
Individual Lab Report 4

Lunar ROADSTER
Team I

Author: Boxiang (William) Fu
Andrew ID: boxiangf

E-mail: boxiangf@andrew.cmu.edu

Teammate: Deepam Ameria
ID: dameria

E-mail: dameria@andrew.cmu.edu

Teammate: Bhaswanth Ayapilla
ID: bayapill

E-mail: bayapill@andrew.cmu.edu

Teammate: Simson D’Souza
ID: sjdsouza

E-mail: sjdsouza@andrew.cmu.edu

Teammate: Ankit Aggarwal
ID: ankitagg

E-mail: ankitagg@andrew.cmu.edu

Supervisor: Dr. William “Red” Whittaker
Department: Field Robotics Center

E-mail: red@cmu.edu

March 21, 2025



1 Individual Progress

Since the last progress review, I worked on finalizing the localization and sensor

stack of the rover. The code is finished, however there were a number of issues for

both the localization and sensor stack, which I will discuss below. Additionally, during

testing we noted that the odometry topic was not publishing the encoder feedback.

Debugging this took a considerable amount of time.

1.1 Odometry Topic Debugging

During testing of the localization stack, we noticed that some of the odometry feed-

back readings from the wheel encoders were not being updated. Referring to Figure 1,

the drive_ values were staying constant at zero, while weirdly enough the steer_ val-

ues were being updated correctly. The control commands were also working perfectly

and the rover reacts to joystick inputs from the user. The only issue was the feedback

of the drive_ values.

Figure 1: Odometry feedback topic

This issue took a considerable amount of time to debug. We tried the following:

1.1.1 Checking code for Jetson to Arduino interface

We checked the serial_interface_node that interfaces the Jetson with the Arduino
was functioning correctly. We checked this by examining the converted feedback on the

/encoder_telemetry topic versus the raw bit-wise feedback on the /arduino_feedback
topic to narrow down the scope of the issue. We saw that the raw bit-wise feedback on

the /arduino_feedback topic was not being updated. This meant that the issue was

not the Jetson to Arduino interface (which was via the /encoder_telemetry topic).

1.1.2 Checking code for Arduino to RoboClaw interface

Since the feedback on the /arduino_feedback topic was not being updated, we

checked the INO code that interfaces the Arduino to the RoboClaw. An initial hypoth-

esis that we thought was that since we have not implemented the tool_pos value yet,

the callbacks from the RoboClaw may be invalid or pointing to a Nullptr. This would

1



cause issues when typecasting into int8 format, which is the ROS topic format for

/arduino_feedback. We tried manually setting the tool_pos value to 0, but that didn’t

solve the problem.

1.1.3 Checking the encoder

After going through the code, we next checked the encoders as we thought it might

have broke during testing. We wired up the encoders to the RoboClaw pins that steer_
uses (since it was working correctly) and noticed that we were receiving feedback (albeit

not the correct values since the QPPS on the steer and drive motors were different).

This meant that the encoders were working correctly.

1.1.4 Checking jumper wires

Finally, wewent through the jumper wires connecting the encoders to the RoboClaw.

Since we knew the steer jumper wires were correct, we mapped out which pin should

connect to which pin (see Figure 2). It turns out that the problem was with the jumper

wiring. For the front drive encoder, it turned out that when the hardware team replaced

new motors for the rover, the wiring was connected in reverse. This meant that the

feedback was unable to be sent back to the correct RoboClaw pins. The front encoder

feedback was simply fixed by connecting the jumper wires in reversed order. For the

back drive encoder, the wiring was correct, but one of the connections was loose. This

was not noticeable initially as the connections were masked over using tape. We only

realized the loose connection when taking off the tape.

Figure 2: Jumper wire connections

Albeit the simple fix, it took a lot of time and checking to re-establish the feedback

from the drive encoders. It took up a considerable amount of time to debug and was a

major blocker for my other tasks.

2



1.2 Localization Debugging

We finished and implemented the code for the localization stack before the pre-

vious progress review. However, since the odometry topic was not publishing and it

was needed for local localization, we were not able to test and tune the localization

stack until the odometry topic debugging was complete. Luckily, we were able to solve

the odometry issue and we were able to test our localization stack in the Moon Yard

on March 19th. The local localization (odom to base_link transform) was working cor-

rectly, but the global localization (map to odom transform) was very sporadic and requires

debugging. The transform would localize the rover for the first 2-3 seconds, but would

then immediately “fly off” in a random direction for some reason (see Figure 3, the left

figure corresponds to the initial spawn location, the right figure corresponds to the odom
frame flying off).

Figure 3: odom frame “flies off” due to bug in global localization

Wewere not able to debug this during our previous test. However, we plan on testing

some hypotheses during our next test day on March 21st. One hypothesis is that the TF

tree was incorrectly set up with total_station_prism as a child frame of base_link.
This may result in the localization algorithm thinking that whenever a global position

is received from the total station (say {X,Y, Z} = {2, 2, 0}), the total_station_prism
frame is this much away from the base_link frame. Since the two frames are rigidly

linked, this will also cause base_link to move by {X,Y, Z} = {2, 2, 0} whenever a new

total station measurement is received. We have already adjusted our localization code

and will test this on March 21st.

1.3 Sensor Stack Integration

The final task that I completed during the period from the last progress review is set-

ting up the sensor stack of the rover. This involved setting up the stereo camera drivers

and interfacing the SDK with the Jetson. I initially set up the ZED 2i stereo camera and

interfaced it with the elevation_mapping ROS package on my development laptop (see

Figure 4). However, we could not get it to interface with the docker container on the

Jetson. The reason is that the Ubuntu version inside the docker (v22.04) is different

than the Ubuntu version on the native Jetson (v20.04). This causes issues with CUDA

compatibility as the ZED SDK uses CUDA drivers to post-process the stereo camera

feed.

