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Abstract. This paper considers embeddings f of arbitrary finite metrics into the
line metric� so that none of the distances is shrunk by the embedding f ; the quantity
of interest is the factor by which the average distance in the metric is stretched. We
call this quantity the average distortion of the non-contracting map f .

We prove that finding the best embedding of even a tree metric into a line metric
to minimize the average distortion is NP-hard, and hence focus on approximating
the average distortion of the best possible embedding for the given input metric.
We give a constant-factor approximation for the problem of embedding general
metrics into the line metric. For the case of n-point tree metrics, we provide a quasi-
polynomial time approximation scheme which outputs an embedding with distortion
at most (1 + ε) times the optimum in time nO(log n/ε2). Finally, when the average
distortion is measured only over the endpoints of the edges of an input tree metric,
we show how to exploit the structure of tree metrics to give an exact solution in
polynomial time.

1. Introduction

Metric embeddings have recently attracted much attention in theoretical computer sci-
ence because of their many algorithmic applications. These range from simplifying the
structure of the input data for problems in approximation algorithms and online compu-
tation [4], [7], [8], [16], [19], [25], serving as well-roundable relaxations of important
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NP-hard problems [6], [10], [11], [13], [18], [28] or simply by being the object of study
arising from applications such as computational biology [1], [17]. Embedding techniques
have become an indispensable addition to the algorithms toolbox, providing powerful
and elegant solutions to many algorithmic problems (see, e.g., [30, Chapter 15] and [22]
for surveys).

An embedding of a metric (V, d) into a “simpler” host metric (H, δ) is a map
f : V → H . Informally, the embedding is “good” if the distance d(u, v) between any
two points u, v in (V, d) is close to the distance δ( f (u), f (v)) between their images
in (H, δ). To make this formal, we call an embedding non-contracting if the map does
not decrease any distances, i.e., d(x, y) ≤ δ( f (x), f (y)) for all x, y ∈ V . We always
deal with maps that are one–one, and hence abbreviate δ( f (x), f (y)) to δ(x, y) if there
is no danger of confusion. Unless explicitly specified, this paper only deals with non-
contracting embeddings.

A popular measure of goodness of a non-contracting embedding f is the distortion
α = α( f ), which is defined as

distortion α = max
x,y∈V

δ(x, y)

d(x, y)
. (1)

In this paper we instead consider a related measure: that of average distortion, which is
defined as

average distortion ρ( f ) =
∑

x,y∈V δ(x, y)∑
x,y∈V d(x, y)

. (2)

Note that this is the factor by which the average distortion of the metric is changed by
the map f ; this is the object of attention in this paper.

Apart from considering the average distortion as a measure of goodness of the
embedding, this paper differs from many previous papers in another important aspect:
we do not want to give worst-case uniform bounds to embed classes of metrics into
host spaces, but instead want to approximate the best embedding for the particular
input metric. This is best shown by a concrete example: in [29], Matoušek showed that
any metric space (V, d) can be embedded into the real line with distortion O(|V |);
furthermore, the result is existentially tight, as the n-cycle cannot be embedded into the
line with distortion o(|V |) (see, e.g., [32] and [21]). However, no algorithm is known
which offers per-instance guarantees; hence, while it may be possible to embed (V, d)
into�with distortionα = O(1), there is no algorithm known which gives us embeddings
with distortion, say, that is even within O(|V |1−ε) times ρ.

Hence, in contrast to analyses of most embedding techniques and algorithms known
which only offer uniform bounds on the distortion of the embeddings, we try to approx-
imate the (average) distortion of the embedding for the given input metric to better than
these uniform bounds. Very few such results are known; one notable exception is the
remark of [28] that the optimal embedding of any finite metric into (unbounded dimen-
sional) Euclidean spaces to minimize the distortion can be computed as a solution to a
semidefinite program. Kenyon et al. [23] recently gave an approximation algorithm for
minimizing distortion of bijections between point sets in the line.
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1.1. Our Results

In this paper we consider non-contracting embeddings f into the line�, and give results
on approximating the average distortion incurred by such embeddings. Note that for an
optimal embedding into � to be non-contracting, it is necessary and sufficient for the
distance | f (u) − f (v)| between an adjacent pair of vertices u, v on the line to be the
same as their distance d(x, y) in the input metric (V, d). Hence we restrict ourselves to
only such embeddings. We can think of such an embedding into the line as defining a
tour on the nodes of the original metric, where we start from the leftmost vertex on the
line and visit the vertices in order from left to right.

Our results build on this simple observation, and demonstrate a close relationship
between minimizing average distortion and the related problems of finding short TSP
tours [26], minimum latency tours [9], [20], [3], and optimal k-repairmen solutions [15].
In particular, we prove the following results:

1. Hardness for average distortion: In Section 2.1 we prove that the problem
of finding the minimum average distortion non-contracting embedding of finite
metrics into the line is NP-hard, even when the input metric is a tree metric. The
proof proceeds via a reduction from the Minimum Latency Problem on trees [35].

