
# **Fall Test Plan**



# **Lunar ROADSTER**

#### Team I

Author: **Ankit Aggarwal**Andrew ID: ankitagg
E-mail: ankitagg@andrew.cmu.edu

Author: **Deepam Ameria**Andrew ID: dameria
E-mail: dameria@andrew.cmu.edu

Author: **Bhaswanth Ayapilla**Andrew ID: bayapill
E-mail: bayapill@andrew.cmu.edu

Author: **Simson D'Souza** Andrew ID: sjdsouza E-mail: sjdsouza@andrew.cmu.edu

Author: **Boxiang (William) Fu**Andrew ID: boxiangf
E-mail: boxiangf@andrew.cmu.edu

Supervisor: **Dr. William "Red" Whittaker**Department: Field Robotics Center
E-mail: red@cmu.edu

September 16, 2025



# **Contents**

| 1 | Intro            | oduction                                                            | 1             |
|---|------------------|---------------------------------------------------------------------|---------------|
| 2 | <b>Log</b> i 2.1 | istics<br>Equipment                                                 | <b>1</b><br>1 |
|   |                  | Testing Sites                                                       | 2             |
| 3 | Sch              | edule                                                               | 3             |
| 4 | Test             | ts                                                                  | 4             |
|   | 4.1              | T01: Rerun Spring Validation Demonstration                          | 4             |
|   | 4.2              | T02: Global Path Planner Accuracy Test                              | 5             |
|   | 4.3              | T03: Filtering and Selection of Gradable Craters                    | 6             |
|   | 4.4              | T04: Navigation planner maximum deviation test                      | 7             |
|   | 4.5              | T05: Perception Stack Crater Geometry Extraction Test               | 8             |
|   | 4.6              | T06: Repeatability Test of Local Navigation Controller              | 9             |
|   | 4.7              | T07: Trail Grooming Slope Validation                                | 10            |
|   | 4.8              | T08: SkyCam Localization Validation                                 | 11            |
|   | 4.9              | T09: CPU/GPU Usage of Autonomous Stack is Below Orin Compute Limits | 12            |
|   | 4.10             | T10: Maintenance, Reliability and Quality Assurance Test            | 13            |
|   |                  | T11: Fall Validation Demo Preparation Test                          | 14            |
|   | 4.12             | T12: Fall Validation Demo Test                                      | 15            |
| 5 | Арр              | endices                                                             | 16            |
|   | 5.1              | Mandatory Requirements                                              | 16            |
|   |                  | 5.1.1 Mandatory Functional Requirements                             | 16            |
|   |                  | 5.1.2 Mandatory Performance Requirements                            | 16            |
|   |                  | 5.1.3 Mandatory Non-Functional Requirements                         | 17            |
|   | 5.2              | Desirable Requirements                                              | 17            |
|   |                  | 5.2.1 Desirable Non-Functional Requirements                         | 17            |

## 1 Introduction

This document details the test plans for the Lunar ROADSTER system throughout the fall semester, aimed at validating compliance with functional requirements. The testing framework follows a structured, incremental approach, beginning with fundamental assessments and progressively advancing in complexity as subsystem development progresses. Additionally, this document outlines a timeline for achieving each key functionality, ensuring systematic evaluation and refinement. Test results will be reviewed during scheduled progress reviews. By the fall validation experiment, the system will demonstrate a minimum viable product, showcasing autonomous crater grading in the Moon Yard. A milestone schedule is also provided to track progress toward key objectives.

