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Abstract. Throughout the history of automated reasoning, mathematics
has been viewed as a prototypical domain of application. It is therefore
surprising that the technology has had almost no impact on mathematics
to date and plays almost no role in the subject today. This article presents
an optimistic view that the situation is about to change. It describes
some recent developments in the Lean programming language and proof
assistant that support this optimism, and it reflects on the role that
automated reasoning can and should play in mathematics in the years to
come.

1 The Origins and Foundations of Automated Reasoning

The fact that IJCAR is celebrating the 30th anniversary of the CADE ATP System
Competition (CASC) is a reminder that, at least by the standards of computer
science, automated reasoning has a long and venerable history. Some date the
field to 1956, when Allen Newell, Herbert Simon, and Cliff Shaw introduced
the Logic Theorist, a program that used heuristic methods to prove theorems in
propositional logic. Two years earlier, however, Martin Davis had implemented
Presburger’s decision procedure for integer arithmetic on a computer at the
Institute for Advanced Study. Davis admitted that the program did not perform
well but he reported that it succeeded in proving that the sum of two even
numbers is even. In 1960, Henry Gelernter, J. R. Hansen, and Donald Loveland
published an article on the Geometry Machine, a program that could prove
nontrivial theorems in elementary Euclidean plane geometry. The resolution rule
for propositional logic was introduced by Davis and Hilary Putnam in 1960, and
John Alan Robinson’s introduction of a unification algorithm in 1965 established
resolution theorem proving as a powerful method for first-order logic.1

The theoretical foundations of automated reasoning predate even the introduc-
tion of the first electronic computers. In contemporary terms, Kurt Gödel’s first
incompleteness theorem says that there is no complete, consistent, computably
axiomatized theory that contains (or interprets) a modicum of arithmetic. In his
1931 paper, Gödel explained that the theorem, as he stated it,

is not in any way due to the special nature of the systems that have
been set up, but holds for a wide class of formal systems; among these,

1 All of the articles mentioned in this paragraph are found in a collection edited
by Siegmann and Wrightson [50]. See also the survey by Mackenzie [36] and the
references there.
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in particular, are all systems that result from the two just mentioned
through the addition of a finite number of axioms . . . [21,22]

It is interesting to see Gödel struggling to say “computably axiomatized theory”
for the simple reason that, at the time, there was no mathematical concept of
computability available. He then presented a tentative definition of computability
in lectures that he gave at the Institute for Advanced Study in Princeton in
1932 precisely so that he could state the incompleteness theorems in their proper
generality. Alan Turing gave his own celebrated definition of computability a few
years later and titled the paper “On computable numbers, with an application
to the Entscheidungsproblem,” providing a negative answer to Hilbert’s question
as to whether there is a decision procedure for first-order logic. Gödel had
expressed uncertainty as to whether his definition exhausts the general notion of
computability, but he took Turing’s analysis to settle the matter definitively:

In consequence of later advances, in particular of the fact that, due to
A. M. Turing’s work, a precise and unquestionably adequate definition of
the general concept of a formal system can now be given, the existence of
undecidable arithmetical propositions and the non-demonstrability of the
consistency of a system in the same system can now be proved rigorously
for every consistent formal system containing a certain amount of finitary
number theory. (quoted in [17])

The emphasis is by Gödel, who took the phrase “formal system” to mean a
system with computably checkable axioms and rules.

Turing pointed out in his paper that the first incompleteness theorem is a
consequence of the undecidability of theories of arithmetic, because if there were
a complete, computably axiomatized theory of arithmetic one could decide the
provability of a formula by simultaneously searching for a proof of the formula
and its negation. Alonzo Church gave an independent proof of the undecidability
of arithmetic in 1936, and Stephen Kleene, another key player in developing
the modern theory of computability, was also keenly interested in applications
to logic and the foundations of mathematics. So logicians were thinking about
computable proof systems and proof search even before the arrival of the first
digital electronic computers in the 1940s.

Fundamental decision procedures for logic and arithmetic also predate the
electronic computer. As early as 1915, Leopold Löwenheim gave a decision
procedure for monadic first-order logic. (The introduction to Börger et al. [11]
provides an excellent overview of early work on the decidability of fragments
of first-order reasoning.) Mojżesz Presburger’s paper on a decision procedure
for arithmetic, based on Thoralf Skolem’s method of eliminating quantifiers,
was published in 1929. (Presburger never earned a doctorate for that work;
Andrzej Mostowski reported [15] that Alfred Tarski thought the result was too
simple, a straightforward application of Thoralf Skolem’s method of elimination
of quantifiers.) In 1930, Tarski obtained a decision procedure for real-closed fields,
that is, the first-order theory of the real numbers as an ordered field, though
the result was not published until 1948. So logicians were also interested in
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decision procedures for aspects of mathematical reasoning even before there were
computers to implement them.

