
Individual Lab report

Lunar ROADSTER
Team I

Author: Ayapilla Sri Bhaswanth
Andrew ID: bayapill

E-mail: bayapill@andrew.cmu.edu

Supervisor: Dr. William “Red” Whittaker
Department: Field Robotics Center

E-mail: red@cmu.edu

February 7, 2025

Contents
1 Individual Progress 2

1.1 Sensors and Motors Lab . 2
1.1.1 Ultrasonic Range Finder . 2
1.1.2 Pushbutton . 3
1.1.3 Full Circuit . 4

1.2 MRSD Capstone Project: Lunar ROADSTER 5

2 Challenges 7
2.1 Sensors and Motors Lab . 7
2.2 MRSD Capstone Project: Lunar ROADSTER 7

3 Teamwork 7
3.1 Sensors and Motors Lab . 7
3.2 MRSD Capstone Project: Lunar ROADSTER 8

4 Plans 8
4.1 Sensors and Motors Lab . 8
4.2 MRSD Capstone Project: Lunar ROADSTER 8

5 Code 9

6 Sensors and Motor Control Lab Quiz 19
6.1 Question 1 . 19
6.2 Question 2 . 21
6.3 Question 3 . 22

1

1 Individual Progress

1.1 Sensors and Motors Lab

My responsibility for this lab was to develop the circuit and write code for the MB1000
LV-MaxSonar-EZ0 Ultrasonic Range Finder, implementing a mean filter and transfer
function, and also to implement a pushbutton to control the servo motor.

1.1.1 Ultrasonic Range Finder

The Ultrasonic sensor has 7 pins, but I used only the following 3 pins:

• Pin 3-AN: Outputs analog voltage with a scaling factor of (Vcc/512) per inch.
A supply of 5V yields ∼ 9.8mV/in. and 3.3V yields ∼ 6.4mV/in. The output is
buffered and corresponds to the most recent range data.

• Pin 6-+5V: Vcc – Operates on 2.5V − 5.5V . Recommended current capability of
3mA for 5V , and 2mA for 3V .

• Pin 7-GND: Return for the DC power supply

The sensor gives a range between 6-inches (∼ 15.24cm) to 20-inches (∼ 645.16cm), with
1-inch resolution (∼ 2.54cm).

The above information is taken from the datasheet.

I utilized the analog pin of the ultrasonic sensor and connected it to an analog pin on
the Arduino board. Doing a simple analogRead gives me the analog value, which can
be converted into a physically interpretable distance value using the following transfer
function:

distance = analogVal ∗ 0.498 ∗ 2.54

The above transfer function returns the distance in centimeters and was obtained by con-
ducting experiments myself.

To get more stable readings, I decided to use a mean filter. It’s a simple and fast way to
smooth out the data since it doesn’t require sorting like some other filtering methods..

int Dialog::filterMean(std::vector<int>& arr) {
if(arr.empty()) {

return 0;
}

int sum = 0;

for (size_t i = 1; i < arr.size(); i++) {
sum += arr[i];

}

return sum / arr.size();
}

2

https://maxbotix.com/pages/lv-maxsonar-ez-datasheet

1.1.2 Pushbutton

I implemented a pushbutton for servo motor control. It essentially acts as an interrupt,
overwriting all other functions to increment the servo angle by 30 degrees every time
it is pressed. Once the servo reaches its maximum limit of 180 degrees, pressing the
pushbutton again will move the servo to its 0 degree position.