# 2 Logistics

The equipment and test sites required for Lunar ROADSTER are listed below:

## 2.1 Equipment

- 1. **Lunar ROADSTER Rover:** The CraterGrader Workstation was modified to the project's requirements. The improvements include a front-mounted dozer, an improved sensor stack, and wheels suited to the Lunar Terrain.
- 2. **Leica TS16 Total Station:** An external sensor which will be used for localization of the robot's position.
- 3. **VectorNav VN-100 IMU:** An onboard Inertial Measurement Unit which will be used for localization of the robot's orientation.
- 4. **Zed 2i Depth Camera:** A stereo depth camera will be used to validate the environment manipulation being performed.
- 5. **Wheel Prototypes:** A series of 3D-printed wheel designs will be tested until the optimal design is decided.
- 6. **Dozer Assembly:** An actuated assembly that will be mounted to the front of the rover and used to manipulate the Lunar environment.
- 7. **NVIDIA Jetson Orin:** The onboard central compute for the robot.
- 8. **Arduino Due:** The onboard microcontroller interfaces the motor controllers and fans.
- 9. **Operations Terminal:** The main control centre of the Lunar ROADSTER mission. This is used to tele-operate and monitor the rover during all tests.
- 10. **Jetson TX2 Relay:** As a part of the external infrastructure, the Jetson TX2 board will connect to the Leica TS16 Total Station and obtain the measured data.
- 11. **TP-Link Router:** A personal LAN network will be created to connect the Jetson Orin on the rover, the Jetson TX2, and the Operations Terminal.

# 2.2 Testing Sites

- 1. **Planetary Robotics Lab Moon Yard:** The sandbox is the primary test site for most tests and the Fall Validation Demo.
- 2. CIC LL67 Lab: Our primary working area and the site for all small-scale unit tests.
- 3. **MRSD Project Lab:** Site for presentations and for testing any MRSD project course-related assignments.

# 3 Schedule

| Date                | Event                          | Capability Milestones                                                                                                                                                                                           | Tests                           | Requirements                                                      |
|---------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| 09/10               | PR7                            | Hardware and software refinement                                                                                                                                                                                | T01                             | M.F.2<br>M.F.3<br>M.F.4<br>M.F.5<br>M.F.7<br>M.F.9                |
| 09/24               | PR8                            | <ul><li> Validation stack setup</li><li> Navigation stack setup</li><li> Obtain Gradable Craters Location</li></ul>                                                                                             | T03                             | M.F.6                                                             |
| 10/08               | PR9                            | <ul> <li>Perception stack detects craters accurately and provides waypoints</li> <li>Validate grading</li> <li>Rover navigates to goal location accurately</li> </ul>                                           | T02<br>T04<br>T05<br>T06<br>T07 | M.F.1<br>M.F.2<br>M.F.3<br>M.F.4<br>M.F.6<br>M.F.8<br>M.F.9       |
| 10/29               | PR10                           | <ul> <li>SkyCam-based localization for improved global positioning</li> <li>Ensure compute usage is below orin limits</li> <li>Tool Planner stack completed and integrated with necessary subsystems</li> </ul> | T08<br>T09                      | M.F.3<br>M.F.7                                                    |
| 11/12               | PR11                           | <ul> <li>Full system integration</li> <li>Conduct quality assurance testing</li> </ul>                                                                                                                          | T02<br>T06<br>T09<br>T10<br>T11 | M.F.1 M.F.6<br>M.F.2 M.F.7<br>M.F.3 M.F.8<br>M.F.4 M.F.9<br>M.F.5 |
| 11/17<br>&<br>11/24 | PR12<br>(FVD<br>and<br>Encore) | Final system demonstration involving autonomous grading of multiple craters                                                                                                                                     | T02<br>T06<br>T07<br>T12        | M.F.1 M.F.6<br>M.F.2 M.F.7<br>M.F.3 M.F.8<br>M.F.4 M.F.9<br>M.F.5 |

### 4 Tests

## 4.1 T01: Rerun Spring Validation Demonstration

| Rerun Spring Validation Demonstration |                                                                                                                                                     |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                             | Test and validate that the ROADSTER is in working condition by re-running SVD                                                                       |  |
| Elements                              | Full ROADSTER system                                                                                                                                |  |
| Location                              | Planetary Robotics Lab MoonYard                                                                                                                     |  |
| Equipment                             | Lunar ROADSTER rover, Dozer assembly, ZED 2i Depth Camera, Leica TS16 Total station, VectorNav IMU, Operations terminal laptop, Communication setup |  |
| Personnel                             | Bhaswanth, Ankit, Deepam, Boxiang, Simson                                                                                                           |  |
| Drooduro                              |                                                                                                                                                     |  |

