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INNOVATIVE DESIGN OF MECHANICAL STRUCTURES FROM
FIRST PRINCIPLES

JonaTHAN CAGAN AND ALICE M. AGOGINO

Intelligent Systems Research Group, Department of Mechanical Engineering, University of California at
Berkeley, Berkeley CA 94720, U.S.A.

In this paper a unique design methodology known as 1stPRINCE (FIRST PRINciple Computational Evaluator) is developed
to perform innovative design of mechanical structures from first principle knowledge. The method is based on the assumption
that the creation of innovative designs of physical significance, concerning geometric and material properties, requires reasoning
from first principles. The innovative designs discovered by 1stPRINCE differ from routine designs in that new primitives are
created. Monotonicity analysis and computer algebra are utilized to direct design variables in a globally optimal direction relative
to the goals specified. In contrast to strict constraint propagation approaches, formal qualitative optimization techniques
efficiently search the solution space in an optimizing direction, eliminate infeasible. and suboptimal designs, and reason with both
equality and inequality constraints. Modification of the design configuration space and the creation of new primitives, in order to
meet the constraints or improve the design, are achieved by manipulating mathematical quantities such as the integral. The result
is a design system which requires a knowledge base only of fundamental equations of deformation with physical constraints on
variables, constitutive relations, and fundamental engineering assumptions; no pre-compiled knowledge of mechanical behavior is
needed. Application of this theory to the design of a beam under torsion leads to designs of a hollow tube and a composite rod
exhibiting globally optimal behavior. Further, these optimally-behaved designs are described symbolically as a function of the
material properties and system parameters. This method is implemented in a LISP environment as a module in a larger intelligent

CAD system that integrates qualitative, functional and numerical computation for engineering applications.

1. Introduction

Artificial intelligence techniques have recently entered
the mechanical engineering discipline through nume-
rous applications. Implementations in the areas of
design and analysis, however, have been few. We
classify three levels of design similar to Brown and
Chandrasekaran (1986): routine, innovative, creative.
In routine design, existing parameters are varied until
a satisfactory design is found. Most design systems
presently work within this design level. PRIDE
(Mittal et al., 1985) designs transport systems in
copiers for the Xerox Corporation. Using object-
oriented programming and constraint propagation
techniques, the system selects and modifies parts until
constraints are met. SACON (Bennett and Engel-
more, 1979) and, more recently, PLASHTRAN
(Cagan and Genberg, 1987) aid users through the
application of finite element analysis codes to model
physical structures; the former is based on the
EMYCIN goal-directed, rule-based technology, and
the latter is implemented in LOOPS (Xerox
Corporation, 1983) for a frame-based, data-driven
system. DOMINIC I (Dixon et al., 1987) describes a
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design procedure in which expert systems performing
V-belt design and heat fin design can be developed.
Another architecture for routine design is DSPL
(Design Specialists and Plans Language), as described
in Brown and Chandrasekaran (1986).

The above programs do not reason from first
principles. By ‘first principles’ we mean the fun-
damental physical equations and concepts utilized by
engineers. PRIDE is not concerned with deformation
of parts such as a pinch roller and does not require
analysis from first principles. Systems such as SACON
and PLASHTRAN are capable of solving problems
within their specified domain. If, however, a structure
is described outside of the system domain, the code
may give incorrect responses. Systems derived from
DOMINIC use a hill-climbing technique to vary
parameters within a design space for redesign
applications.

Reasoning in typical expert systems is accomplished
by rules and inheritance. Their only connection to the
physical problem is through terminology and variable
bindings. In PLASHTRAN, if the user models a shell,
the system binds the variable type.of.structure to the
term ‘shell’. It can then refer to and recognize
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(through pattern recognition) the word ‘shell’, but the
computer does not actually reason about the physical
properties and behaviors of structural shells. Further,
the system cannot make creative design decisions or
structural modifications.

Innovative design is the process of deriving new
design features from previous designs. Other ap-
proaches to innovative design systems include Ulrich
and Seering (1987) who utilize ‘novel combination’, the
process of extracting individual attributes from known
devices and combining them together to form new
devices, to creative new fastener designs. The process
of novel combination extracts features while propaga-
ting constraints, but doesn’t consider the physical
relationships between parts. PROMPT (Murthy and
Addanki, 1987) innovates structural designs and will
be discussed-in detail below. EDISON (Dyer et al.,
1986) is a design system which utilizes naive physical
relationships and qualitative reasoning with planning
and heuristics on discovery/invention. In EDISON,
devices are mutated from a limited library of standard
devices, such as a can opener and a door, with various
functional purposes of process to satisfy needs of a
different process. Lenat (1983) presents EURISKO, a
domain-independent discovery program that learns
new heuristics. One application of EURISKO is the
design of a fleet of ships which won the Trillion
Credits Squadron national tournament. Again, in
EDISON and EURISKO, physical relationships
between parts are not considered.

In the third level of design, creative design, new
primitives which have no obvious relationship to
previous configurations are created. Creativity is a
complex cognitive process that is not well understood
in humans and thus is not easily codifiable in
computer-based systems. Coyne et al. (1987) examine
the creative potential of knowledge-based systems
from a ‘narrow information processing perspective’.
They propose that criteria for evaluating the creativity
of computer-based systems should include the ability
to acquire knowledge, control internal processes and
change internal structure. Only limited attempts at
creative knowledge-based systems are described.

Qualitative process theory and naive physics are
approaches to reason about the physical world from
first principles as described by Hayes (1985), Forbus
(1983), DeKleer and Brown (1983), and Macfarlane
and Donath (1988). In qualitative reasoning the
algebraic signs of the relationships between variables
and parameters are considered, as is also done in the
present work. However, these theories employ passive
approaches to observe the effects of physical
processes, but no decisions are made. Design requires

J. Cagan and A. M. Agogino

an active approach where, in addition to predicting
process and functionality, decisions are required.

This paper proposes that the creation of innovative
designs of physical significance, concerning geometric
and material properties, requires reasoning from first
principles. Previous work emphasizing the importance
of this type of reasoning in structural design can be
found in PROMPT (Murthy and Addanki, 1987).
PROMPT is significantly different in methodology
from the present work. PROMPT uses human
pre-compiled knowledge to create design modification
operators. Our approach, known as 1stPRINCE
(FIRST PRINciple Computational Evaluator), prov-
ides a mechanism to automate the process of creating
operators which are derivable from first principle
knowledge. 1stPRINCE utilizes monotonicity analysis
on fundamental structural equations to traverse the
solution space and discover parametric designs
demonstrating optimal behavior. In the PROMPT
publication, an example of the design of a beam under
torsion is discussed. This example is well understood
by engineers and serves as a good example for the
application of our methodology. It will thus be utilized
within this paper and used for comparison with the
PROMPT approach.