Figure 1: Pushbutton for Servo Control

void setup(){
// Push Button

attachInterrupt(digitalPinToInterrupt(PushbuttonPin), pushISR, FALLING);
}

void pushISR() {
unsigned long currentTime = millis();
if ((currentTime - lastDebounceTime) > debounceDelay) {

servoAngle += incrementServo;
if (servoAngle > 180) {

servoAngle = 0;
}
lastDebounceTime = currentTime;
servo.write(servoAngle);

}
}

3

1.1.3 Full Circuit

Figure 2: Sensors & Motor Control Lab Physical Setup

Figure 3: Close-up of Breadboard Setup

4

1.2 MRSD Capstone Project: Lunar ROADSTER

Software: Our team began working on the project over the winter break, and my initial
focus was to set up the software stack. I started with the Jetson AGX Xavier, which will
serve as the core of our system and runs the entire software stack. Since we are building
on the work of the previous MRSD team, Crater Grader, the Jetson we got from them was
initially flashed with Ubuntu 18.04. However, being an outdated version, we decided to
upgrade the entire software, including transitioning from ROS2 Galactic to ROS2 Humble
using Docker. To facilitate this, I re-flashed the Jetson with Ubuntu 20.04, configured
VNC for remote access, and fully set up Docker for easier deployment. I also helped set
up of the operations terminal (our main workstation) and conducted teaching sessions for
my team on running and using the Jetson, and using Docker as well.

Figure 4: Documentation of Jetson AGX Xavier Setup

Sensors: My next task was setting up the motor encoders. The rover is equipped with 4
motors — two drive motors and two steer motors, both in the front and rear. All motors
are controlled by the Roboclaw motor controllers, and I interfaced them with an Arduino
Due. To enable communication between the motors and the Jetson AGX Xavier, I con-
figured Micro-ROS on the Arduino. This will allow the system to send drive commands
to the motors and also receive encoder data and other feedback by publishing and sub-
scribing to relevant ROS topics. Following this, I set up the ZED 2i depth camera with

5

the help of my teammate William, which we will use for active mapping and validating
the grading done by our rover.

Figure 5: Documentation of Arduino Due, Micro-ROS, Encoder Setup

Teleoperation: Since we had Crater Grader’s entire software, a big initial step was to
get the rover running and teleoperate it with a joystick. Me and William worked on this
during the winter break and successfully got it running. Because of this, the team is now
able to carry out all the necessary subsequent tests on the Moon Yard.

Figure 6: Documentation of Rover Bringup and Teleoperation

Equipment: In the first week of January, our team underwent a training for the FARO
3D Scanner with Wennie Tabib from FRC. This training was essential as we will use the
scanner’s output to generate maps for the rover’s navigation and to evaluate the per-
formance of the grading operation. After the training, we tested out the scanner and

6

successfully mapped the Moon Yard at the Planetary Robotics Lab. Over the winter
break, the team also received training from Warren "Chuck" Whittaker to use the TS16
Leica-Geosystems Robotic Total Station. We will use this total station to track a prism
mounted on the rover and ultimately localize it.

2 Challenges

2.1 Sensors and Motors Lab

The biggest challenge I faced in the sensors and motors lab was implementing the filter.
Initially, I used a median/mode filter, which required a sorting algorithm like bubble sort.
However, running the filter alongside sorting took too much time, causing delays that
blocked other sensor and motor functions. Instead, I switched to a mean filter, which
provided faster processing without the need for sorting.

2.2 MRSD Capstone Project: Lunar ROADSTER

Setting up Docker on the Jetson AGX Xavier was a significant challenge for me. I was
fairly new to Docker and it was a pretty big learning curve for me as I had to write the
dockerfiles and scripts myself. Another major challenge was teleoperating the rover using
the existing software stack. I spent a considerable amount of time trying to understand the
general architecture and code of Crater Grader. Additionally, I faced issues in running the
ZED camera’s SDK on the Jetson, despite building the relevant docker image. Ultimately,
I just decided to use the camera without the SDK, and use OpenCV and other relevant
libraries to get our job done.

3 Teamwork
A breakdown of the contributions of each team member are tabulated below:

3.1 Sensors and Motors Lab

• Bhaswanth Ayapilla: Interfacing Ultrasonic Range Finder, implementing mean
filter and transfer function, implementing pushbutton for servo control, README
file for the complete code.