2 Taking Stock

We have seen that the early history of automated reasoning was rooted in the
foundations of mathematics and that many of its early pioneers were mathemati-
cians. Even those who were not mathematicians took mathematical reasoning to
be a primary target of the technology. Now, almost a century after Presburger’s
discovery of a decision procedure for arithmetic and almost three quarters of a
century after the implementation of the Logic Theorist, it seems reasonable to
ask where we stand. What has automated reasoning done for mathematics, and
how is it used in mathematics today?

The answer is disappointingly negative. Automated reasoning has had almost
no impact at all on mathematics and plays almost no role in the subject today. Few
working mathematicians have ever touched an automated reasoning tool, let alone
use automated reasoning in their daily work. The technology has contributed to
very few mathematical discoveries, even minor ones.

This is surprising. One would think, as the pioneers of the subject clearly
did, that mathematical reasoning is ideally suited to automation. To be sure,
mathematics requires creativity, intuition, experience, and insight, but it also
requires long chains of precise and sometimes tedious reasoning, and it’s hard
to get the details right. Computers can carry out small inferential steps much
more quickly and accurately than we can, so we would expect them to be
helpful for exploring and verifying mathematical results. Numeric and symbolic
computation have revolutionized the sciences, even though science involves a lot
more than computation. Why hasn’t automated reasoning had a similar impact
on mathematics?

This question is not meant as a criticism. Automated reasoning has made
remarkable progress over the past 70 years, and the tools are now quite sophisti-
cated. They have had a significant impact in several important areas, such as
hardware and software verification, AI, planning, databases, knowledge represen-
tation, program synthesis, and natural language processing. Automated reasoning
does not have to look to mathematics for justification. Moreover, the fact that
there have been few applications to mathematics doesn’t mean that there haven’t
been any, and the successes are worth celebrating. Finally, the fact that it has
been difficult to automate mathematical reasoning is largely a reflection of the
fact that mathematics isn’t easy to mechanize, and those of us who love the
subject wouldn’t want it any other way. So my goal here is rather to review
some of the successes of automated reasoning for mathematics, understand the
challenges, and reflect on the role that automated reasoning can and should play
in mathematics in the years to come.

In 2019, I gave a joint talk at FroCoS and TABLEAUX titled “Automated
Reasoning for the Working Mathematician.” In that talk, I surveyed the use of
automated reasoning with interactive proof assistants in the hopes of extracting
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lessons that I could convey to the automated reasoning community. This article
draws on that talk as well as unpublished notes, data, and experiments that I
prepared at the time.2 See also my article, “The Mechanization of Mathematics”
[1], and an article by Michael Beeson with the same title [6], for additional
examples of applications of automated reasoning to mathematics.

3 A Personal History

As a mathematician who has been using automated reasoning tools for more than
two decades, my interest in the subject is personal. I first experimented with
Isabelle and Coq in the late 1990s, and when I started using Isabelle in earnest
in 2002, the automation was surprisingly mature. There were a conditional term
rewriter, simp [44], variations on a general tableau prover (auto, force, and
clarify [45]), and a decision procedure for linear arithmetic (arith). Working
with students at Carnegie Mellon, I completed a proof of the Hadamard–de
la Vallée-Poussin prime number theorem in September of 2004 [2]. A couple
of months later, Georges Gonthier announced the verification of the four-color
theorem in Coq [24], and soon after that Thomas Hales announced the verification
of the Jordan curve theorem in HOL Light [26]. These were early landmarks,
providing evidence that substantial mathematical theorems could be formalized.

Many of the challenges in formalizing the prime number theorem stemmed
from the fact that Isabelle’s libraries were young and incomplete. The automation,
however, was remarkably helpful. For example, in the 4,000 lines contained in
the last file in the proof, there are 390 invocations of simp, 397 invocations of
auto and friends, and 246 invocations of arith. Even now, twenty years later, I
have yet to have a better experience with automation.