Design is a goal-oriented process (Radford and
Gero, 1985) with a design objective and constraints on
the physical parameters which bound the solution and
model functional relations between variables of
physical significance (throughout this paper, ‘function’
refers to mathematical function and not process
function, unless otherwise stated). Because numerical
design optimization requires well-formulated numeri-
cal problem specifications, it is typically only useful in
the detailing stages of the design process. Although
rational design involves optimizing behavior, a human
designer may reason qualitatively rather than
numerically to observe the entire design space
symbolically and make design improvements.
1stPRINCE first performs qualitative optimization of
a design problem by means of monotonicity analysis.
If all constraints cannot be met from a monotonicity
analysis, additional first principle information is
utilized to make fundamental design modifications.
This reasoning considers the significance of mathe-
matical quantities such as the integral and utilizes
heuristics on how the design space can be divided into
separate regions. As physical constraints are deter-
mined to be active (i.e., relevant in their limit at
optimality), they are backsubstituted into the
objective function to obtain a solution with minimal
degrees of freedom at the optimum. This important
functional information for structures is often ex-
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pressed in terms of material properties, which are
variables in this system, and allows a designer (or an
expert system with access to a library of materials) to
choose a material which will allow the objective
function to be minimized and obtain the proper
dimensions to reach the design goal.

Reasoning via this approach makes possible the
conceptual design of structures by utilizing first
principles. Application of 1stPRINCE to the design of
a shaft under torsion yields interesting results. From
knowledge (fundamental equations) only of a solid
round shaft, two optimizing design modifications are
obtained. A hollow tube is created with a large radius
constrained by either minimum thickness or by
buckling. A composite rod is also discovered with a
cylinder of inside material bonded to a hollow tube of
outside material. Here limitations on the optimal
design occur in the interaction between the material
properties of the two sections. If certain derived
conditions hold and one material is heavier, stiffer,
and has a higher limit on strength than the other, then
it is preferred to be the outside material with as small
a thickness as practical. All of these results are
obtained directly from application of our design
theory with no pre-compiled knowledge about
mechanical behavior. IstPRINCE makes decisions
which are optimally directed; it does not haphazardly
try new combinations.

Following the nomenclature section, the design of a
shaft under a torsion load, our design example, is
described along with a summary of past work
concerning this example. 1stPRINCE .is then de-
scribed and applied to the torsion problem.

2. Nomenclature

The following nomenclature is utilized in this paper

A, dA cross-sectional area of beam region and

differential
g inequality constraint, j
G shear modulus of elasticity
h; equality constraint, i

K;(G)(j=1,» functional relationship between material
properties with shear modulus (j =1 for

density, j =2 for yield stress)

L,dz length of beam and differential

r, dr radius of circular beam and differential

Ermin minimum allowable thickness of material

T torque acting on beam, a system variable

Toin applied torque acting on beam, a
parameter
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. dimensions and material properties se-
parated for distinct regions j

weight of beam

maximum allowable weight of beam, a
parameter

angle of rotation of beam

material density

shear stress

yield stress
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3. A design example: design of a shaft under
torsion

A typical structural design can be seen in Figure 1. A
designer must design a shaft of minimum weight
(constrained to be less than W,,,,) subject to a torsion
load (T) such that the maximum stress remains under
yield stress (t,) possibly divided by some factor of
safety.

The designer may reason as follows

A solid, round bar resists torsion well and is
commercially available in almost any size. Choose
a solid round bar and determine an appropriate
radius to meet the stress constraint. Once the stress
constraint is met the weight of the bar should be
calculated and the weight constraint checked. If all
constraints are met the design is satisfactory and
consideration of a more weight-efficient design can
be considered. If, however, the bar is too heavy
then the design must be modified.

Figure 2(a) shows the stress distribution across a
circular cross-section of the bar. Note that the stress in
the center is zero and increases linearly as the radius
increases. If a small radius r; of material is removed
from the center portion, the volume (and thus the
weight) can be reduced without significantly affecting
the stress at the outside radius », (Figure 2(b)).

The expert system PROMPT (Murthy and Add-
anki, 1987) represents a computational methodology
which appears to reason through a problem as just
described. PROMPT uses a multilevel approach to
design. The first level utilizes typical Al technology.
Hierarchical decompositions and atomic components
are stored in Prototypes. A Prototype is a data
structure containing basic equations, relations and
definitions (Addanki and Davis, 1985). A more recent
publication describes the use of the Graph of Models
data structure in which the nodes of the graph
represent the Prototype model and edges represent
the assumptions which must be satisfied in order to
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Ficure 1. General beam under a torsion load T

traverse between nodes (Murthy and Addanki, 1987).
By utilizing constraint propagation, a design is
modified until all equality constraints are met. If the
first level fails to produce a good design the second
level is employed. Here ‘modification operators’ are
described as pre-compiled, frequently utilized design
changes which are incorporated into the design to
attempt to meet constraints. Typical operators are the
redistribution of mass and the alteration of shape.
Within PROMPT, rules and heuristics are derived
as modification operators from first principles via a
human compiler, but the system which is automated
does not reason directly from first principles.
Modification operators are able to make structural
modifications such as rounding a corner to relieve
stress intensity and are efficient in situations which lie
within the domain encompassed by the heuristics.
However, modifications not specified by the heuristics
cannot take place; much information which can be
derived from engineering equations is lost by the
human transfer of knowledge from functional form to
heuristic form wusing pre-compiled operators.
PROMPT, then, works from fundamental knowledge,
but not truly from first principles. The system is
capable of deriving modifications in the shape of

r r
(a) (b)

Ficure 2. Shear stress distribution of a circular beam
under torsion load (solid (a) hollow (b)). Stress increases
linearly from the center toward the outer radius
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prototypes, but does not utilize powerful information
which can be derived from the functional relationships
between parameters. Further, the system does not
reason with inequality constraints in order to optimize
the design. It is this information which allows an
engineer to decide which solution is preferable when
there are several design options.

4. 1stPRINCE

Agogino and Almgren (1987a,b) argue that an ideal
design methodology for mechanical systems should be
able to move between the qualitative, functional, and
numerical levels of human reasoning (Figure 3). The
methodology presented in this paper incorporates all
three levels of reasoning. Monotonicity analysis
(qualitative reasoning) observes the algebraic first
derivative of parameters to make qualitative decisions
to direct globally optimal behavior or detect flaws in
the problem formalization. A design expert system
often looks for any feasible solution to a problem
(satisficing). With the aid of monotonicity analysis the
best solution to the same problem based on qualitative
information may be found. Mathematical functional
information is used as deemed important from the
monotonicity analysis. If constraints cannot be met or
a designer wishes to investigate alternative designs, a
mathematical reasoning module breaks integrals into

qualitative:
Weight increases with density,
radius and length

! I

functional:
2

W=prr~L
numerical:
W = (7860 kg/m®) & (.0760 m)> (1 m)
= 1876.3 kg
FIGURE 3. An ideal methodology for mechanical design

should incorporate the qualitative, functional, and numeri-
cal levels and allow for the transition between the three
levels. The specific example concerns the weight of a beam
of circular cross-section
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smaller ranges creating novel design primitives and
allowing for innovative designs. All design recom-
mendations are presented in symbolic form. These
algebraic solutions to the design problem can be
solved numerically to obtain specific solutions and
quantitative comparisons between solutions.

4.1 HEURISTIC SEARCH

In the proposed architecture, an initial primitive
must be selected by the user or some object-oriented
expert system (e.g., OMDesign: Agogino and Guha,
1987). This selection should be based on heuristic
information describing which basic structures are best
suited for - different loadings. Within individual
primitive frames is information on the structure such
as fundamental equations of deformation, stress, and
volume. Also important constraints on the primitive
can be found in the frame slots. This selection gives an
initial start for the system to perform an analysis and
innovate new designs.