• Ankit Aggarwal: Implemented the stepper motor speed and direction controller
using a potentiometer.

• Deepam Ameria: Interfacing IMU sensor and servo motor controller.

• Simson D’Souza: Implemented DC motor control with encoder feedback and
interfaced an IR sensor for distance measurement.

• Boxiang (William) Fu: GUI development and Arduino template code.

7

3.2 MRSD Capstone Project: Lunar ROADSTER

• Bhaswanth Ayapilla: NVIDIA Jetson setup, setup encoder drivers, setting up
teleoperation (in collaboration with William), ZED Camera setup (in collaboration
with William), setting up operations terminal, FARO scanner setup and Moon Pit
scanning (in collaboration with team).

• Ankit Aggarwal: Wheel design and printing, rover hardware setup/maintenance,
circuit diagram design (in collaboration with Simson), VectorNav IMU interfacing,
preliminary testing (in collaboration with team), project manager.

• Deepam Ameria: Prototype dozer development (in collaboration with Simson),
preliminary tests for teleoperation and grading with prototype dozer (in collaber-
ation with Simson), dozer blade and mechanism design, FARO scanner setup and
Moon Pit scanning (in collaboration with team).

• Simson D’Souza: Prototype dozer development (in collaberation with Deepam),
preliminary tests for teleoperation and grading with prototype dozer (in collaber-
ation with Deepam), circuit diagram design (in collaboration with Ankit), FARO
scanner setup and Moon Pit scanning (in collaboration with team), processing of
point cloud data to generate an occupancy grid map for navigation.

• Boxiang (William) Fu: Moon Pit Crater Distribution, LAN Setup, setting
up teleop (in collaboration with Bhaswanth), ZED camera setup (in collab with
Bhaswanth)

4 Plans

4.1 Sensors and Motors Lab

Working on the sensors and motors lab provided valuable insight into sensor integration
and potential challenges we might encounter. The knowledge gained will certainly benefit
our capstone project. However, since this assignment is not directly related to our project,
we have no further plans for it. As part of the lab, we used the RoboClaw motor driver
originally installed on our rover to control the DC motor, which we will reinstall after the
demonstration. Similarly, the Arduino Due will be returned to the rover setup.

4.2 MRSD Capstone Project: Lunar ROADSTER

Our team is working diligently to meet out first internal milestone on 12th February. By
this deadline, we aim to complete all hardware-related tasks, including manufacturing
the excavator blade, iterating on wheel designs, and performing quality assurance for the
mechanical subsystem. Before the deadline, we also aim to complete the localization task
and simulating the rover’s navigation. Once these are completed, we will begin working on
the excavator planner and the FSM planner, transitioning navigation from simulation to
real-world deployment, and implementing validation using the depth camera. My current
focus is on the localization of the rover. Me and William will set up the total station in
the Moon Yard and use the data obtained from it and also an onboard IMU to localize the
rover. Following this, I will be working on navigation and validation along with Simson.
Once all team members complete their individual tasks, we will begin rigorous testing of
the complete rover operation on the Moon Yard.

8

5 Code
Below is the Arduino code for the Sensors and Motors Lab:

#include <Adafruit_Sensor.h>
#include <Adafruit_MPU6050.h>
#include <Wire.h>
#include <Servo.h>
#include <SharpIR.h>
#include <RoboClaw.h>
#include <AccelStepper.h>

#define SERIAL_PORT Serial

#define ADDRESS 0x80

// Motor & Encoder parameters
#define ENCODER_TICKS_PER_REV 3416
#define DEGREE_TO_TICKS (ENCODER_TICKS_PER_REV / 360.0)