#### **Procedure**

- 1. Attach and connect all the components and subsystems of the rover.
- 2. Set up the external infrastructure such as the total station in the corner of the Moon Yard, the LAN router, and the Jetson TX2 relay.
- 3. Prepare the Moon Yard with a suitable crater and dune.
- 4. Place the rover in the Moon Yard and calibrate its localization.
- 5. Turn on the rover and SSH into the Lunar ROADSTER docker on the operations terminal laptop.
- 6. Switch the rover to autonomous mode and run the start-up procedure.
- 7. Observe the rover autonomous grade the crater and level the dune. If anything unexpected occurs, press the emergency stop button.
- 8. Record system rosbags to use for analysis and GUI development.

- 1. The rover will climb gradients up to  $15^{\circ}$  and have a contact pressure of less than  $1.5~\mathrm{kPa}$ .
- 2. The rover will fill craters of up to 0.5 meters in diameter and 0.1 meters in depth.
- 3. The rover will localize itself and follow the planned path to a maximum deviation of 10%.
- 4. The rover will operate autonomously and communicate the robot state and mission status to the user.

# 4.2 T02: Global Path Planner Accuracy Test

| Global Path Planner Accuracy Test                                                                                                                             |                                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
|                                                                                                                                                               |                                                      |  |
| Elements Navigation Subsystem                                                                                                                                 |                                                      |  |
| Location Planetary Robotics Lab MoonYard                                                                                                                      |                                                      |  |
| Equipment                                                                                                                                                     | FARO Laser Scanner, Jetson Orin, Operations Terminal |  |
| Personnel                                                                                                                                                     | Simson, Bhaswanth                                    |  |
| Procedure                                                                                                                                                     |                                                      |  |
| Take a new map of the MoonYard using the FARO Laser Scanner                                                                                                   |                                                      |  |
| 2. Use the navigation pipeline to create a grid-based cost map                                                                                                |                                                      |  |
| 3. Plan a path using the custom path planner with a circular reference (latitude), treating gradable craters as traversable and ungradable ones as obstacles. |                                                      |  |
| 4. Use the RMSE metric to calculate and validate path planning.                                                                                               |                                                      |  |
| Verification Criteria                                                                                                                                         |                                                      |  |
| 1. Cumulative deviation RMSE between reference latitude and planned path is $<25\%$                                                                           |                                                      |  |

# 4.3 T03: Filtering and Selection of Gradable Craters

| Filtering and Selection of Gradable Craters                                      |                                                              |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Objective                                                                        | Validating the methodology for selection of gradable craters |  |
| Elements                                                                         | Navigation subsystem                                         |  |
| Location                                                                         | Planetary Robotics Lab MoonYard                              |  |
| Equipment                                                                        | FARO Laser Scanner, Jetson Orin, Operations Terminal         |  |
| Personnel                                                                        | Simson, Bhaswanth                                            |  |
| Procedure                                                                        |                                                              |  |
| 1. Prepare the MoonYard with multiple craters placed randomly with varied sizes. |                                                              |  |
| 2. Use the FARO Laser Scanner to obtain a map of the MoonYard.                   |                                                              |  |

- 3. Run the filtering and selection pipeline on the generated costmap.
- 4. Physically measure each crater's diameter and depth to obtain ground truth.
- 5. Compare ground truth with the pipeline's results

- 1. The pipeline should mark all craters > 0.5m in diameter as ungradable.
- 2. The pipeline should mark all craters > 0.1m in depth as ungradable.