4.2 MONOTONICITY ANALYSIS: QUALITATIVE
REASONING

Design is a goal-oriented process with objectives
and constraints which can often be formulated as a
series of mathematical equations. Numerous numeri-
cal techniques exist (Vanderplaats, 1984; Haug and
Arora, 1979; Reklaitis et al., 1983) to solve
optimization problems described in this manner,
however a numerical solution loses generalization and
important functional information found in the
relationships  between parameters. Monotonicity
analysis is a symbolic approach to non-linear
optimization problems which utilizes information at
the qualitative level to determine globally optimum
search directions. Originally developed by Papalam-
bros and Wilde (1979) and automated symbolically
with AI technology by Choy and Agogino (1986), the
analysis utilizes qualitative first derivative information
(i.e., the algebraic sign of the direction of change of a
variable) to determine which constraints will be active
or inactive for a possible solution to the optimization
problem. The analysis verifies that a problem
formulation is properly bounded and occasionally can
identify the global optimum to a problem directly
without further analysis.

First-generation expert system techniques lose
important functional information (similar to that
which numerical solutions lose) by compiling general
knowledge into heuristics. Monotonicity analysis, by

itself, also loses the same information; however, by
backsubstituting the mathematical functional informa-
tion into the objective function, more powerful
solutions can be derived. Monotonicity analysis is
described below and functional backsubstitution is
described later.

Definitions

a. The monotonicity of a continuously differentiable
function f(x) with respect to variable x, is the
algebraic sign of 9f/dx,. (Note: the problem need
not be formulated with equations; only the relative
increase or decrease of one variable with changes
in another need be specified. Thus the monotoni-
city concept can be applied equally well to
non-continuous functions.)

b. A constraint g(x)=(=) 0 is active at x, if
8i(x0) =0. A constraint g;(x) =< (=)0 is inactive at
xo if gi(xo) < (>)0.

c. A positive variable x; is said to be bounded above
by a constraint g;(x) =0 if it achieves its maximum
value at strict equality, i.e. when the constraint is
active. A positive variable x; is bounded below by
g:(x) =0 if it achieves its minimum value at strict
equality.

Figure 4(a) shows a function, f(x), which has an
interior minimum (zero first derivative and positive
second derivative) within the feasible range between
x=a and x = b. In Figure 4(b), there is no zero first
derivative and because the function is monotonically
increasing in x the minimum value of f(x) occurs at
the lower boundary. Thus the constraint stating that
X = a becomes active, implying that x = a at optimality
(xZa). (Note that the symbols ‘=’ and ‘=’ will be
used to designate active inequality constraints or
relevant directed equality constraints.)

v AR
N

N

\

a b X a b X

| feasible region |

I feasible region |

() (b)

Ficure 4. The minimum of the function in (a) occurs
within the interior of the region. In (b) there is no zero first
derivative and the absolute minimum of the feasible range
occurs at the lower boundary implying the inequality
constraint on the lower bound is active
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Monotonicity analysis identifies which constraints
would be propagated in order to optimize the
objective, but does not activate inequality constraints
that would be suboptimal. It can thus be viewed as an
optimizing formalism of the ‘least commitment’
principle in the AI literature (Stefik, 1981). However,
unlike conventional constraint propagation which just
works with equality constraints, monotonicity analysis
works with both equality and inequality constraints.

Three rules of monotonicity analysis define
well-constrained optimization problems (Papalambros
and Wilde, 1979; Papalambros, 1982) without
overconstrained cases (Wilde, 1985).

Rule One: If the objective function is monotonic
with respect to (w.r.t.) a variable, then there exists at
least one active constraint which bounds the variable
in the direction opposite of the objective.

Rule Two: If a variable is not contained in the
objective function then it must be either bounded
from both above and below by active constraints or
not actively bounded at all (i.e., in the latter case, any
constraints monotonic w.r.t. that variable must be
inactive or irrelevant).

Rule Three (The Maximum Activity Principle):
The number of non-redundant active constraints
cannot exceed the total number of variables.

Utilizing these three rules, constraints which are
unconditionally active or inactive may be determined.
The implication of active constraints is that a design
variable is being driven toward an upper or lower
limit. The implementation of these rules has been
automated by Choy and Agogino (1986) in the
program SYMON (SYmbolic MONotonicity analyzer)

TaBLE 1.
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in the Franz LISP (Fateman, 1982) and VAXIMA
languages (Rand, 1984). The SYMON user interface
allows the problem to be displayed in tabular form
utilizing monotonicity tables, as will be done in this
paper. For ease of presentation, rules one and two can
be formulated into a heuristic which will be used to
balance the tables in this paper.

Heuristic: A column of a variable in a table must
have at least one ‘+’ and ‘—’, or else nothing. The
objective function must be relevant.

An equality constraint is always active, but it is not
always significant (relevant) in bounding an optimiza-
tion problem. In other words, irrelevant constraints
can be left out without affecting the final solution. In
optimization theory, the corresponding Lagrange
multipliers would be zero.

4.3 INTRODUCTORY EXAMPLE

A simple example of monotonicity analysis can be
found in Table 1 (a). This example will serve as an
introduction to readers unfamiliar with the theory,
and also has parallels to the more detailed design
problem to be presented later in the paper. In the
table, equality constraint i is specified by the symbol
‘h;’ and inequality constraint j as ‘g;’. Since inequality
constraints are bounded, the direction of that bound is
given for each variable; the directions of monotonicity
of equality constraints are not known before an
analysis so question marks are put in the appropriate
columns. At this point the activity of both equality

Simplified formulation of minimization problem to determine the minimum weight

of a solid rod, given constant T and L. In (a) an unresolved monotonicity table is given. (b)
and (c) Describe two solutions (radius-constrained case and stress-constrained -case,

respectively) which balance the table,

implying a well-formulated and well-constrained

problem. Shaded areas signify inactive and irrelevant constraints

_ 9, active
r T 9, active | r 1 hy relevant| ' T
obj:weigh obj:weight obj:weight
nLg; * anr * anr *
| ] ] Y,
% "= hin 9 rZhin L ,4?2%%;2%%%2//1222 4522
el 1 0007 et
2T N T ol
w25 | B
unresolved table case 1: case 2:

radius constrained

(1)

(1b)

stress constrained

(1c)
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and inequality constraints is not known since the
monotonicity analysis has not been performed.

The introductory example problem is to minimize
the weight (zLpr*) of a solid, round bar of given
length (L), mass density (p), and torque (7). Two
inequality constraints (g, ,) place a lower bound on
the radius by ry;, and an upper bound on the shear
stress (7) by 7, (yield stress), respectively. Equality
constraint h; gives the relation between shear stress
and radius. Actually, an equality constraint can be
written as two inequality constraints, only one of
which can be active. Thus constraint %, could be
written as TtZQT)/(nr’) and T=(Q2T)/(nrd).
Utilizing our heuristic, constraint g, may be active to
balance the objective function (Table 1(b)). The table
would be properly bounded at this point with
constraints g, and h; eliminated. An alternative
solution can be found by setting g, active, eliminating
g1, and using h, to again balance the table by using
the equivalent inequality to the constraint where
1= (2T)/(ar*) (Table 1(c)). Thus there are two
possible solutions to this problem, one in which the
radius is set at its minimum value and the other where
the radius is determined by the shear stress constraint.
Both solutions are constraint-bound. Further details
of the execution of the analysis can be found in
Michelena and Agogino (1988).