// Position PID Tuning
#define Kp_pos 2.0
#define Ki_pos 0.5
#define Kd_pos 1.0

// Velocity PID Tuning
#define Kp_vel 1.0
#define Ki_vel 0.5
#define Kd_vel 0.25

// Maximum speed in encoder counts per second
#define MAX_QPPS 6718

// Pins
#define EN_StepperDriver 2
#define Stp_StepperDriver 3
#define Dir_StepperDriver 4
#define servoPin 6
#define PushButtonPin 7
#define PotentiometerPin A0
#define temperaturePin A1
#define ultrasonicPin A2
#define PushbuttonPin 7

AccelStepper stepper(AccelStepper::DRIVER, Stp_StepperDriver, Dir_StepperDriver);

// GLOBAL VARIABLES
// Note: GUI will execute commands sent by Arduino once every 2 intervals as it discards every other command due to serial buffer
unsigned long previousMillis = 0;
const unsigned long interval = 100;

9

Adafruit_MPU6050 mpu;
Servo servo;
RoboClaw roboclaw(&Serial1, 10000);

int servoAngle = 0;
int dc_motor_speed = 0;
int dc_motor_angle = 0;
double cm = 0.0;

int PotControlFlag = 0;
volatile int PotVal = 0;
volatile int globalStepperValue = 0;
volatile int globalStepperAngle = 0;

// Debounce variables
volatile unsigned long lastDebounceTime = 0;
const unsigned long debounceDelay = 100;
const int incrementServo = 30;

bool isMoving = false;
uint32_t targetPosition = 0;

void setup() {
SERIAL_PORT.begin(9600);
Serial1.begin(38400);
while (!SERIAL_PORT) {

// Wait for the serial port to be ready
}

// IMU
if (!mpu.begin()) {

Serial.println("Failed to find MPU6050 chip");
while (1)

;
}

// Servo Motor
servo.attach(servoPin);
servo.write(0);

// Push Button
attachInterrupt(digitalPinToInterrupt(PushbuttonPin), pushISR, FALLING);

// DC Motor
unsigned long startTime = millis();

// Stepper
pinMode(EN_StepperDriver, OUTPUT);
digitalWrite(EN_StepperDriver, LOW); // enable stepper(s)

10

stepper.setMaxSpeed(2000);
stepper.setAcceleration(1000);
stepper.setSpeed(0);

// // Initialize RoboClaw
// if (!roboclaw.ReadError(ADDRESS)) {
// Serial.println("RoboClaw connected successfully.");
// } else {
// Serial.println("Error detected in RoboClaw!");
// }

roboclaw.SetM1VelocityPID(ADDRESS, Kp_vel, Ki_vel, Kd_vel, MAX_QPPS);
roboclaw.SetM1PositionPID(ADDRESS, Kp_pos, Ki_pos, Kd_pos, Kp_vel, Ki_vel, Kd_vel, MAX_QPPS);

roboclaw.SpeedM1(ADDRESS, 0);
// Serial.println("Motor stopped at startup.");

SERIAL_PORT.print("Arduino Due Serial is ready!;");
}

void loop() {
if (isMoving) {

uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS);
if (abs((int32_t)(currentPos - targetPosition)) <= 15) { // Position tolerance

roboclaw.SpeedM1(ADDRESS, 0); // Stop motor
// Serial.println("Target position reached.");
isMoving = false; // Reset movement flag

}
}

// Check if data is available to read from the serial port
if (SERIAL_PORT.available() > 0) {

// Read the incoming string
String receivedString = SERIAL_PORT.readStringUntil(’;’);

// // Echo the string back to the serial port
// SERIAL_PORT.print("Arduino received command: ");
// SERIAL_PORT.print(receivedString);
// SERIAL_PORT.print(";");
// SERIAL_PORT.flush();

if (receivedString.length() > 1) {
char commandType = receivedString.charAt(0);

String valueString = receivedString.substring(1);
if (isNumeric(valueString)) {

int commandValue = valueString.toInt();
handleCommand(commandType, commandValue);

}

11

}
}

unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {

previousMillis = currentMillis;
timerCallback();

}

stepperCallback();
}

void timerCallback() {
// SERIAL_PORT.print("Timer callback executed at: ");
// SERIAL_PORT.print(previousMillis);
// SERIAL_PORT.print(";");