# 4.4 T04: Navigation planner maximum deviation test

| Navigation planner maximum deviation test                                   |                                                                                                       |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Objective                                                                   | Validate that the navigation planner ensures rover follows planned path with maximum deviation ≤ 10%. |  |
| Elements                                                                    | Elements Navigation subsystem, Localization subsystem                                                 |  |
| Location                                                                    | Location Planetary Robotics Lab Moon Yard                                                             |  |
| Equipment                                                                   | Lunar ROADSTER Rover, Leica TS16 Total Station, Jetson Orin, Operations Terminal, Communication setup |  |
| Personnel                                                                   | Simson, Bhaswanth                                                                                     |  |
| Procedure                                                                   |                                                                                                       |  |
| Initialize rover localization using Total Station and IMU.                  |                                                                                                       |  |
| 2. Generate a reference path in the Moon Yard using the navigation planner. |                                                                                                       |  |
| 3. Command rover to autonomously follow the planned path.                   |                                                                                                       |  |
| Record rover's actual trajectory using localization logs.                   |                                                                                                       |  |
| 5. Compute deviation between planned path and executed trajectory.          |                                                                                                       |  |
| Verification Criteria                                                       |                                                                                                       |  |
| 1. Maximum path deviation ≤ 10%.                                            |                                                                                                       |  |
| 2. Rover completes the planned trajectory without manual intervention.      |                                                                                                       |  |

# 4.5 T05: Perception Stack Crater Geometry Extraction Test

| Perception Stack Crater Geometry Extraction Test |                                                                                                                            |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Objective                                        | Check that the perception stack can accurately extract crater geometry parameters (depth, diameter, rim size, sand volume) |  |
| Elements                                         | Perception subsystem                                                                                                       |  |
| Location                                         | Planetary Robotics Lab Moon Yard                                                                                           |  |
| Equipment                                        | ZED 2i Depth Camera, Jetson Orin, Operations Terminal                                                                      |  |
| Personnel                                        | Deepam, Ankit, Boxiang                                                                                                     |  |
| Dropoduro                                        |                                                                                                                            |  |

#### **Procedure**

- 1. Prepare the Moon Yard with multiple craters of varying depth, diameter, and rim shapes.
- 2. Use measuring tools like rulers and tapes to obtain ground truth dimensions of the craters' geometry (diameter, depth, etc.).
- 3. Run the perception stack with the ZED 2i Depth Camera to autonomously detect and extract crater geometry parameters.
- 4. Compare extracted values against measured ground truth to measure accuracy.

- 2. Perception stack successfully detects craters in the scene
- 1. Perception stack successfully extracts geometry of the craters in scene

# 4.6 T06: Repeatability Test of Local Navigation Controller

| Repeatability Test of Local Navigation Controller                                         |                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                                                                                 | Validate that the local navigation controller produces consistent results when executed multiple times under identical conditions.     |  |
| Elements Navigation subsystem, localization subsystem                                     |                                                                                                                                        |  |
| Location                                                                                  | Planetary Robotics Lab Moon Yard                                                                                                       |  |
| Equipment                                                                                 | Lunar ROADSTER rover, Operations terminal laptop, Communication setup (LAN router, TX2 relay), Leica TS16 Total Station, VectorNav IMU |  |
| Personnel                                                                                 | Bhaswanth, Simson                                                                                                                      |  |
|                                                                                           | Procedure                                                                                                                              |  |
| Power on rover and establish SSH connection to onboard compute.                           |                                                                                                                                        |  |
| Initialize localization stack and verify position accuracy.                               |                                                                                                                                        |  |
| 3. Send identical goal points for the rover to reach via the local navigation controller. |                                                                                                                                        |  |
| 4. Repeat the same test at least 5 times under identical environmental conditions.        |                                                                                                                                        |  |
| 5. Record trajectory logs, timing, and deviations.                                        |                                                                                                                                        |  |
| Verification Criteria                                                                     |                                                                                                                                        |  |
| The rover follows consistent local paths across repeated runs.                            |                                                                                                                                        |  |
| 2. Maximum trajectory deviation between runs is $\leq 10\%$                               |                                                                                                                                        |  |
| 3. Controller performance is deterministic and reliable.                                  |                                                                                                                                        |  |