4.4 MATHEMA;I‘ICAL REASONING

Monotonicity analysis can give the candidate cases
of well-constrained solutions to an optimization
problem. An intelligent design tool should prune
these cases to bounded and feasible solutions. As
constraints cannot be met, decisions must be made to
modify the design from a higher level of reasoning. As
modifications in problem formulation take place,
paths of the design space which have already been
scarched should be ignored. One approach to
modifying designs is derived from the mathematical
quantities which formulate the initial problem.

In particular, the integral appears in numerous
fundamental equations of structural mechanics. A
continuous integral can be split into continuous
integrals on smaller intervals

fa:lf(x)dx=J:f(X)dx+f1f(x)dx, etc., (1)

where ay=<b <aq,.

Often, in structural engineering, material properties
and geometry are constant within a region and an
integral is replaced with a summation

falf(x) dx = gnlf(x,-) Ax, n=1,23,... (2)

apply monotonicity
start analysis and symbolic
computation to each
region; perform
numerical analysis,
A if necessary
[

heuristic search

identify and
break apart
critical integral

progress
made and
below iteration
limit
?

satisfactory
design
?

solution
found

Ficure 5. 1stPRINCE’s method to discover innovative
designs by integrating heuristic and first principle reasoning

By breaking an integral into a summation, a region
is broken into separate and distinct regions with
homogeneous properties within a region, but not
across regions. (Continuity must be considered at
region boundaries.) Since a continuous integral is a
summation over infinitely small divisions, it follows
that small but discrete regions can. be used to
represent the integral formulation in mechanical
structures problems. Finite element methods use fine
meshes to numerically approximate the integral for
structural analysis. Our design approach is to first
search for strong qualitative trends symbolically using
a minimal number of regions before resorting to
numerical computation (Figure 5).

4.5 INTEGRAL DIVISION ALGORITHM

1. Initially break the integral into one region
assuming the properties of the region are constant
throughout (i.e., assume constant mass density, shear
modulus of elasticity, etc. in the region).

2. Utilize monotonicity analysis on the n-region
formulated problem (on first pass n = 1) to attempt to
find possible optimal solutions. If all constraints are
met a solution to the problem has been found.

3. If constraints are not all met, divide each region
into two separate regions (e.g., the one-region space
is divided into two regions).

4. Go to Step 2 and continue until a desired design
or the iteration limit is reached.
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After the first division there will be two regions,
then four, eight, etc. As the problem grows in space,
as long as progress is made, the amount of time it
takes to analyze the possible solutions grows
combinatorially. Thus it is important to limit the
number of iterations to a reasonable number and to
keep histories of each analysis so that previous
analyses are not repeated. The approach of starting
with few regions and breaking each sub-region apart is
efficient; if a search directs the region to zero mass
then all future iterations can ignore that region. Thus
after the second iteration if one of the regions is found
to go to zero then the next iteration will find only two
and not four regions to analyze. In addition most
physical structures are designed to be as simple as
possible in order to reduce manufacturing, main-
tenance and analysis costs; thus fewer regions instead
of many regions may be preferred in a good design.
Lastly, only a few regions may be all that is necessary
to show qualitative trends toward the directions of
improvement for the human designer interacting with
the system. It is for these reasons that regions are
divided into two rather than more regions at each
stage.

4.5 CONSTITUTIVE RELATIONS

Constitutive relations imply that certain physical
assumptions must be met in order to make a design
valid. In addition to constraints on upper and lower
bounds of variables, these constitutive relations add
important constraints to the problem formulation.

Additional interrelationships that must be con-
sidered are those between material properties.
Material properties are not independent. This is
represented by the influence diagram (Rege and
Agogino, 1988) in Figure 6(a). A node with an arrow
leaving it states that the node contains information
which influences the node to which the arrow leads. If

(a) (®)

Figure 6. Influence diagram of the relationship between
variables. In (a) shear modulus influences mass density and
yield stress. In (b) a given material defines values of all
material properties
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G

Ficure 7. Qualitative plot of shear stress and mass density
vs. shear modulus for various materials. Note monotonically
increasing trend

an arrow joins two nodes, this implies that the two
nodes are not (probabilistically or deterministically)
independent. The diagram in Figure 6(a) states that
the elastic shear modulus, G, influences material
density, p, and yield stress, 7,. Of course, this
diagram could have been stated in reverse (i.e., p
influences G and 7,). If, however, a specific material
is given, then specific material properties result,
within statistical variations (Figure 6(b)).

Referring to Figure 6(a) again, a general theoretical
influence between all material properties (specifically
shear modulus versus material density and yield
stress) cannot be derived for all materials (although
some relationships can be determined like that of
shear modulus, Poisson’s ratio, and Young’s mod-
ulus). However, a plot of G vs p or 7, for arbitrary
materials (Figure 7) demonstrates a monotonic
positive trend; overall, as G increases so do p and T,.
This implies that there is no known ideal material with
infinite rigidity, zero mass density, and infinite yield
stress. Within the bounded area of Figure 7 a local
trend can occur which has negative or non-changing
monotonicity, but for this application of monotonicity
analysis the global trend is utilized as a positive
overall monotonicity. Thus the equality constraints

p=K,(G*) and 7t,=K,G") 3)

(p and 7, are monotonically increasing functions of G)
are employed to represent this relationship. Thus
material properties are considered as variables in this
theory; beside determining geometry, the method
determines material property requirements.

As mentioned, constitutive relations also lead to
inequality -constraints. which help bound the design
space. For example, practical material properties must
have values greater than or equal to zero (in theory,
Poisson’s ratio could be negative). An additional
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constitutive relation would state that the beam must
have positive volume; it cannot be massless.

In addition to constitutive relations, fundamental
engineering assumptions need to be considered, such
as boundary conditions. An example of an assumed
boundary condition gives zero slope and deflection at
the clamped end of a beam.

4.6 FUNCTIONAL RELATIONSHIPS
(BACKSUBSTITUTION USING COMPUTER
ALGEBRA)

A qualitative analysis of the design problem is
completed utilizing monotonicity analysis. Certain
valid, unique solution domains occur via active
constraints. Much important information can be found
from the relationships of the variables within those
active constraints. A functional analysis can then be
performed on each of the cases by backsubstituting
the known, active information into the objective
function. When an inequality constraint is deemed
active, that constraint is at its bound and the values of
the variables are known to equal the bounded values.
The constraint can then be assumed to be a relevant
equality constraint within the given solution.

Referring again to the introductory example of
Table 1 (the simplified problem of a round beam
under torsion), both solutions lead to final relative
weight equations after backsubstitution. In Table
1(b), the constraint on the outside radius is active and
backsubstitution leads to an equation of weight as

W = nLprZ,,. 4)

Table 1(c) requires the shear stress to be at yield for
a solution of
2T )2/3

W=uxmaLp (—
T

©)

Y
As active constraints are backsubstituted into the
objective function, hidden monotonicities can be
revealed (Agogino and Almgren, 1987b). Before
backsubstitution this problem appears to be well-
formulated and well-bounded. As the substitution
takes place, certain variables can cancel out of the
problem and hidden monotonicities may become
apparent, requiring additional constraints to become
active to satisfy the rules of monotonicity once again.
It is necessary to recheck monotonicities during
backsubstitution and add new constraints to the active
list as required to satisfy the rules of monotonicity
analysis. For a well-bounded problem if all constraints
are backsubstituted into the objective function, then
the objective function must be either non-monotonic

or constant. All active constraints must be used during
backsubstitution since each constraint contains impor-
tant information about the optimal solution.

