Lunar ROADSTER (Robotic Operator for Autonomous Development of Surface Trails and Exploration Routes)

"Starting with a foothold on the Moon, we pave the way to the cosmos"

Ankit Aggarwal

Deepam Ameria

The Team

Bhaswanth Ayapilla

Simson D'Souza

Boxiang (William) Fu

Dr. William "Red" Whittaker

Motivation: The Lunar Polar Highway

Is it possible for a solar-powered rover to repeatedly drive around the Moon and never encounter a sunset?

Motivation: The Lunar Polar Highway

Sun-synchronous circumnavigation around Moon at 28 days x 24 hr = 672 hour sun rotation

At	eq	uator
At	50	deg
At	60	deg
At	70	deg
At	75	deg
At	80	deg
At	81	deg

11,000 km 7,040 km 5,500 km 3,700 km 2,800 km 1,870 km 1,529 km

16 kph 10 kph 8 kph 6 kph 4 kph 3 kph 2.5 kph

Jogging speed if the route was flat, circular and traversable

The Project: Lunar ROADSTER

An autonomous moon-working rover capable of finding ideal exploration routes and creating traversable surface trails

Use Case

Reference Latitude

> Crater to Avoid

Original [▲] Traversable Path

Use Case

Today's Demonstration

Pre-Demo Setup

- ROADSTER Ready
 - Prepare test environment (MoonYard)
- Obtain global map (PointCloud)
- Set up external infrastructure
- Calibrate localization (yaw and position)
- Plan optimal sand manipulation path

During Demo

- Switch to Autonomous Mode
- Use goal poses and offsets to plan path
- Navigate and traverse autonomously
- Autonomously groom the crater
- Failsafe: Use key fob to manually turn off the rover during emergency

Pre-Demo Setup

Jetson Xavier _ AGX

Custom Dozer Blade

ROADSTER

Prepare test environment (Moonyard)

Obtain global map using FARO Scanner

Leica TS16 Total Station

LAN Router & TX2 Relay

Set up external infrastructure

Calibrating relative heading angle (yaw)

Objective: Grade crater optimally

Cost Function minimizes

- Transport volume
- Transport Distance

Waypoints generated based on the outputted transport assignments

Plan optimal manipulation goal poses

Demonstration

Demonstration

Localization Method

Navigation Method

Rover Capabilities Demo

Intwiththenew!.

CraterGrader - - - - - Lunar ROADSTER

Stock Wheels - - - - - Lunar Wheels

Before

After

Wheel with more rimpull, coupled with higher torque motors results in higher traction generation

Cluttered Wiring - - - - \rightarrow Compact E-Box

Before

After

Custom PCB with an enclosed compact design creates more finished and reliable onboard circuitry

Improved Power Distribution Board

Before

After

New design featuring OVP/RVP along with XT60 terminals for ease of assembly and reliability, has been fully integrated into the system.

Central Grader - - \rightarrow Frontal Dozer

Before

After

Frontal tool enables increased dozing area while maintaining stable wheel-ground contact

ROADSTER Capabilities

- ✤ Teleoperation
- Traversal in uneven, sandy terrain
- Ackermann Steering
- Dozer Actuation Strength
- Dozer Pushing Strength
- Crater Grooming

Results

Results

Mechanical Design ** **Electrical & Electronics Design** Machine capable of grooming craters $\mathbf{\mathbf{x}}$ Localization and Autonomous Navigation ** Identification of craters to groom/avoid \mathbf{X} Crater Grooming *

ROADSTER

An autonomous mechatronic bulldozer for the Moon

- 60cm dozer width (3 times the predecessor)
- Increased tool actuation strength
- Custom wheels with improved rimpull and grip
- 135 kgf-cm drive actuators (2 times the predecessor)
- Far greater pushing power
- Organised and reliable circuitry
- Efficient power distribution
- An optimal, specialized machine for crater grooming

Autonomously Grading a Crater (2x speed)

M.P.1: Will plan a path with cumulative deviation of <= 25% from chosen latitude's length (due to untraversable terrain)

M.P.2: Will follow planned path to a maximum deviation of 10% (due to localization/navigation error)

M.P.4 (Part 1): Will avoid craters >= 0.5 meters (shown in global navigation plan)

Gradable Craters Location Crater C1: Diameter = 0.300 meters Centroid of Crater C1: X = 2.380 m, Y = 2.289 m

Crater C2: Diameter = 0.360 meters Centroid of Crater C2: X = 5.131 m, Y = 2.443 m

Crater C3: Diameter = 0.600 meters

Crater C4: Diameter = 0.280 meters Centroid of Crater C4: X = 2.453 m, Y = 4.909 m

Crater C5: Diameter = 0.400 meters Centroid of Crater C5: X = 4.421 m, Y = 5.335 m

M.P.5: Will fill craters of up to 0.5 meters in diameter and 0.1 meters in depth

M.P.5: Will fill craters of up to 0.5 meters in diameter and 0.1 meters in depth

Colonize the Moon!Team Lunar ROADSTER

"Starting with a foothold on the Moon, we pave the way to the cosmos"