## 4.7 T07: Trail Grooming Slope Validation

| Trail Grooming Slope Validation |                                                                                                                                                                            |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                       | Verify rover's ability to autonomously groom a trail to ensure a maximum traversal slope of $5^{\circ}$ .                                                                  |  |
| Elements                        | Dozer assembly, navigation subsystem, tool planner                                                                                                                         |  |
| Location                        | Planetary Robotics Lab Moon Yard                                                                                                                                           |  |
| Equipment                       | Lunar ROADSTER rover, Dozer assembly, ZED 2i Depth Camera (for crater detection), Leica TS16 Total Station, VectorNav IMU, Operations terminal laptop, Communication setup |  |
| Personnel                       | Ankit, Deepam, Boxiang                                                                                                                                                     |  |
|                                 |                                                                                                                                                                            |  |

#### **Procedure**

- 1. Prepare a testbed trail in the Moon Yard with irregular slopes  $> 5^{\circ}$ .
- 2. Initialize rover's localization, navigation, and perception stacks.
- 3. Command rover to traverse the circular trail autonomously while grooming it.
- 4. As rover progresses, the ZED 2i camera evaluates trail slopes at the end of each grooming operation.
- 5. If slope  $\leq 5^{\circ}$ , then proceed to next section. If slope  $> 5^{\circ}$ , then repeat the grooming process for that section until slope  $\leq 5^{\circ}$  is achieved.
- 6. At the end of the trail, validate slope and crater filling results with the ZED 2i camera.

- 1. Groomed trail slope  $\leq 5^{\circ}$  at all tested sections, confirmed via the perception stack.
- 2. Grooming is repeated automatically where slope criteria are not initially met.
- 3. Rover completes the entire circular path autonomously without getting stuck at grooming just one crater.

# 4.8 T08: SkyCam Localization Validation

| alidate whether SkyCam-based localization provides accuracy omparable to the Total Station.            |
|--------------------------------------------------------------------------------------------------------|
| ocalization subsystem, navigation subsystem                                                            |
| lanetary Robotics Lab Moon Yard                                                                        |
| unar ROADSTER Rover, Operations Terminal Laptop, Leica S16 Total Station, Jetson TX2 Relay, LAN Router |
| oxiang                                                                                                 |
| ב<br>ב<br>ב<br>ב                                                                                       |

#### **Procedure**

- 1. Power on the rover with the NVIDIA Jetson Orin.
- 2. Set up the Total Station and track the prism mounted on the rover mast.
- 3. Run the localization stack using the Total Station and IMU, localize the rover, and record its pose.
- 4. Repeat the localization process using the SkyCam method and record the rover pose.
- 5. Execute navigation tests with both localization methods.

- 1. The rover pose estimates from SkyCam and Total Station should closely match.
- 2. SkyCam localization should demonstrate reduced latency compared to the external Total Station, resulting in smoother navigation performance.

# 4.9 T09: CPU/GPU Usage of Autonomous Stack is Below Orin Compute Limits

| CPU/GPU Usage of Autonomous Stack is Below Orin Compute Limits |                                                                                                                                      |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                                                      | Validate that the computational load of the full autonomous stack does not exceed the processing capacity of the NVIDIA Jetson Orin. |  |
| Elements                                                       | Localization subsystem, navigation subsystem, validation subsystem, tool planner subsystem                                           |  |
| Location                                                       | Planetary Robotics Lab Moon Yard                                                                                                     |  |
| Equipment                                                      | Lunar ROADSTER Rover, Operations Terminal Laptop, NVIDIA Jetson Orin (onboard)                                                       |  |
| Personnel                                                      | Ankit, Deepam, Bhaswanth, Simson, Boxiang                                                                                            |  |
| Procedure                                                      |                                                                                                                                      |  |

- 1. Power on the rover with the NVIDIA Jetson Orin.
- 2. Launch the complete autonomous stack.
- 3. Use system monitoring tools (htop, or equivalent) to record CPU and GPU utilization continuously during operation.
- 4. Conduct a task (e.g., waypoint following, grading) in the Moon Yard while monitoring usage.

- 1. Average CPU and GPU utilization remains below 80% during nominal operation.
- 2. No subsystem causes prolonged spikes that exceed Orin compute limits and degrade real-time performance.
- 3. Navigation and Validation tasks are executed smoothly without delays or dropped frames due to computational overload.