// A "$" is used to indicate the serial port return is a command
String serialReturn;
serialReturn.concat("$");

int servoMotorState = servoMotorStateCallback();
serialReturn.concat(servoMotorState);
serialReturn.concat(",");

int stepperMotorState = stepperMotorStateCallback();
serialReturn.concat(stepperMotorState);
serialReturn.concat(",");

int velDCMotorState = velDCMotorStateCallback();
serialReturn.concat(velDCMotorState);
serialReturn.concat(",");

int angleDCMotorState = angleDCMotorStateCallback();
serialReturn.concat(angleDCMotorState);
serialReturn.concat(",");

int potentiometerSensorState = potentiometerSensorCallback();
serialReturn.concat(potentiometerSensorState);
serialReturn.concat(",");

double imuSensorState = imuSensorCallback();
serialReturn.concat(imuSensorState);
serialReturn.concat(",");

double temperatureSensorState = temperatureSensorCallback();
serialReturn.concat(temperatureSensorState);
serialReturn.concat(",");

int ultrasonicSensorState = ultrasonicSensorCallback();

12

serialReturn.concat(ultrasonicSensorState);
serialReturn.concat(",");

double electricalInput = analogRead(ultrasonicPin);
double transferFunctionState = transferFunctionCallback(electricalInput);
double electricalVoltage = analogRead(ultrasonicPin) * (5.0 / 1023.0);

serialReturn.concat(electricalVoltage);
serialReturn.concat(":");
serialReturn.concat(transferFunctionState);

SERIAL_PORT.print(serialReturn);
SERIAL_PORT.print(";");

}

void handleCommand(char commandType, int value) {
switch (commandType) {

case ’R’:
servoMotorController(value);
break;

case ’S’:
stepperMotorController(value);
break;

case ’V’:
velDCMotorController(value);
break;

case ’A’:
angleDCMotorController(value);
break;

case ’B’:
buttonStepperMotorController(value);
break;

default:
break;

}
}

bool isNumeric(String str) {
if (str.length() == 0) return false;

int startIndex = 0;

if (str[0] == ’-’) {
if (str.length() == 1) return false;
startIndex = 1;

}

for (unsigned int i = startIndex; i < str.length(); i++) {

13

if (!isDigit(str[i])) {
return false;

}
}

return true;
}

// CONTROLLER FUNCTIONS

void servoMotorController(int control) {
/*
INPUT: Integer in min/max range of 0 to 180 corresponding to desired angle
OUTPUT: Void
*/

SERIAL_PORT.print("Servo motor controller received command: ");
SERIAL_PORT.print(control);
SERIAL_PORT.print(";");

// TODO: IMPLEMENT FUNCTION BELOW
servoAngle = control;
servo.write(servoAngle);

}

void stepperMotorController(int control) {
/*
INPUT: Integer in min/max range of -180 to 180 corresponding to desired angle
OUTPUT: Void
*/

SERIAL_PORT.print("Stepper motor controller received command: ");
SERIAL_PORT.print(control);
SERIAL_PORT.print(";");

// TODO: IMPLEMENT FUNCTION BELOW
if (PotControlFlag == 0) {

globalStepperValue = map(control, -180, 180, -1600, 1600);
globalStepperAngle = control;

}
}

void velDCMotorController(int control) {
/*
INPUT: Integer in min/max range of -118 to 118 corresponding to desired RPM
OUTPUT: Void
*/

SERIAL_PORT.print("Velocity DC motor controller received command: ");

14

SERIAL_PORT.print(control);
SERIAL_PORT.print(";");

// TODO: IMPLEMENT FUNCTION BELOW
// Set motor velocity (positive for forward, negative for reverse)
int dc_motor_speed = (control / 118.0) * 100.0;
int encoderSpeed = (dc_motor_speed * MAX_QPPS) / 100; // Scale input speed (user enters 0-100%)
roboclaw.SpeedM1(ADDRESS, encoderSpeed);