After the above process takes place, the objective
function contains powerful information about the
optimal solution. Regions which benefit most from
certain ranges of variable values can be determined. If
one variable is raised to a higher power than a
different one, the objective function will benefit more
by varying that parameter in the optimizing direction.
Specific examples will be demonstrated in the next
section as 1stPRINCE is applied to the ‘Torsional
Beam’ problem.

5. Solution to torsional beam problem

5.1 THE FIRST PASS

In this section the 1stPRINCE methodology
described in the previous section is applied to the
design problem of a beam resisting a torsional load.
Elementary equations of the deformation and weight
of a beam under torsion are:

G
== (shear stress),
L
TL
p=——— (angle of rotation), 6)
f r’G dA

W=ffp dA dz (weight),

where G is the shear modulus, p is the mass density,
A is the cross-sectional area, L is the beam length (of
differential dz), T is the applied torque, and r is the
radius (employing polar coordinates).

An assumption that there is no variation in
variables along the length of the beam is now made
in order to reduce the complexity of the presentation.
Initially a solid, circular shaft (A = nr%) is employed.
This is the initial choice of the designer in the previous
discussion of this problem and would be a good
selection by an expert system from a library of basic
beams. Equations (6) can be reduced (with the first
reduction due to length and the second due to area) to

. G(pr_ Gor,
L L’
2TL

oo TL

- - 4

rl . G

f 203G dr 1
(1]

W= f 2mpLr dr = mpLr3.
0

Q)
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Figure 8. Circular, solid beam which is clamped at one
end and undergoing a torque at the free end

The reduced formula for shear stress represents its
maximum value within the region. In reference to the
proposition about dividing the integral into sub-regions,
this is the first pass where there is only one unit having
constant material properties. The beam now appears
as in Figure 8.

This design problem can be formulated as an
optimization problem where the weight is minimized
subject to various constraints. Equality constraints
evolve from constitutive relations and fundamental
relations as found in equations (7). Inequality
constraints require that the variables be bounded and
evolve from constitutive relations and realistic design
considerations. Two important constraints require that
the stress be below the yield limit (modified by a
factor of safety) and the weight be below some
maximum value. The problem will exclude the weight
constraint for initial analysis and any derived solution

.will then be checked to verify that the constraint is

met.

Keeping L and T constant the optimization problem
is summarized in the unresolved monotonicity tabular
form in Table 2. Two physically reasonable solutions

TasLE 2. Unresolved monotonicity table representing the objective function
and constraints for a beam under torsion during the first iteration

O T p G r1 (0] Ty T
objective: wp L r12 + +
constraints:
g1 T < ’ty + -
92 P >0 -
9, G =20 -
94 r1 >0 -
g5 ¢ = ¢max *
96 Ty20 -
g7 Tszin -
h1 T = G_(EFL 2 ? ? ?
h2 =E2—GT#_ ? ? ? ?
h3 p = K1(G) ? ?
h, TS K@ ? ?
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can be found in Tables 3 and 4. Inactive or irrelevant
constraints are shaded in the tables. Case 1 (Table 3)
requires constraints g;, g, and g; to be active and
hy, h, and h, to be relevant. The stress must be at
yield and the density at zero. There is no material
with zero density, however this statement implies that
the optimum practical solution occurs with as small a
density as possible; substitution of p=0 into the
objective gives W =0. Of course this solution
obviously will not meet the inactive constraints, but
the methodology allows a computer to determine this
information and continue to more interesting cases.
Case 2 (Table 4) is a more realistic situation in
which constraints g,, g7, h,, h,, hs and h, are active
and relevant, implying that the stress be at yield and
the relationship between density and shear modulus
be relevant; shear modulus is constraining density

TaBLE 3.

Ol e
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from going to a bound and visa versa. Also the total
torque which the design can resist is the applied
torque.

Now active inequality and relevant equality
constraints can be backsubstituted into the objective

function as previously discussed. Utilizing the
following six equations:
T=T1,
Gon
=
2TL
P=2Gr ®
T= T,
p=Ky(G),
7, = Kx(G),

Case 1: Mass density approaches zero

G r 0] T T

Case 1 1 y

objective: mp L r12 +

constraints:

g1 T g T y + -
Pzo

T

_

\‘

;///////%/%/4

NN

\
N

000

2,// 0

9 min

1 S G<PrI
= L

+
+
+

> 2TL
¢z nGrZ

N

/////)%7/

h, T, <K@

- +
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TaBLE 4. Case 2: Constraint h,; keeps density from approaching zero

Case 2

objective: wp L r12 +

" constraints:

< +

A0

2]

7

%

V

)

N

o
i

Y
VVA
7

*Q

%

VVZ%
A////%%
7

e
%%%%%@%

.
NN
DA

7

2T
min
Qr
h_1 tz_G__H_ + + +
2TL
h2 (P;W - _ _ +
h3 P2 K1(G) — +
h <
sy =0 ¥

the objective can be found to be

2T 2/3
W= L( mm) ,
Lo\, ®
or
2Tmin 2/3
W—nLKl(G)(nKZ( G)) . (10)

The weight is now a function of density and yield
stress, but more specifically only a function of shear
modulus (i.e., a given material) for a given length and
applied torque. As expected, finding a material with
low density and high yield stress will give an optimally
behaved design.

The beam dimensions are also determined via

backsubstitution and the outside radius as a function
of material and torque becomes

2Tmin 1/3 27 . 1/3
n= ( 7T, ) - (nKz(G)> ’
The size of the beam for minimum weight is now a

function of the chosen material and applied torque
only.

)

5.2 THE SECOND PASS

If, given the beam dimensions and material
properties, the weight is calculated and found to
exceed the weight constraint or no material properties
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_
IN
N

& )-

Ficure 9. Division of single region into two separate and
distinct regions from the second iteration

can satisfy the constraint-bound case, the second
iteration should take place to modify the original
design. Even if all constraints are met this second
iteration may be desired to allow the designer
opportunities to create a more elegant design. The
original objective function,

r)

W =2xL f prdr, (7¢)

0

appears in integral form. On second pass, the integral

in the objective is divided into two regions, the first
from 0 to r;, the second from 7, to r,:

2an prdr= 27rLf pirdr+ 2]17Lf pordr. (12)
0 0 n

This division is represented in Figure 9. The actual
value of r, in terms of r,, is undetermined and will be
found on the basis of functional information. There
now exist two separate regions, each of distinct
material properties and fundamental relationships.
The new problem is formulated in Table 5. The