I spent a sabbatical year in France with Gonthier and his team in 2009-
2010, working on the formalization of the Feit–Thompson theorem, using the
SSReflect proof language and Coq [25]. In designing and managing the project,
Georges made the conscious decision to avoid automation entirely, other than
the built-in foundational reduction of Coq expressions, which is fundamental
to the methodology of SSReflect. He was skeptical that black-box automation
would scale and had more faith in the power of good language design to make
formalization manageable.

When I returned from France, I was ready to leave interactive theorem
proving behind and turn to automated reasoning. But a talented undergraduate
at Carnegie Mellon, Luke Serafin, managed to convince me to work on a project to
verify the central limit theorem in Isabelle [3], and I was seduced by the excitement
around homotopy type theory at the time to work on another verification project
in Coq [4].

What really pulled me back to the world of proof assistants, however, was
Leonardo de Moura’s decision, in 2013, to launch the Lean project. Leo convinced
me that even if one is primarily interested in automation for mathematics, one
2 https://github.com/avigad/arwm

https://github.com/avigad/arwm
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should build it on top of a secure, expressive foundation, not just to ensure that
the automation is reliable, but to have a meaningful specification of what the
results mean. For several years, Lean’s web pages described the aim of the project
as follows:

to bridge the gap between interactive and automated theorem proving,
by situating automated tools and methods in a framework that supports
user interaction and the construction of fully specified axiomatic proofs.

I don’t think Leo anticipated the amount of work he would have to put into
implementing an elaborator for dependent type theory and supporting all the
features that are needed to make that foundation usable. Work also went into
the implementation of a tactic framework, in Lean 2, and the implementation of
a metaprogramming language, in Lean 3, that users could use to write their own
tactics [18,39]. Lean 4 is a complete rewrite of the system, most of which is now
implemented in Lean 4 itself [38]. Leo and Sebastian Ullrich have put a lot of effort
into making Lean 4 an efficient programming (and metaprogramming) language,
and treating syntax as first-class objects, making the syntactic framework as
powerful, flexible, and extensible as the tactic framework.

We are now beginning to see automation for Lean 4 that is written in Lean
4, as well as Lean-based experiments on applications of machine learning to
mathematical reasoning. Thus, a decade into the Lean project, we are now in
an especially good position to realize the initial vision of making it a powerful
means of combining automation with user interaction. In the sections that follow,
I will discuss prospects for automated reasoning for mathematics in general, but
I will also focus specifically on opportunities based on recent developments in
Lean.

4 Domain-General Reasoning for Verification

To prepare for the talk at FroCoS and TABLEAUX, I sent a questionnaire to
colleagues who had worked on formalization of mathematics to learn about their
experiences with automation. One of the interesting findings was that most of
the people who I considered to be the best at formalization—people who had
formalized vast amounts of interesting mathematics efficiently and with very
high quality—used very little automation at all. (Larry Paulson was a notable
exception; he has spoken eloquently of the power of automation in enabling
him to port large amounts of measure theory and analysis from HOL Light to
Isabelle.) The best explanation I could come up with is that even if automation
were much better than it is now, serious users would still have to fill in some
inferences by hand, which would inevitably require them to learn the library
inside out and become skillful at writing explicit proofs. So even when automation
is available, power users generally come to know the library and proof language
well enough that they don’t need to use automation to do what they want to
do. If that analysis is correct, it highlights the challenge of scaling the use of
formal methods to a broader mathematical audience. Even now, I get frustrated
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when I have to struggle with an unfamiliar part of the library to carry out an
inference that seems painfully obvious. The lack of automation limits the utility
of formalization to all but the most determined and dedicated practitioners.

Let me clarify that when I talk about domain-general reasoning, I am setting
aside equational rewriting and simplification. It’s not clear how to classify such
methods. On the one hand, there is nothing more general than the equality
relation: wherever there are expressions that denote objects, there are equations
that govern them. On the other hand, equational rewriters handle only a small
fragment of logical reasoning and the task they perform is focused and specific. If
we take domain-general reasoning to encompass problems that, in full generality,
are equivalent to the halting problem, it makes sense to exclude equational
rewriters, which are designed to reduce expressions to canonical forms in a finite
number of steps. In any case, they are incredibly useful. Tools like Isabelle’s
simp can simplify a formula to True and hence prove more than just equations.
They can also carry out conditional rewriting and use backchaining to dispel
side conditions. Users can add facts to the rewrite database as they develop new
theories. As far as I know, any proof assistant that takes automation seriously
has some sort of rewrite engine. Lean’s version of simp was one of the first tactics
that was implemented in that system.