}

void angleDCMotorController(int control) {
/*
INPUT: Integer in min/max range of -360 to 360 corresponding to desired angle
OUTPUT: Void
*/

// SERIAL_PORT.print("Angle DC motor controller received command: ");
// SERIAL_PORT.print(control);
// SERIAL_PORT.print(";");

// TODO: IMPLEMENT FUNCTION BELOW
uint32_t currentPos = roboclaw.ReadEncM1(ADDRESS);
targetPosition = currentPos + (control * DEGREE_TO_TICKS);

// Serial.print("Moving motor to position: ");
// Serial.println(targetPosition);

roboclaw.SpeedAccelDeccelPositionM1(ADDRESS, 10000, MAX_QPPS, 10000, targetPosition, 0);

isMoving = true; // Set flag for movement tracking
}

void buttonStepperMotorController(int control) {
/*
INPUT: Boolean with 0 indicating GUI control and 1 indicating potentiometer control
OUTPUT: Void
*/

SERIAL_PORT.print("Button controller received command: ");
SERIAL_PORT.print(control);
SERIAL_PORT.print(";");

// TODO: IMPLEMENT FUNCTION BELOW
PotControlFlag = control;

}

// CALLBACK FUNCTIONS
int servoMotorStateCallback() {

/*

15

INPUT: Void
OUTPUT: Integer in min/max range of 0 to 180 corresponding to servo motor angle
*/

// TODO: IMPLEMENT FUNCTION BELOW
return servoAngle;

}

int stepperMotorStateCallback() {
/*
INPUT: Void
OUTPUT: Integer in min/max range of -180 to 180 corresponding to stepper motor angle
*/

// TODO: IMPLEMENT FUNCTION BELOW

return globalStepperAngle;
}

int velDCMotorStateCallback() {
/*
INPUT: Void
OUTPUT: Integer in min/max range of -118 to 118 corresponding to DC motor RPM
*/

// TODO: IMPLEMENT FUNCTION BELOW

int speed = roboclaw.ReadSpeedM1(ADDRESS);
speed = speed * 118 / 6718;

return speed;
}

int angleDCMotorStateCallback() {
/*
INPUT: Void
OUTPUT: Integer in min/max range of -360 to 360 corresponding to DC motor angle
*/

// TODO: IMPLEMENT FUNCTION BELOW

int enc = roboclaw.ReadEncM1(ADDRESS);
int angle = (enc * 360) / 3416;
angle = angle % 360;

return angle;
}

int potentiometerSensorCallback() {
/*

16

INPUT: Void
OUTPUT: Integer corresponding to potentiometer reading
*/

// TODO: IMPLEMENT FUNCTION BELOW
PotVal = analogRead(PotentiometerPin);

if (PotControlFlag == 1) {
globalStepperValue = map(PotVal, 0, 1022, -1600, 1600);
globalStepperAngle = map(globalStepperValue, -1600, 1600, -180, 180);

}

return PotVal;
}

double imuSensorCallback() {
/*
INPUT: Void
OUTPUT: Double corresponding to sensed IMU pitch reading
*/

// TODO: IMPLEMENT FUNCTION BELOW
sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);

// Pitch using accel data
double pitchAccel = atan2(a.acceleration.x, a.acceleration.z) * 180 / PI;

return pitchAccel;
}

double temperatureSensorCallback() {
/*
INPUT: Void
OUTPUT: Double corresponding to temperature reading (degree celsius)
*/