TABLE 5.
iteration

Objective function and constraints for second

Objective: W; + W,

Equality constraints Inequality constraints

hy W, = wLp,r% 81 T=T1,
h, Wy = mLp,(ri—r3) 82 =Ty,
hy P1=@2 83 P =0
hy = QTLL)/[xG,r}] 8a p.=0
hs @2 = QLLY/[2Gy(r; — r})] 8s G,=0
he T, =Gpn/L 8s G, =0
h; 1, = G@,r/L g8 W=0
hyg p1=K(Gy) 8s W,=0
ho p2=K(Gy) 89 n>0
hyo T = KH(Gy) 10 >0
hi Ty = Ky(Gy) 8n H=r+ lhin
g12 r = rmax

g13 7-:l + 7‘2 = Tmin
814 P2= QPuax
81is Tu=0

816 T2=0
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-objective function becomes the minimization of the

addition of the weights of the two regions. Each
variable now needs to be bounded. Geometric
considerations require that the outside radius be
greater than the inside radius by some minimum
thickness, f;, (constraint g,,), and the total shaft
must resist at least the applied torque, T, (constraint
813)-

One additional requirement is that of continuity
across the boundary between the two regions
(constraint %s;). The assumption made that the two
angles be equivalent implies that the bond is perfectly
rigid, an assumption often made in linear beam
theory. An analogous situation is the assumption of a
beam clamped into a wall where the slope of the beam
at the wall is assumed to be zero. Here one region can
be thought of as clamped to the other and thus the
angles must be equivalent. This type of fundamental
engineering assumption must be included within the
knowledge base.

This new problem can again be modelled in a
monotonicity table. Since the use of a monotonicity
table is only to allow the user to observe the analysis,
certain constraints which will be unconditionally
inactive can be deleted. Since the weights, densities,
and yield stresses are all dependent on shear moduli,
only the constraints requiring G;=0 (gsc) are
necessary while positivity conditions g 47 5 15,16 Will be
ignored (a default assumption that must be verified by
the final solution). In addition, g4, will be ignored
since the case where the inside radius approaches zero
reduces the problem to that of the first iteration and
that of the outside radius approaching zero implies a
beam of zero mass which has already been eliminated.
This reduced, but unresolved, monotonicity table is
shown in Table 6.

Further observations can be made from the table
using the first rule of monotonicity. Since the
objective function is relevant, either the weights
themselves (actually the shear moduli) must approach
zero (constraints gs ¢, but not both of them!) or the
weight equations must be relevant (h,,). If the
weights don’t go to zero then the equality constraint
for angular deflection (k;) must be relevant and one
or both of the maximum stresses in a region must be
at yield (g, ). The outside material cannot vanish or
the problem would again reduce to the first iteration
case (g is unconditionally inactive). Angle definitions
(h4s) must always be relevant and balance the
unconditionally active torque constraint (gi3).
Therefore the optimal solution will always design for
the applied torque. Through observations such as
these, the search space is being pruned to ignore
redundant cases.
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TaBLe 6. Unresolved monotonicity table for relevant constraints for second

iteration

@W1 Wz T4l T2 P

obj: W1 + W2 + |+

h _ 2 ?
1 W1-1:LP1"1 ? ?

5 2
2 Wy=xlh(, -1y)

3 1. 2

h
h ¢=9¢
h

4
Yy %= @T,LG ")

~ T3
97 TG fr - )]

= ?
6 1:1 (G1q>1r1)/L ?

h

h7 12=(qu72r2)/L ?
hg Py =K (G) ?
h

9 Py =K,(Gy)

h
10 Ty =K6)
h < =K2(Gz)

Implied from the above discussion, only two unique
physically valid structural solutions to the optimization
problem exist: the first (Table 7) is the solution of the
hollow tube and the second, a composite rod (Table
8).

5.3 CASE 1: HOLLOW TUBE

Table 7 shows g5 active, letting G; =0. Constraint
hg active gives p; =0, and g, is inactive. Thus there is
no stiffness or mass in region 1 and no requirements
on the stress, implying no material in that region. The
tube is thus hollow. The optimal design further
requires that the stress at the outside radius of region
2 be at yield (g,) and the torque at the applied level
(g13) as previously discussed. This information is
backsubstituted into the objective. Hidden monotoni-
cities are discovered and additional constraints must
be made active in order to place a lower bound on r,.

Two possibilities exist. Constraint g; could be active,
stating that the outside thickness is at some minimum
and the outside radius can be as large as necessary;
otherwise the design becomes constrained by buckling
and requires an additional constraint (Timoshenko
and Gere, 1961)

232 1/5
rz_r12{9(1 V) } {

47*(1 + v)?

T2
G*(r, + )

where v is Poisson’s ratio which exhibits little
variation between materials and is not considered as a
variable in the optimization problem, and N is a factor
of safety. This equation follows thin shell assumptions
((r + n)/(r,—nr,)=20). The buckling constraint is
necessary when considering hollow tubes and is a
constraint which must be added when required.
Equation (13) leads to complicated symbolic equa-
tions and if this constraint is active the solution would
best be solved numerically. Since buckling was not

}I/SN, (13)
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TasLe 7. Hollow tube case. Constraint g,, is active to bring , = r, + £,,;,

Hollow @ W1 W2 11 12 P1

r r T T
o GG 1| 2% P2 T % |2
obj: W1 + W2 + |+
h1 W1Z1|:LF’1 f12 - + +
h2 w2 nL%(r:-ri) + +
<
h3 °=% ’
h, 92 (] L)/[nG1r14] +
hg 9,2 (] LG, iy - 7)) + . .

%4%%%7%@%@@

NN 0 000000,

h 2
7 1:2 (Gchzrz)/L

h, p.2

g "1° K1(G1)

hg »,2 K,(G,)

" G

Z
h11 ryzs K2(Gz) . R
WAL UL UYL LAY UULL LY
92 125 Ty2 .
95 G 20 .
W AT L UL UL U U LU U AU,
911 rZZ N+ i +

WEZ AU G U UL U LU LU U UYL,

N

913 T1 +T2T

%%%%%%%%%@%

N

CLAGLL UL Y

considered in the original formulation of the second
iteration, it will not be considered further herein.

Utilizing gy;, backsubstitution into the objective
leads to a solution with r,=r; +¢,;,. The dimensions
and weights become, as functions of G,

=F —tmin,

r _{L_*_E}IB_"_ K - tx?nin | tmin
la8Va, 18] T { a_ K}m T2
™"48V3¢t,, 16

(14)

W = 'n'LKl(GZ)tmin

K 1/3 K t3
of iKY, m |
{48\/§tmin 16) { a_ 5_}1’3
™ 483t 16

where

_ 2T'min
7K(G>) ’

and

_ {4t?nin — 12Ke8;, + 39K?62 . — 4K3}1’2

14 min

These equations reveal that small ¢, and high 7, are
desired to reduce the weight, leading to a large r,.
Thus the tube prefers to distribute its mass in a thin
ring far from the origin rather than a thicker ring
closer to the center. When designing a structure to
reduce stress and deformation under torsion, a large
moment of inertia is generally utilized and mass is
distributed at a distance far away from the principle
axis to which the load is applied. Equivalently, a thin
ring far away from the origin would give a larger
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TasLe 8. Composite rod case. Case a (constraints A4 o) has the inside stress at
yield. Case b (constraints k5, ;) has the outside stress at yield; constraint g,; becomes
_active when system contains a degeneracy. Case ¢ (constraints 4¢ 7,10,11) is a subcase
of case b and has both the inside and outside stresses at yield. Case c has lowest dof

Composite @ W, W2 LM RPN P1 92 G1-G2 r1 r2 <P1 ':|>2 'r1 Tg 1)’1 TYz :
obj: W1 + W2 + |+
hy w2 xLp 12 . + +
h2 %2 n Lg (r22 - r21) - + -+
h3 050, +
h4 92 (] L)/[nG1r14] +
hg 22 (] LGy - )] e ] - . +
h6 11Z(G1tp1r1)/L cases ac | - + + +
h7 T2 (G2q>2r2)/L cases[b,c . + + +
h8 z K,(G)) - +
hg v,2 K,(Gy) . .
h <

10 *yy S K2(G1) casesl a,c - +
h1 i 1)’2 <K (G2) cases: b,c - +
g 1. S IY1 cases: ac| +
g < casesI b,c

77877V 777, 7,

9 W %% %Y, 992972294 %%%
g AU U U AU U U UL LU U U
g o1 o+t case b when

11 221 * 'min degeperacy *

RPY LA U U U AU U LU UL U
9 T, +T T

1 3 min :

9 MW///% UHLLL LG RGL L LT LY

moment of inertia than more mass closer to the lightest design for a composite.

