plans
	Sensors and Motor Lab
	MRSD Project

	Sensors and Motor Control Quiz
	Reading a Datasheet
	Signal Conditioning
	Control

	Appendix
	Arduino Code
	DC Motor with Encoder
	TMP36 Temperature Sensor
	Integrated code for the entire system