2. Constant-factor approximations: In Section 2.2 we give an algorithm that
embeds any metric (V, d) into the line with average distortion that is within a
constant of the minimum possible over all non-contracting embeddings. In fact,
we prove a slightly more general bound on non-contracting embeddings into
k-spiders (i.e., homeomorphs of stars with k leaves). This result uses a lower
bound on the minimum average distortion of a non-contracting embedding into
a k-spider in terms of the minimum k-repairmen tour [15] on the metric.

3. QPTAS on trees: For tree metrics on n nodes, we give an algorithm for finding
a (1+ ε)-approximation to the minimum average distortion non-contracting em-
bedding into a line in nO(log n/ε2) time. Our algorithm, which appears in Section 3,
uses a lower bound on the minimum average distortion related to the TSP tour
length and latencies of appropriately chosen segments of an optimal tour. In this
way it extends the ideas of Arora and Karakostas [5] for minimizing latency
on trees to the more general time-dependent TSPs [9], and provides a quasi-
polynomial time approximation scheme (QPTAS) for the latter problem as well.

4. Poly-time algorithm for tree-edge distortion: For a tree metric as input, if the
minimum average distortion is measured only over the endpoints of the edges of
the tree (we call this objective the average tree-edge distortion), then we show that
an embedding following a certain Euler tour of the tree is optimal. In Section 4
we show how to find this tour in polynomial time by dynamic programming.

Remark 1.1. It is important to note that while any non-contracting embedding can be
converted to a non-expanding embedding with the same average distortion by scaling
down all the distances, the converse is not true. Indeed, a non-expanding embedding f
might not be one-one, and may map two points in the guest metric to the same point
in the host metric. This is a crucial difference between the two problems, and hence
our result does not give a constant-factor approximation for the average distortion of
non-expanding embeddings into the line �.
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1.2. Related Work

The definition of average distortion is not new; e.g., Alon et al. [2] study the question of
embedding a metric into a tree with low average distortion. In recent work on average
distortion that is closer to ours, Rabinovich [31] proves bounds on average distortion
of non-expanding embeddings into a line and shows the close connection between this
and the max-flow min-cut ratio for concurrent multicommodity flow with applications
to finding quotient cuts in graphs [27].

While our problem appears similar to that of finding the Minimum Linear Ar-
rangement (MLA), for which Rao and Richa [33] gave an O(log n) approximation us-
ing the notion of spreading metrics, it is subtly different: the MLA problem involves
minimizing the average stretch of the edges

∑
{u,v}∈E |π(u) − π(v)| under all maps

π : V → [n], whereas the mappings in our problem are f : V → �, and must ensure
that | f (u)− f (v)| ≥ d(u, v) ∀{u, v} ∈ V × V .

The problem of finding Minimum Latency tours (a.k.a. the Traveling Repairman
problem) is relevant to our discussion in terms of techniques used. In this problem, one
is given a metric space (V, d) and a root depot r ∈ V ; a repairman starting at r has to
visit all |V | = n customers, one at each node of the metric. The goal is to minimize
the average waiting time of the customers, where the waiting time (or latency) of a
customer is the sum of the distances of all edges traversed by the repairman before
visiting this customer. There are extensions of this problem to the k-repairman case,
where k repairmen start off at r , and the latency of a customer is now the time at which
any one of the repairman visits this customer. The version with only one repairman is
known to be NP-hard even on a tree [35], and is MAX-SNP hard in general [9]. The
first constant-factor approximation for this problem was given by Blum et al. [9]; the
approximation factor was improved by Goemans and Kleinberg [20] to 7.18, and most
recently by Chaudhuri et al. [14] to 3.59. For the special cases of the latency problem
on trees, Arora and Karakostas [5] gave a QPTAS; similar results were given for the
case when the points lie in �d for fixed dimension d. The k-repairmen version of the
problem was studied by Fakcharoenphol et al. [15] who show a 16.994-approximation
for arbitrary k; this was improved to 8.49 in [14].

Finally, a problem that combines both the cost of a tour as well as its latency into
one objective function is that of finding time dependent TSP tours; the paper by Blum
et al. [9] gives a constant factor approximation algorithm for this problem.

2. Embedding Arbitrary Metrics into the Line

In this section we show that we can approximate the average distortion into a line for a
given metric to within a constant; to this end, we show that the problem is closely related
to that of finding the minimum latency tours and its generalizations in a finite metric
space.

2.1. Hardness of Embeddings

Theorem 2.1. It is NP-hard to find a non-contracting embedding of a given metric
induced by a tree into a line that minimizes the average distortion.
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Fig. 1. Hardness construction.