If the material

center. properties are such that the solution has a degeneracy
and approaches a limit, then an additional constraint

must be utilized. If constraint g,; is

utilized then the

5.4 CASE 2: COMPOSITE ROD solution represents that of the hollow tube with an
interior material; however, each numerical example

Table 8 describes a composite rod where both employed below violates the interior stress deeming
materials exist. Three possible solutions exist. One the solution infeasible. In this situation (case b with

(case a) has the inside stress at yield with no gy active), case c is the preferred so
constraint on the outside stress (g, active); this case is interior stress is also at its yield.

lution where the

degenerate. The second case (case b) has the outside Once again, the torque is at the applied level.
stress at yield but no constraint on the inside stress (g, During backsubstitution of these solutions, hidden
active). The final case (case c) has both stresses at monotonicities are found and the necessary constraint

their yield limit (g,, active). Case b is a that the angle of rotation between th
one-degree-of-freedom (dof) problem (considering equivalent (constraint hs) becomes

e two regions be
relevant in each

material properties as specified parameters) and is the case (buckling is no longer a concern).
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The interior solution of case b (outside stress at
yield) is found as follows where the solution must be
minimized with respect to parameter 7, for the
optimal solution:

{ GZ( Tmin - TZ) }1/4
= v,
! Gl T2 + GZ(Tmin - ]—'2) 2

2G, T3 + 2Gy(Toin — )|
rz:{ 142 2( 2)} , (15)
7GiT),
Go(Toin — T5) ]1/2 }
W=1xL(p,— [ +7Lpy 3.
{” 01—\ G Tt G-y | 7P

Case c, where both stresses are at yield, is found as
_ { 2G, Ggfil Tin }1/3
T (G, — Gitt + G Garhy))
_ { 2G175, Tnin }1’3
2T (G, — Gith + G Garhy) )
W= Q/G LT%.{(p1— p-)(G, Ggf;1)2/3 + Pz(G‘{Tiz)m} .
(Git32— G375 + G, G3t5,)™?
Since r, must be greater than r;, from constraints
hs, hg and A,

(16)

Giley, (17)

G, 71
This solution identifies the constraint activity of a
design of optimal behavior. Equation (17) implies that
materials must be chosen within both regions to satisfy
this inequality in order for the solution to be optimal.
This inequality stems from constraints g, and g, which
require both materials to be at yield.

Since case b with constraint g, active leads to
infeasible solutions in this discussion, the solution is
not included. Equations (15), (16) and (17) are in
terms of shear moduli, material density, and yield
stress. Yield stress and density are actually a function
of shear moduli, but for this discussion of the
equations, more information can be understood by
talking about each property independently.

5.5 COMPARISON OF SOLUTIONS

Equations (10), (11), (14) and (15) and (16), give
solutions for the solid, hollow, and composite rods. If
the solid solution cannot meet constraints (or a
different design is desired) the second pass leads to
the hollow and composite solutions. Are these new
solutions better and how do they compare to each
other? This discussion utilizes four different materials
[aluminum, steel, brass, and wood (considered
isotropic), Table 9] in order to demonstrate this

TaBLE 9. Material properties of four different types of
materials for numerical examples (Beer and Johnston, 1981)

1. Aluminum (1100-H14): 3. Yellow brass (cold-rolled-

65% Cu, 35% Zn):

o =2710kg/m’ p = 8470 kg/m’
G =26 GPa G =39 GPa
7, =55MPa 7, =250 MPa

2. Structural steel (ASTM-A36): 4. Wood (generic, isotropic):
p =860 kg/m® p=430kg/m’
G =79 GPa G =4GPa
7, =145 MPa 7, =20 MPa

trade-off numerically. For the composite solution,
only the relationships caused by the problem
constraints are considered and not feasibility due to
manufacturing and bonding of the materials.

First, consider the hollow solution. As the thickness
increases to that of the solid radius (¢, = K'?), the
inside radius approaches zero implying that the
outside radius approaches the thickness. Thus as ¢,
increases, the solution approaches that of the solid
tube. To investigate whether the hollow tube is lighter
than the solid, we let t,,,= aK'?, where 0<a =<1
(i.e., the thickness is a fraction of the solid radius), in
equation (14c). Figure 10 shows a plot of weight as a
function of @. As « increases, so does the weight
increase monotonically to that of the solid rod. Thus,
the hollow rod solution is always lighter than the solid
solution for a given material. Note, however, that the
hollow rod has a larger outside radius than the solid
radius so space may become a limiting factor.

Observing the composite solution, as the two
materials approach the same values, the solution again
reduces to the solid solution. Table 10 contains the
numerical values of comparisons between each
combination of the four materials for a torque of
100 kN m. When the interior solution of equation (15)
is valid, that solution is optimal. Otherwise the

1.0

0.8 -

0.6 —

0.4 —

2
7tLpK/3

0.2 -

0.0 ,

T I T
00 02 04 06 0.8 1.0

a

Ficure 10. After substituting ¢, = «K" into the hollow
weight solution (equation 14c) plot of « vs. non-dimensional
W. W increases monotonically to the solution of the solid
rod as « approaches 1
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TasLE 10. Weight (kg/m) and outside radius (X102 m) of
composite tod combinations under applied torque of
100 kN m. “NO” signifies non-optimal combination. Diago-
nal elements represent the solid rod. The numbers 15 and 16
in the upper right corners of each square designate which
equation gave  the solution. Equation (15) is the 1-dof,
intertor solution of outside stress at yield, and equation (16)
is the constraint-bound solution of both stresses at yield

(with material properties as specified parameters)

Inside material

Weight

Aluminum Steel Brass Wood
Toutside
15 15
. 93.88 49.10
Aluminum 10.50 NO NO 1631
15 15 15
98.33 142.64 52.66
Steel o4 760 NO %6
Outside
material te 16 1 16
B 99.29 105.79 106.94 59.16
rass 6.35 6.33 6.34 7.25
15
29.24
Wood NO NO NO VR

solution of equation (16) is the valid solution given.
The column lists the material which occurs on the
outside, while the row lists the inside material. Each
location contains both the weight and outside radius
of the given combination. The location with one
material both inside and outside represents the solid
solution. The number in the upper right corner of each
square designates which of equations (15) and (16)
gives the valid solution utilized. The letters ‘NO’
represent the ‘Non-Optimal’ solution. In each
combination, one material is preferred outside the
other for the optimal solution. This combination is
determined by inequality equation (17). Even if the
optimal solution cannot exist, some solution can exist
but the solution desired from this method is only the
optimal one and the non-optimal one will not be
considered.