// TODO: IMPLEMENT FUNCTION BELOW
int reading = analogRead(temperaturePin);
double voltage = reading * 3.3;
voltage /= 1024.0;

double temperatureC = (voltage - 0.5) * 100;

return temperatureC;
}

int ultrasonicSensorCallback() {
/*
INPUT: Void

17

OUTPUT: Integer corresponding to ultrasonic reading (cm)
*/

// TODO: IMPLEMENT FUNCTION BELOW
cm = analogRead(ultrasonicPin);
cm = transferFunctionCallback(cm);

return int(cm);
}

// OTHER FUNCTIONS
void pushISR() {

/*
INPUT: Void
OUTPUT: Void
*/

// TODO: IMPLEMENT FUNCTION BELOW
unsigned long currentTime = millis();
if ((currentTime - lastDebounceTime) > debounceDelay) {

servoAngle += incrementServo;
if (servoAngle > 180) {

servoAngle = 0;
}
lastDebounceTime = currentTime;
servo.write(servoAngle);

}
}

double transferFunctionCallback(double electricalInput) {
/*
INPUT: Double corresponding to electrical input voltage
OUTPUT: Double corresponding to ultrasonic reading (cm)
*/

// TODO: IMPLEMENT FUNCTION BELOW
double val = electricalInput * 0.498 * 2.54;

return val;
}

void stepperCallback() {
/*
INPUT: Void
OUTPUT: Void
*/
// TODO: IMPLEMENT FUNCTION BELOW
stepper.moveTo(globalStepperValue);
stepper.run();

}

18

6 Sensors and Motor Control Lab Quiz

6.1 Question 1

What is the sensor’s range?

The measurement range along each axis is ±3g.

What is the sensor’s dynamic range?

Maximum dynamic range is 7.2g and the minimum dynamic range is 6g.

What is the purpose of the capacitor CDC on the LHS of the functional block
diagram on p.1? How does it achieve this?

Figure 7: Functional Block Diagram

The capacitor CDC on the left side of the functional block diagram (Figure 1) serves as
a decoupling capacitor. Its purpose is to filter out high-frequency noise from the power
supply and stabilize the voltage supplied to the sensor. It does this by blocking sudden
spikes or drops in voltage, making sure the sensor runs smoothly.

Write an equation for the sensor’s transfer function.

General form of transfer function:

Vout = Vzero−g + S · a

where

• Vout =Output voltage corresponding to the measured acceleration

• Vzero−g = Output voltage when no acceleration is applied (Typical value of 1.5V

19

• S =Sensitivity of the sensor (300mV/g at 3V supply)

• a =Applied acceleration in g

Using the above values, the transfer function is

Vout = 1.5V + 0.3V/g · a

What is the largest expected nonlinearity error in g?

The nonlinearity error is typically ±0.3% of the full scale. Hence for a range of ±3g, we
get

Nonlinearity error = 0.003× 3g = ±0.009g

What is the sensor’s bandwidth for the X- and Y-axes?

Bandwidth along X and Y axes is typically 1600 Hz.

How much noise do you expect in the X- and Y-axis sensor signals when your
measurement bandwidth is 25 Hz?

Typical noise of ADXL335 is determined by, as given on p.11 of the datasheet

rms Noise = Noise Density × (
√
BW × 1.6)

Noise density along X and Y axes is typically = 150µg
√
Hz rms.

rms Noise = 150µg
√
Hz ×

√
1.6× 25 = 948.683µg

rms Noise = 0.949mg

If you didn’t have the datasheet, how would you determine the RMS noise
experimentally? State any assumptions and list the steps you would take.

Steps:

• Mount the accelerometer securely

• Collect raw output from the X and Y axes at a high sampling rate, ensuring no
movement

• Calculate the mean (zero-g bias) and subtract it to isolate the noise component

• Apply a low-pass filter

• Calculate RMS noise by subtracting the mean from each measurement sample, tak-
ing the sum of their squares, and then taking the square root.