A solution would be to manually install the CUDA dependencies in the correct ver-

sion requirements. However, this would take a considerable amount of time and would

3



Figure 4: ZED 2i stereo camera setup

be a blocker for our other tasks as active mapping is required for the tool planner, nav-

igation, and validation. Instead, we reverted back to using a RealSense camera as

it does not require CUDA drivers and there was documentation for interfacing with a

docker container on the Robotics Knowledgebase wiki and prior config files from team

LunarX. The setup in the docker container is complete and the point cloud obtained

from the stereo camera is correctly being published to a ROS topic.

Finally, I also tested different locations of the depth camera to find an optimal place-

ment location. The finalized location is {X,Y, Z,R, P, Y } = {0.5, 0, 0.6, 0,−30, 0} from

base_link. At this location, the height and declination is ideal so that the it is clear of

the dozer when fully raised and generates a clear point cloud of obstacles in front. The

next step is to convert the point cloud into an elevation map for the tool planner.

2 Challenges

The first major challenge was that debugging the odometry topic of the rover took a

considerable amount of time. While I knew the hardware team changed the drive mo-

tors, I always expected them to rewire up the jumper wires back correctly. However, this

was not the case. The team had to spend a considerable amount of attention checking

every unit that makes up the odometry subsystem and unit test each component. This

made me fall behind on schedule for my localization subsystem tasks.

Another challenge faced is that bugs still exists in the localization implementation of

the rover. We are currently still unit testing each component that makes up the local-

ization subsystem. We have ruled out the local localization as dead reckoning using

only the IMU and wheel encoders works as intended. The main culprit for the bug is on

the integration of the total station data. Since the localization stack is crucial for other

major subsystems, we are working on an expedited schedule to identify the problem

and find a solution.

4



A final challenge was integrating the ZED 2i SDK and CUDA drivers with the docker

container. As mentioned previously, the different Ubuntu versions on the host and

inside the docker causes compatibility issues with the graphics card hardware. We

tried looking for a solution but all involve manually installing the CUDA drivers. In the

interest of time, we decided to push back this integration and instead use the RealSense

camera which does not require CUDA.

3 Teamwork

A breakdown of the contributions of each team member are tabulated below:

• Ankit Aggarwal: Ankit’s work mainly focused on the tool planner methodology.

Ankit took inputs from the team for insights on the best way to set up the planner to

minimize integration issues. He then worked with Simson and Deepam for to set

up a manufacturing plan for the E-Box. Ankit also worked on debugging wheel

odometry with William. Additionally, Ankit worked with Deepam to mitigate the

issue of rover breakdown due to a worn-out rear drive axle.

• DeepamAmeria: Deepam’s primary work was to try different actuators of varying

gear ratios and finalize the best one for our use case. He worked with Bhaswanth

on making the tool capable of teleoperation. The oscillations at intermediate posi-

tions still need to be debugged. Deepam also collaborated with Simson to develop

an ideal terrain by flattening the MoonYard and creating craters of various shapes

and sizes, in order to develop a global map using FARO Laser Scanner. Deepam

worked together with Ankit to mitigate the issue of the rover breaking down due

to a worm out rear axle. We scavenged the spares off a twin rover and success-

fully replaced it on ROADSTER. He also used the E-Box design made by Ankit

to laser-cut the walls of the E-Box at TechSpark. Moving on, Deepam be working

with Ankit to develop the tool planner methodology and its software stack. We will

be using inputs from the elevation maps created by Simson and William.

• Bhaswanth Ayapilla: Bhaswanth’s work with William involved testing the local-

ization stack in the Moon Yard. During testing, we realized that the issue is now

with the global localization and we are debugging it together. He also worked with

Deepam in helping him implement dozer teleoperation. Bhaswanth also worked

with Simson on the initial navigation stack setup on our Jetson board, and will be

collaborating together more on completing the navigation stack.

• Simson D’Souza: Simson worked on refining the global costmap and tuned pa-

rameters to obtain an accurate ground plane. To achieve this, Simson collab-

orated with Deepam to flatten the Moon Yard and create craters of various di-

ameters and depths, allowing for a more precise terrain model. Additionally, he

developed an algorithm to identify gradable craters and extract their coordinates,

which will be used in navigation. Simson also worked on the navigation stack

setup, collaborating with Bhaswanth to configure and integrate it on the NVIDIA

Jetson. Furthermore, in collaboration with Ankit, the required parts for E-boxman-

ufacturing were finalized.

4 Plans

From now until ILR5, I plan to finish debugging the localization stack. This would

primarily involve unit testing the global localization and how the total station data is in-

5



tegrated into the EKF.

Once this task is finished, I plan to finish the sensor stack for the rover. The end

result for this would be an elevation map that is obtained from the RealSense point

cloud data. My current implementation methodology is to transform this into the map
frame that aligns with the coordinates of the Moon Yard. However, depending on the

requirements of the tool planner subsystem, this could also be transformed to the local

base_link frame and have the elevation map be relative to the rover.

Finally, if time permits, I will be working on integrating the various subsystems that I

contributed (localization, sensing, external infrastructure, FSM planner) into a coherent

system. This allows us to do integration testing in preparation for the Spring Validation

Demonstration.

6


	Individual Progress
	Odometry Topic Debugging
	Checking code for Jetson to Arduino interface
	Checking code for Arduino to RoboClaw interface
	Checking the encoder
	Checking jumper wires

	Localization Debugging
	Sensor Stack Integration

	Challenges
	Teamwork
	Plans