To prepare for the talk at FroCoS and TABLEAUX, I also carried out some
experiments with Isabelle’s Sledgehammer [46]. This is a tool that, given a proof
goal, uses a relevance filter to select a couple of hundred potentially useful
theorems from the library, sends the problem to external provers, and then tries
to use the information they return to reconstruct a proof internally. I set myself
the task of determining the extent to which I could formalize theorems by writing
a proof sketch, calling only Sledgehammer and auto, and then refining the sketch
as needed. I formalized three theorems in this way—the mutilated chessboard
problem, the intermediate value theorem, and the existence of infinitely many
primes congruent to three modulo four—and I took detailed notes as I went. The
data, which is still available in the GitHub repository, is not very rigorous, but
it helped me understand better some of the places where the automation fell
short. In particular, two of the theorems required mild forms of second-order
reasoning, such as identities governing the summation of functions over finite
sets or reasoning about membership in sets defined by explicit predicates. Now,
provers like Vampire, Zipperposition, and E can handle higher-order reasoning
natively [7,8,53], which is likely to help.

One method of proof reconstruction involves harvesting nothing more than
the list of theorems the external prover needed to establish the goal and calling
internal, proof-producing automation to redo the search. Isabelle uses a tool called
Metis for that [31]. Joshua Clune, Yicheng Qian, and Alexander Bentkamp have
written a proof-producing superposition theorem prover for Lean called Duper
to serve a similar purpose, as well as to serve as generic internal automation.
They invested considerable effort in adapting conventional resolution methods
to dependent type theory. For example, in dependent type theory, a data type
might not have any elements, and Skolemization and other components of the
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search calculus have to be adapted to avoid introducing unsoundness. Duper
can instantiate generic type variables on the fly but that introduces additional
technical complications, as does adapting unification procedures to the depedently
typed setting. Because it is modeled on Zipperposition, Duper can also handle
higher-order inferences, and because it operates on Lean expressions directly
(rather than via translation), it is possible to handle other rules tailored specifically
to dependent type theory. Testing on standard benchmarks shows that Duper’s
performance is roughly comparable to Metis’, offering hope that we will have a
Sledgehammer for Lean before long. Lean is starting to catch up with Isabelle in
other respects as well, with an automated reasoner called Aesop [33], inspired by
Isabelle’s auto, as well as tools like Coq’s eauto and PVS’s grind.

When we consider the way that mathematicians use proof assistants, it
becomes clear that support for reasoning about algebraic structures is essential.
I have sometimes heard computer scientists say that there is no need to use
dependent type theory because anything that can be done there can be done just
as well in set theory or simple type theory. In principle, any reasonable foundation
can interpret any other, possibly modulo a few axiomatic extensions, but generally
speaking, the remark fails to appreciate the extent to which algebraic language
and thought pervade contemporary mathematics. Any undergraduate student
of mathematics can talk about the ring of n × n matrices of polynomials over
Z/pZ for a prime number p. Moreover, that student knows that multiplication is
commutative on the polynomials and their coefficients but not on the matrices, and
that nonzero elements of Z/pZ have multiplicative inverses while the polynomials
and matrices generally don’t. In other words, mathematicians easily name complex
structures and use generic notation, and they know what properties elements of
those structures have. The structures themselves are mathematical objects on
par with numbers, functions, and circles, yet at the same time they serve as data
types, constraining what can meaningfully be said about their elements. I find
it remarkable that Lean and Mathlib are so good at making a vast network of
structures available to users without collapsing under the technical requirements.
Doing so requires a carefully designed system of type class inference and efficient
means of elaborating and unifying the complex expressions that describe the
structures and their elements. Dependent type theory may not be the only
possible solution, but it is the only one implemented so far that can do anything
close to what mathematicians need.

Reasoning about a rich algebraic hierarchy is a challenge for automated reason-
ing for at least two reasons: first, because instantiating generic theorems requires
determining whether the types in question are instances of the relevant algebraic
structures, and, second, because carrying out unification with expressions that
have algebraic components requires determining the identity of objects that have
been described in different ways. Both of these tasks are too expensive to be
carried out in the midst of an automated search, but, fortunately, we generally
don’t expect them to be: mathematicians are usually careful to establish the
relevant algebraic context explicitly. Duper manages algebraic reasoning using
a remarkable preprocessing tool by Qian called Lean-Auto, which heuristically
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instantiates generic theorems, infers the relevant algebraic structures, and chooses
canonical representations of expressions, all before the search begins.