# 4.10 T10: Maintenance, Reliability and Quality Assurance Test

| Maintenance, Reliability and Quality Assurance Test |                                                                                                                                                  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                                           | Evaluate the maintainability, reliability, and overall quality assurance of the hardware and autonomous stack under real operational conditions. |  |
| Elements                                            | Hardware Integrity and Software system                                                                                                           |  |
| Location                                            | Planetary Robotics Lab Moon Yard                                                                                                                 |  |
| Equipment                                           | Lunar ROADSTER Rover, Operations Terminal Laptop, NVIDIA Jetson Orin (onboard), Spare parts for maintenance                                      |  |
| Personnel                                           | Ankit, Deepam, Bhaswanth, Simson, Boxiang                                                                                                        |  |

#### **Procedure**

- 1. Perform a pre-operation inspection of rover hardware and connectors.
- 2. Power on the rover and launch the full autonomous stack.
- 3. Execute a set of operational tasks (e.g., waypoint navigation, grading, obstacle avoidance) in the Moon Yard.
- 4. Monitor software logs, sensor health, and communication between subsystems throughout the tasks.
- 5. Document any maintenance actions required, including software resets, recalibration, or hardware adjustments.

- 1. Rover completes all assigned tasks without critical failures or crashes.
- 2. CPU/GPU usage remains within safe operating limits, ensuring no performance degradation.
- 3. All subsystems function properly.
- 4. Maintenance actions are minimal, indicating high reliability and ease of service.

## 4.11 T11: Fall Validation Demo Preparation Test

| Fall Validation Demo Preparation Test |                                                                                                                                                |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Objective                             | Conduct a full dress rehearsal of the Fall Validation Demonstration, verifying rover performance in navigation, grading, and validation tasks. |  |  |
| Elements                              | Navigation subsystem, localization subsystem, validation subsystem, tool planner subsystem, external environment                               |  |  |
| Location                              | Planetary Robotics Lab Moon Yard                                                                                                               |  |  |
| Equipment                             | <b>Equipment</b> Lunar ROADSTER Rover, Operations Terminal Laptop, Le TS16 Total Station, Jetson TX2 Relay, LAN Router                         |  |  |
| Personnel                             | Ankit, Deepam, Bhaswanth, Simson, Boxiang                                                                                                      |  |  |
| Procedure                             |                                                                                                                                                |  |  |

- 1. Prepare the Moon Yard terrain with multiple representative crater and dune.
- 2. Perform a FARO scan of the environment and preprocess the scan to generate a map used for identifying gradable crater poses and for navigation planning.
- 3. Set up external infrastructure: place the Leica total station in the corner of the Moon Yard, configure the LAN router, and connect the Jetson TX2 relay.
- 4. Position the rover in the Moon Yard and perform localization calibration.
- 5. Switch the rover to autonomous mode and launch the full software stack.
- 6. Observe the rover autonomously grade multiple craters and dunes along a circular path while performing validation. Monitor the job status through the GUI, and use the emergency stop button if any unexpected behavior occurs.

- 1. Plan a path with cumulative deviation of < 25% from chosen latitude's length.
- 2. Follow planned path to a maximum deviation of 10%.
- 3. Have a contact pressure of less than 1.5 kPa.
- 4. Avoid craters  $\geq$  0.5 meters.
- 5. Fill craters of up to 0.5 meters in diameter and 0.1 meter in depth.
- 6. Groom the trail to have a maximum traversal slope of 5°.

#### 4.12 T12: Fall Validation Demo Test

| Fall Validation Demo Test |                                                                                                                      |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Objective                 | Conduct the Fall Validation Demonstration, verifying rover performance in navigation, grading, and validation tasks. |  |
| Elements                  | Navigation subsystem, localization subsystem, validation subsystem, tool planner subsystem                           |  |
| Location                  | Planetary Robotics Lab Moon Yard                                                                                     |  |
| Equipment                 | Lunar ROADSTER Rover, Operations Terminal Laptop, Leica TS16 Total Station, Jetson TX2 Relay, LAN Router             |  |
| Personnel                 | Ankit, Deepam, Bhaswanth, Simson, Boxiang                                                                            |  |
|                           |                                                                                                                      |  |