The stronger, heavier material occurs on the
outside. The interior solutions have a thin outside
layer and large outside radius. Generally, for a given
material, a composite with a lighter, weaker material
yields a lighter weight with a larger outside radius
than the heavier solid. A composite with a heavier,
stronger material yields a composite with a heavier
weight but not necessarily a smaller outside radius.

Figure 11 shows all three solutions for steel at a
torque of 100kNm. The solid lines represent the
weight of the hollow rod at various thicknesses
bounded by the solid solution while the dashed lines
represent the outside radius of the hollow tube for

150— solid W —20
: £
o‘, o
— hollow W —15 e
2100 x
£ : 2
.g . ,,._..--/hollow A 40 g
= e it
50— solid r ° @
2 ©
—5 E
3
[+
0 3 T R 0
0g -025 £.05 .075

aluminum

thickness (m)

Ficure 11. For a torque of 10° KN m on a steel shaft, the
solutions of hollow, composite, and solid weights and
outside radii are plotted. The solid line represents the
weight of the solid and hollow rods while the dashed line
represents the analogous outside radii. The curves stop at
the limit of the solid solution. The X’s represent the weights
of various composite solutions with the steel, and the O’s
represent the analogous outside radii. The thickness for the
composites is the difference between the outside radius and
the inside radius

various thicknesses bounded by the solid solution. The
solutions of the three composite combinations are also
given. The X’s represent the weight and the O’s
represent the outside radius of each composite
solution. The thickness represents the difference
between the outside and inside radii. The wood and
aluminum solutions occur at thicknesses similar to
those used for the hollow solutions. The weights of
these solutions are greater than those of the
equivalent hollow solution while the outside radii are
smaller. The brass solution is both lighter and smaller
than the equivalent hollow solution and the brass
occurs on the outside. Here the thickness is so large
that the weight of the extra brass utilized in the
composite is less than the extra steel which would be
utilized to compensate for the hollow solution. All
three composite solutions are lighter than the solid
steel solution, but only the brass has smaller radius
than the solid solution. Most importantly, note that all
of the second pass solutions are superior in the design
objective as compared to the first pass solutions.

6. Summary

Figure 12 summarizes the geometrical results of the
application of 1stPRINCE to the torsional beam
problem. The system initially knows only about a
solid, round shaft. By reasoning from fundamental
first principles it derives alternative design modifica-
tions and creates new primitive structures: hollow and
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Solid Rod

Hollow Tube Composite Tube
Ficure 12. Geometric summary of derived designs from
methodology. From knowledge only of a solid rod, hollow
and composite rods are derived

composite shafts. Given pre-compiled knowledge
from a human designer, a system such as PROMPT is
able to deduce the hollow tube case but stops there in
analysis. PROMPT is not able to derive a composite
rod because it does not consider the important
tradeoffs between the choice of different material
properties. 1stPRINCE presents both the hollow tube
and the composite rod. More importantly, this
methodology presents the functional distribution of
the parameters for an optimal solution to the problem
dependent only on given materials and given in
symbolic form if possible. 1stPRINCE makes
decisions based on optimality information; it elimin-
ates solutions which are sub-optimal. The designs
proposed by 1stPRINCE are most competitive
because they potentially best meet design constraints
and goals. In this example, only those designs which
meet optimality constraints are presented.

The solid tube has outside stress at yield. The
dimensions and weight as functions of shear modulus
are found in equations (10) and (11).

The hollow tube has outside material at its yield
stress and its dimensions and weight can be found as
functions of shear modulus in equation (14). The
hollow solution is lighter than the solid solution and
approaches the solid solution as the thickness
increases. Equation (13) should be utilized for the
case of buckling.

The composite rod has solutions with the outside
region at yield as found in equation (15). A subcase
has each region at yield in equation (16). (Substitute
constraints %, into equations (15) and (16) to allow
them to be a function only of shear modulus.) From
the result of equality constraints hs4,, inequality
equation (17) is derived to indicate what trade-off of
material properties is necessary to allow for the
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optimal solution. A numerical calculation comparing
the solutions demonstrates that the stronger, stiffer,
and heavier material occurs as the outside material.
As the two sets of materials approach the same
values, the solution approaches the solid solution.

The 1stPRINCE design theory incorporates the
SYMON-SYMFUNE (Choy and Agogino, 1986;
Agogino and Almgren, 1987a,b) approaches to
qualitative optimizaticn, both parts implemented at
the University of California at Berkeley in the
VAXIMA and Franz LISP languages. SYMON
performs a monotonicity analysis on a problem
formulated as an objective function with equality and
inequality constraints. SYMFUNE performs back-
substitution based on the SYMON output and
employs Lagrange multipliers to determine when a
solution is optimal. A program to reason about and
perform the division of integrals has been imple-
mented in Franz LISP by the first author. Presently a
human operator acts as the interface between the
different codes and prunes out unwanted designs
proposed by 1stPRINCE. However, we are presently
working to automate the link between the different
modules and to allow the system to act as the design
critic.

7. Future directions

As demonstrated by the process of dividing the
integral in the torsion problem, certain heuristics are
necessary to control design modifications. Although
our current work is solved in polar coordinates in one
dimension, our research goals are to extend the
theory to n-dimensions (e.g. double and triple
integrals) and alternative coordinate systems (e.g.
rectangular).

In addition, many designs are symmetric about one
or more axes and it may be desirable for new designs
to retain that symmetry. Symmetry also prunes the
design space considerably. If a design is symmetric
about two axes then only one of four quadrants in the
design need be analyzed, reducing the number of
potential solutions by a factor of four. A formal
analysis of the role of symmetry will be an important
consideration in further extensions of the integral
division methods.

The methodology presented in this paper is part of
a larger intelligent CAD system under development at
the University of California at Berkeley. When the
shallow reasoning of typical expert system technology
and numerical optimization fail to create a design that
satisfies all design constraints, first principle methods
such as those presented here can be used to give the
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CAD system the power of deeper reasoning when
required.

8. Conclusions

A method called 1stPRINCE is presented to perform
innovative design from first principles. A design
problem is formulated as an optimization problem in
symbolic form. Mathematical quantities such as the
integral are broken apart to modify the configuration
space and create new design primitives. Monotonicity
analysis discovers which constraints should be active
to determine globally optimal behavior. Powerful
insight into the functional relationship between
parameters follows from backsubstituting active
constraints . into the objective function. Decisions
made by 1stPRINCE are optimally directed and lead
to physically meaningful designs.

In the mechanical structures domain, knowledge of
the fundamental equations of deformation, constitu-
tive relations, and fundamental engineering assump-
tions is necessary. Application of this method to a
beam under a torsion load leads directly to solutions
of a hollow tube and a composite rod from knowledge
only of a solid rod and with no pre-compiled
knowledge by a human on the mechanical behavior of
structures. Each iteration leads to designs which are
superior in the design goal (weight) than its
predecessor. In addition, these structures exhibit
optimal behavior and have dimensions in terms of the
problem parameters and material properties. Pre-
ferred properties for designing materials for the
composite solution are determined from the same
optimal solution.
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