Sledgehammers generally work by translating the source language to a simpler
one and using tools optimized for equational reasoning, propositional reasoning,
and quantifier instantiation. Another approach to automating dependent type
theory is to search systematically in dependent type theory itself. There are
tools for Coq [16] and Agda [34,51] that take this approach, without making any
attempt at completeness. At Carnegie Mellon, Chase Norman has implemented
a procedure for a minimal but fully expressive dependent type theory that
provides a complete solution to both the unification and type inhabitation
problems, generalizing Huet’s unification procedure for higher-order logic [30].
The framework is flexible enough to instantiate various heuristics to carry out the
search, and the implementation performs well on examples. It will be interesting
to see whether such an approach will provide automation that complements the
strengths of a sledgehammer.

5 Domain-Specific Reasoning for Verification

Talking about domain-general automation reminds me of a quip that I once
heard attributed to Sidney Morgenbesser that philosophers are people who know
something about everything but nothing about anything. In an ornery mood,
I might complain that first-order theorem provers are good at reasoning about
everything but not so good at reasoning about anything in particular. At the
opposite end of the spectrum are domain-specific automated reasoning tools
that carry out more deterministic and focused tasks, such as reasoning about
arithmetic, establishing algebraic identities, reasoning about linear and nonlinear
inequalities, and so on.

Tools like these are extremely useful. Lean has benefited from the availability
of a metaprogramming language, introduced in Lean 3 [18] and made vastly
more powerful in Lean 4 [38], that allows users to write tactics within Lean. The
ability to attract mathematical users from 2017 on was bolstered by the fact that
users like Mario Carneiro were able to quickly provide them with the tactics they
needed. As mathematicians gained expertise with the system, they could design
tactics that would help them in their daily work. For example, Heather Macbeth,
with the help of Carneiro, wrote tactics gcongr and positivity to help with
common calculations, and then could easily shorten a proof like this:

calc ∥wp - wq∥ * ∥wp - wq∥
_ = 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * ∥u - half · (wq + wp)∥ *

∥u - half · (wq + wp)∥ := by rw [← this]; simp
_ ≤ 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * δ * δ :=

(sub_le_sub_left eq1 _)
_ ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) -

4 * δ * δ :=
(sub_le_sub_right (mul_le_mul_of_nonneg_left

(add_le_add eq2 eq2’) (by norm_num)) _)
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_ = 8 * δ * div + 4 * div * div := by ring
exact

add_nonneg (mul_nonneg (mul_nonneg (by norm_num) zero_le_δ)
(le_of_lt Nat.one_div_pos_of_nat))

(mul_nonneg (mul_nonneg (by norm_num) Nat.one_div_pos_of_nat.le)
Nat.one_div_pos_of_nat.le)

to this:
calc ∥wp - wq∥ * ∥wp - wq∥

_ = 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * ∥u - half · (wq + wp)∥ *
∥u - half · (wq + wp)∥ := by simp [← this]

_ ≤ 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * δ * δ := by gcongr
_ ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) -

4 * δ * δ := by gcongr
_ = 8 * δ * div + 4 * div * div := by ring

positivity

Tomáš Skřivan recently contributed a tactic, fun_prop, that effectively establishes
properties like continuity, differentiability, and measurability of functions.

I am grateful to Adam Topaz for writing a small Lean metaprogram to extract
tactic usage statistics from a recent version of Mathlib. The data is messy because
tactic variants are listed separately when they are called under separate wrappers,
including variants that were written to support the port of the library from
Lean 3 but are otherwise superseded by newer versions. It is also misleading in
that some tactics have been around much longer than others, so the numbers do
not reflect the current utility. Nor does the data say anything about the role of
domain-specific automation outside of Mathlib. Finally, some tactics are used
transiently and are then eliminated from the final proof document, such as those
that help find theorems, display information, or write proofs. These do not appear
in the list.