• Perform multiple trials and average results for accuracy

20

6.2 Question 2

Filtering:

Problems with a moving-average filter:

1. The averaging window causes a lag in the output, so sudden changes in the input
appear late in the filtered signal

2. Sharp edges or fast changes in the signal can get lost because the filter blurs rapid
transitions

Problems with a median filter:

1. Finding the median requires sorting, which can be more computationally expensive

2. While median filtering removes large spike, it can also remove small, real features if
they fall outside the median too often

Operational Amplifiers:

Figure 8: Opamp gain and offset circuit

From the figure above, we get the equation

Vout = (1 +G)V2 −GV1

where G =
Rf

Ri
.

1) Uncalibrated sensor has a range of −1.5V to 1V

Case 1: V1 is the input voltage

On substituting this in the above equation, we get.

0 = (1 +G)V2 + 1.5G

5 = (1 +G)V2 −G

On solving this, we get G = −2, which is physically not possible.

Case 2: V2 is the input voltage

21

0 = −1.5− 1.5G−GV1

5 = 1 +G−GV1

On solving this, we get G = 1. Substituting this back, we get V1 = −3V .

Hence for the uncalibrated sensor with range −1.5V to 1V , V1 is the reference voltage,
equal to −3V , and V2 is the input voltage. The ratio Rf

Ri
is equal to 1.

2) Uncalibrated sensor has a range of −2.5V to 2.5V

Case 1: V1 is the input voltage

On substituting this in the above equation, we get.

0 = (1 +G)V2 + 2.5G

5 = (1 +G)V2 − 2.5G

On solving this, we get G = −1, which is physically not possible.

Case 2: V2 is the input voltage

0 = −2.5− 2.5G−GV1

5 = 2.5 + 2.5G−GV1

On solving this, we get G = 0, which again, is not possible. Hence, calibration cannot be
done with this circuit, because one operational amplifier alone is unable to produce the
desired gain to amplify the input signal and also voltage shift it.

6.3 Question 3

To control a DC motor to its desired position using a PID controller, it has to be formu-
lated in the following way.

For every discrete time k, we define the error as the difference between the desired position
and the current encoder position.

e[k] = desiredposition[k]− measuredposition[k]

The proportional term is just the proportional gain Kp multiplied by the position error.

P [k] = Kpe[k]

The integral term accumulates the error over time. So for a sampling time period Ts and
gain Ki, the integral term is given as

I[k] = I[k − 1] +KiTse[k]

The derivative term predicts where the error is heading to and shows how fast the error
is changing. For a sampling time period Ts and gain Kd, the derivative term is given as

D[k] = Kd
e[k]− e[k − 1]

Ts

22

On combining all the terms, we get the control output that drives the motor as

u[k] = Kpe[k] + (I[k − 1] +KiTse[k]) + (Kd
e[k]− e[k − 1]

Ts

)

In case my system is too sluggish, I would play with the Kp values to speed up its re-
sponse. Increasing the proportional Kp term will decrease the rise time, essentially giving
a fast response but this can also cause more overshoot or oscillations.

Following this, in case my system has a significant steady-state error, I would increase
the integral Ki term.

If the system still has an overshoot or oscillations, I would increase the derivative Kd

term, as it causes damping.

In general, from what we learned from the Manipulation, Estimation, and Control course,
we follow the steps below:

1. Start with Kp = 0, Ki = 0, Kd = 0

2. Turn up Kp until tr reaches desired value

3. Slowly turn up Ki until yss → yd in the desired time

4. Turn up Kd until ts,Mp reach desired values

5. Refine the gains iteratively until desired transient performance is achieved

23

	Individual Progress
	Sensors and Motors Lab
	Ultrasonic Range Finder
	Pushbutton
	Full Circuit

	MRSD Capstone Project: Lunar ROADSTER

	Challenges
	Sensors and Motors Lab
	MRSD Capstone Project: Lunar ROADSTER

	Teamwork
	Sensors and Motors Lab
	MRSD Capstone Project: Lunar ROADSTER

	Plans
	Sensors and Motors Lab
	MRSD Capstone Project: Lunar ROADSTER

	Code
	Sensors and Motor Control Lab Quiz
	Question 1
	Question 2
	Question 3