#### **Procedure**

- 1. Prepare the Moon Yard terrain with multiple representative crater and dune.
- 2. Perform a FARO scan of the environment and preprocess the scan to generate a map used for identifying gradable crater poses and for navigation planning.
- 3. Set up the external infrastructure by positioning the Leica total station at the corner of the Moon Yard, configuring the LAN router, and connecting the Jetson TX2 relay.
- 4. Position the rover in the Moon Yard and perform localization calibration.
- 5. Switch the rover to autonomous mode and launch the full software stack.
- 6. Observe the rover autonomously grade multiple craters and dunes along a circular path while performing validation. Monitor the job status through the GUI, and use the emergency stop button if any unexpected behavior occurs.

- 1. Plan a path with cumulative deviation of  $\leq$  25% from chosen latitude's length.
- 2. Follow planned path to a maximum deviation of 10%.
- 3. Have a contact pressure of less than 1.5 kPa.
- 4. Avoid craters  $\geq$  0.5 meters.
- 5. Fill craters of up to 0.5 meters in diameter and 0.1 meter in depth.
- 6. Groom the trail to have a maximum traversal slope of 5°.

# 5 Appendices

# 5.1 Mandatory Requirements

# **5.1.1 Mandatory Functional Requirements**

**Table 14:** Mandatory Functional Requirements

| Sr.No. | Mandatory Functional Requirement (Shall)    |  |
|--------|---------------------------------------------|--|
| M.F.1  | Perform trail path planning                 |  |
| M.F.2  | Operate autonomously                        |  |
| M.F.3  | Localize itself in a GPS denied environment |  |
| M.F.4  | Navigate the planned path                   |  |
| M.F.5  | Traverse uneven terrain                     |  |
| M.F.6  | Choose craters to groom and avoid           |  |
| M.F.7  | Grade craters and level dunes               |  |
| M.F.8  | Validate grading and trail path             |  |
| M.F.9  | Communicate with the user                   |  |

# **5.1.2 Mandatory Performance Requirements**

 Table 15: Mandatory Performance Requirements

| Sr.No. | Performance Metrics (Will)                                                                |  |
|--------|-------------------------------------------------------------------------------------------|--|
| M.P.1  | Plan a path with <b>cumulative deviation of</b> $\leq 25\%$ from chosen latitude's length |  |
| M.P.2  | Follow planned path to a maximum deviation of 10%                                         |  |
| M.P.3  | Have a contact pressure of less than 1.5 kPa                                              |  |
| M.P.4  | Avoid craters $\geq 0.5$ meters                                                           |  |
| M.P.5  | Fill craters of up to 0.5 meters in diameter and 0.1 meter in depth                       |  |
| M.P.6  | Groom the trail to have a <b>maximum traversal slope of</b> $5^{\circ}$                   |  |

# **5.1.3 Mandatory Non-Functional Requirements**

 Table 16: Mandatory Non-Functional Requirements

| Sr.No.                   | Parameter | Description                                                   |
|--------------------------|-----------|---------------------------------------------------------------|
| M.N.1                    | Weight    | The rover must weigh <b>under 50 kg</b>                       |
| M.N.2                    | Cost      | The cost for the project must be under \$5000                 |
| M.N.3 Computing Capacity |           | The onboard computer should be able to run all required tasks |

# 5.2 Desirable Requirements

# **5.2.1 Desirable Non-Functional Requirements**

 Table 17: Desirable Non-Functional Requirements

| Sr.No. | Parameter                   | Description                                                                                                         |
|--------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|
| D.N.1  | Technological Extensibility | The system will be <b>well documented</b> and designed so that future teams can easily access and build on the work |
| D.N.2  | Aesthetics                  | Requirement from sponsor, the rover must look presentable and lunar-ready                                           |
| D.N.3  | Modularity                  | To enable <b>tool interchangeability</b> , the tool assemblies must be modular and easy to assemble/disassemble     |
| D.N.4  | Repeatability               | The system will complete multiple missions without the need of maintenance                                          |