Nonetheless, the data is informative. Tactics used to apply theorems are most
common (apply, exact, refine, etc., with about 60K instances in all). After
that, the vast majority of tactic calls, by far, are used for equational reasoning,
with more than 52K invocations of Lean’s rw tactic, which does manual term
rewriting, and more than 60K invocations of Lean’s simplifier (simp, simpa,
dsimp, and simp-rw). About 25K invocations are used to decompose data and
existential assertions (obtain, rintro, rcases, cases, etc.), and there are about
5K calls to tactics that carry out proof by induction.

More specialized automation still manages to carry its weight. The linarith
tactic is called more than 1,100 times; split_ifs, which splits a goal to simplify
conditional expressions, and ring, which carries out ring calculations, are each
called more than 1,000 times; filter_upwards, a simple tactic that helps reason
about filters in measure theory and analysis is called almost 900 times; norm_num,
which does numeric calculations, is called more than 800 times; a specialization
of Aesop for use with category theory, aesop_cat, is called almost 800 times;
positivity, a relative newcomer, is called more than 600 times; and norm_cast,
a tactic to help mediate casts between numeric domains, and gcongr are each
called more than 500 times.
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Lean’s metaprogramming language also provides flexible ways to support
better interactions with automation, both domain-general and domain-specific.
Lean’s Widgets framework [42] allows users to install custom Javascript-driven
displays of objects and information in Lean’s “infoview” window in VS Code, and
allows user interactions with these graphical displays to communicate information
and actions back to Lean and the editor. When the user puts the cursor at the
beginning of a tactic invocation in a proof, the infoview window highlights the
part of the state that is about to change, and when the cursor is on or at the
end of the invocation, it highlights what has just changed. Users can hover
over constants in the infoview window to see documentation, they can click on
expressions to see their types, and they can control-click on identifiers to jump to
their definitions. Users can trace class inference to diagnose failures, and expand
or collapse nodes of the search tree in the infoview window. In Lean, automation
can return structured error messages that can be explored. Ideally, whenever
automation fails, users should have the means to diagnose the problem and come
up with suitable interventions to fix it. Developers of automation should keep
user interfaces in mind both as targets for automated reasoning and as means
for using automation more effectively.

Finally, it is worth mentioning that tools that help users find theorems and
explore the library are also essential. Lean provides internal tactics like apply?,
exact?, and rw? that suggest atomic proof steps. There is also a good symbolic
search engine, Loogle, and there is another search tool, Moogle, that uses a large
language model to answer natural-language queries.

6 Automation for the Discovery of New Theorems

To this point, we have focused on the use of automated reasoning to verify
mathematical results that were discovered by conventional means. Mathemati-
cians, however, tend to be much more excited about methods that help with the
discovery of new mathematics. The automated reasoning community is justifiably
proud of William McCune’s use of his theorem prover, EQP, to settle to Robbins
conjecture in 1996 [37]. The result, which shows that a certain set of equations
can be taken as an alternative axiomatization of Boolean algebras, made the
pages of the New York Times. Since then, there has also been a small industry
in using automated theorem provers to prove theorems about other algebraic
structures, like loops and quasigroups. One can think of a loop as like a group
except without the associativity axiom, and one can think of a quasigroup as a
loop without an identity. First-order theorem provers have been used to establish
consequences of these and related axioms, an industry nicely surveyed by Phillips
and Stanovský [47].

I have heard mathematicians express annoyance, however, at the suggestion
that these results have anything to do with real mathematics. Few mathematicians
have heard of the Robbins conjecture or have any interest in quasigroups. More
to the point, mathematicians chafe at the implication that modern algebra is
about deriving first-order consequences of axioms. Algebraists are interested in
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classification theorems, which characterize structures in terms of key invariants,
structure theorems, which provide means of understanding structures in terms
of subobjects and morphisms to other structures, and representation theorems.
They are interested in introducing new structures and new spaces of structures,
with applications that explain and simplify past results and provide powerful
tools for future research. All these involve reasoning about structures within the
context of a rich mathematical theory, rather than reasoning deductively from
the axioms. As a result, to most mathematicians, the applications of automated
reasoning to algebra so far are little more than recreational curiosities.

Applications of SAT solvers to mathematics fare better. For example, in 1912,
Issai Schur proved that given any finite coloring of the positive integers, there is a
monochromatic solution to the equation x + y = z. Today, this is recognized as a
seminal result in both Ramsey theory and additive number theory. The theorem
raises the question as to whether one can compute the largest initial segment
of the positive integers {1, 2, . . . , S(k)} such that there is a k-coloring with no
such monochromatic solution. It’s not hard to establish S(1) = 1, S(2) = 4,
and S(3) = 13. In 1965, Golomb and Baumert computed S(4) = 44 in a paper
that contains other interesting examples of backtracking search [23]. The value
S(5) = 160 was computed by Heule in 2017 using a SAT solver [28], a result
which has drawn praise from the mathematical community. The value of S(6) is
still unknown.

Most mathematicians aren’t interested in calculating Schur numbers, but the
problem is considered at least interesting by association, given that they recognize
Schur’s theorem as an important theorem. The case is similar with respect to
a theorem that Paul Erdős dubbed the “happy ending problem” because it led
to the marriage of George Szekeres and Esther Klein. The general version of
the theorem says that for every positive integer n, any sufficiently large finite
set of points in general position in the plane contains a convex n-gon. Let f(n)
denote the smallest number of points in general position that provides such a
guarantee; the value of f(n) is known only for n ≤ 6. A related problem asks for
the smallest number of points in general position that guarantees the existence of
an empty convex n-gon, that is, one without any points in its interior. There are
infinite sets of points without a convex 7-gon, but Nicolás [43] and Gerken [20]
proved independently that every sufficiently large set of points in general position
contains an empty convex hexagon. Using a SAT solver, Heule and Scheucher
[29] recently showed that 30 is the smallest number of points that provides that
guarantee.

When SAT solvers are used to solve mathematical problems, it is important
to have guarantees that the results are correct. Students at Carnegie Mellon
are working on a SAT library for Lean that addresses that concern. Joshua
Clune has written an LRAT checker that is currently in use at Amazon Web
Services; Wojciech Nawrocki has verified a checker for knowledge compilation,
a technology that, in particular, can provide precise counts of the number of
satisfying assignments to a propositional formula [12]; and Cayden Codel has
written a verified checker for SR, a strong proof format for SAT solvers that
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incorporates symmetries in “without loss of generality” reductions [13]. Perhaps
the more serious concern is to verify that a problem that is sent to a SAT solver
is a correct representation of the intended problem. This is pressing because the
reduction of an ordinary mathematical statement to a SAT problem often relies
on complex encodings as well as symmetry breaking and other reductions, and the
generation of the propositional formula is further subject to subtle programming
errors. Codel, Nawrocki, and James Gallicchio have been working on aspects
of the library that address that problem as well [14]. Bernardo Subercaseaux,
Nawrocki, Gallicchio, Codel, Carneiro, and Heule have verified the correctness of
the encoding used to compute the empty hexagon number [52].

Mathematicians have yet to explore the use of automated reasoning tools
to find objects of mathematical interests. SAT solvers, SMT solvers, constraint
solvers, and model finders are all designed to find objects and structures satisfying
given constraints. A popular Isabelle tool called Nitpick [10] uses a model finder
to look for counterexamples to purported theorems, in order to prevent them
from investing time and energy in trying to prove a statement that is false.

Bespoke decision procedures can also aid the process of discovery. An auto-
mated reasoning tool called Walnut [40,49] implements a decision procedure for
an extension of Presburger arithmetic that can express properties of automatic
sequences, which are, roughly, sequences generated by finite state automata.
Consider the question as to whether there is an infinite binary sequence with no
subsequence of the form xxxR, where x is a finite sequence and xR is its reversal.
It is not hard to see that the sequence 01010101 . . . has that property, but is it
possible to find one that is aperiodic? A paper by Mousavi, Schaeffer, and Shallit
[41] explains how Walnut helped them construct such a sequence.

I believe that mathematicians’ general habit of dismissing “finite problems” as
not properly mathematical will change over time. The entire edifice of infinitary
mathematics bears on our everyday experience only through measurement and
observation, and discrete problems from computer science have already begun
to influence mathematical research. It also seems likely that mathematicians
will find creative ways to solve infinitary problems by devising representations
and reductions that are amenable to automation. The main challenge is that
automated reasoning is unfamiliar to them. The history of Lean suggests that
mathematicians will go to extraordinary lengths to learn a new technology once
they decide that it is interesting and aligns with their goals. To facilitate adoption,
it helps to have documentation and expository materials that are written with
them in mind. The incentive structures in mathematics and computer science
are not good at encouraging that kind of cross-disciplinary outreach, but once
the door is open, it is only a matter of time before a new technology becomes
part of the mathematical mainstream.

7 Machine Learning and Symbolic AI

It’s impossible to write about the prospects of automated reasoning for mathe-
matics today without saying something about machine learning. Machine learning
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and symbolic AI have complementary strengths: ML is good at synthesizing vast
amounts of data but isn’t good at getting details right, whereas symbolic meth-
ods are good at getting the details right but are overwhelmed by combinatorial
explosion in a search space. A central challenge for AI is to design systems that
get the best of both worlds by combining the two approaches, and mathematics,
where the problems are especially clear and well-defined, is an ideal place to
make progress.

It is therefore not surprising that there is growing interest in applications
of machine learning to mathematics. Researchers have long explored the use
of machine learning techniques to guide symbolic search and to select premises
for a sledgehammer, and with the advent of deep learning, there has been a
surge of interest in using neural networks to prove theorems in conjunction with
an interactive proof assistant. A recent “brief survey” of machine learning in
automated reasoning by Blaauwbroek et al. [9] has 168 references, and surveys of
deep learning for mathematical reasoning by Lu et al. [35] and by Li et al. [32]
have well over 200 references each.

Lean is becoming recognized as an ideal platform for such work. There have
been at least two projects on using machine learning for premise selection for
Lean [19,48], there are tactics and code pilots based on Lean [27,54,55], and there
are tools that support data extraction and interaction with Lean for machine
learning experiments, including one developed by Kaiyu Yang and coauthors [55]
and two developed by Kim Morrison.3 The MiniF2F problem benchmark [56]
includes versions for Lean 3, and the ProofNet benchmarks [5] have recently been
ported to Lean 4 by Abhijit Chakrborty and Rahul Vishwakarma.4 The features
that make Lean a good platform for automated reasoning also make it a good
platform for machine learning and support a synthesis of the two. The size and
sophistication of Lean’s mathematical library, Mathlib, and the involvement of
the mathematical community provide powerful opportunities for progress.

8 Conclusions

Although I began with a disappointing assessment of the current state of au-
tomated reasoning for mathematics, I hope I have conveyed good reasons for
optimism. Mathematicians are beginning to warm to the use of formal methods,
opening up new avenues for progress. As the technology improves, the number
of mathematicians making use of the automated reasoning tools will increase,
providing greater incentives for computer scientists to focus on mathematical
applications. This, in turn, will increase the number of mathematicians who use
the the technology and can therefore provide feedback and even contribute to
its development. In short, I expect that we are on the cusp of a virtuous cycle
whereby technological improvements lead to more users, which, in turn, lead to
further improvements.
3 https://github.com/semorrison/lean-training-data

https://github.com/leanprover-community/repl
4 https://github.com/rahul3613/ProofNet-lean4

https://github.com/semorrison/lean-training-data
https://github.com/leanprover-community/repl
https://github.com/rahul3613/ProofNet-lean4
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In this article, I have tried to identify some of the key challenges to developing
better automation for mathematics, and I have suggested specific approaches that
I find promising. The biggest challenges, however, may be sociological rather than
technical. Making automation useful for mathematics will require mathematicians
and computer scientists working together, and neither discipline will get far on
its own. Mathematicians and computer scientists have very different attitudes
and outlooks. Computer scientists focus on disseminating information quickly in
conference publications, and their success is measured by the number of citations
they receive. With the weight of centuries behind them, mathematicians can’t be
rushed, are mistrustful of academic fads, and tend to look to the leading experts
in their fields to determine what is important. Whereas computer scientists value
measurable impact in the short term, mathematicians answer to less clear-cut
assessments of the quality and depth of their work. It’s not that one discipline’s
standards are better than the other; each has its advantages and problems. It’s
just that the disparity of outlooks often makes communication difficult.

I’d like to suggest to computer scientists reading this article that it might be
nice to adopt a mathematical attitude every once in a while. Imagine thinking
about something because you find it interesting, without caring what others think.
Imagine exploring ideas to see where they take you, without worrying about
whether that will result in a conference publication by the next round of deadlines.
Imagine working on a problem just for the joy of taking up the challenge. If all
that sounds good to you, you’ll find mathematicians to be excellent companions.
I am not suggesting that you should turn your back on computer science; of
course, you will still have bills to pay. But I am confident that one day, when
you look back over your career, any contributions you have made to mathematics
will be among the things that you are most proud of, and among those that are
closest to your heart. So I invite you to come to the Lean Zulip channel and start
talking to mathematicians about the things that automation can do for them. I
promise, you won’t regret it.
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