Proof. We show how to reduce the problem of finding minimum latency tour on trees
to our problem. The minimum latency problem on trees (tree-MLP) was shown to be
NP-hard by Sitters [35] even when the edge lengths are in {0, 1}.

Given an instance of tree-MLP, our reduction will define an instance of the average
distortion problem on a tree where the vertices have integer weights and the edges have
lengths, and we generalize the definition of average distortion to be

ρw( f ) =
∑

x,y∈V wxwyδ(x, y)∑
x,y∈V wxwyd(x, y)

. (3)

As long as the weights are only polynomially bounded, we can convert such an
instance to one with unit vertex-weights by the simple expedient of replacing any vertex
with weightw by a set ofw vertices at distance zero from one another. We also note that
minimizing the average distortion is equivalent to minimizing the total distance in the
embedding, and hence we show the hardness of minimizing the total distance.

Given a tree T rooted at r as an instance of a tree-MLP problem with edge lengths
in {0, 1}, we construct an instance of the average distortion problem (see Figure 1). We
introduce a new vertex s and connect it to the root r . We assign weight 7n3 to s and n4 to
r . Let the distance between r and s be dr,s = 2n2. The rest of the vertices have weight 1.

Claim 2.2. In the optimal embedding, r and s are adjacent to each other.

Proof. Consider any embedding in which r and s are not adjacent to each other. There-
fore, the distance between r and s is at least d(r, s)+ 1 in such an embedding. The total
distance in this embedding is at least wrws · (d(r, s)+ 1) = 14n9 + 7n7.

On the other hand, consider any embedding in which r and s are adjacent to each
other and the pairwise distance between adjacent pairs is same as that in the guest tree
metric. We now compute an upper bound on the total distance in such an embedding.
The contribution due to the pair (r, s) is wrws · d(r, s) = 14n9. The contribution due to
the pairs of the form (r, vi ) or (s, vi ) is at most (wr + ws) · (2d(r, s) + n2) · n ≤ 6n7,
since the distance between any two points in the embedding is at most 2d(r, s) + n2.
Finally, the contribution from the pairs (vi , vj ) is at most n2 · (2d(r, s) + n2) ≤ 5n4.
Thus the total contribution is at most 12n8 + 6n7 + 5n4.

Therefore, any embedding in which r and s are adjacent is better than any embedding
in which they are not. Therefore, in any optimal embedding, r and s have to be adjacent
to each other.
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Claim 2.3. In any optimal embedding, no vertex vi and the vertex s are on the same
side of r .

Proof. Suppose that the vertex vi and s are on the same side of r . From the previous
claim it follows that s must be between vi and r . Therefore the pair (vi , r) contribute
at least wr d(r, s) to the total distance. Now we construct an alternative embedding the
current one. We keep the order of all the vertices except vi the same. We embed vi on
the opposite side of r at the end. In this process only the contributions from the pairs
(vi , vj ) for all j and (vj , s) go up, while the contribution from the pair (vi , r) goes down.
Note that, in the new embedding, the contribution of the pairs (vi , vj ) can be at most
(2d(r, s) + n2) · n and the contribution of the pair (vi , s) is at most ws(2d(r, s) + n2).
The contribution due to the pair (vi , vr ) goes down by at least wr · d(r, s) − wr · n2.
Adding up the changes in contributions, we get that the new embedding has a smaller
total distance.

Therefore in any optimal embedding, the vertices vi and s cannot be on the same
side of r .

In order to finish the proof of the theorem, we now show that the ordering of the
vertices in an optimal tree-MLP tour is r, v1, v2, . . . , vn if and only if s, r, v1, v2, . . . , vn

is the ordering of the vertices in the embedding that minimizes the average distortion.
Let s, r, π(1), π(2), . . . , π(n) be the ordering of the vertices in an embedding. Let L(π)
denote the total latency of the ordering given by r, π(1), . . . , π(n). Let Av(π) denote
the sum of the distances in the embedding consisting of π(1), . . . , π(n) in that order.

Then the total distance in the embedding is

ws · wr + ws · n + (ws + wr ) · L(π)+ Av(π).

Note that Av(π) is bounded above by n4 since we sum the distances over
(n

2

)
pairs

and the maximum distance between any pair {vi , vj } in the embedding is at most n2.
Thus, Av(π) is smaller than (wr + ws).

Note that the difference between optimal value of L(π) and that in any other solution
is at least 1, while it’s multiplying factor (wr + ws) dominates Av(π). Hence, in order
to minimize the total distance, we have to minimize L(π). This is exactly the tree-MLP
problem. Hence, the problem of minimizing the average distortion is NP-hard.

2.2. A Constant-Factor Approximation Algorithm

In order to make the exposition of our approximation algorithm simple, we first show
a simple 2-approximation for embedding a given metric into trees. Then we consider
embeddings into k-spiders and show how a similar technique works for them (a k-
spider is a tree with all vertices except the center having degrees 1 or 2, and hence
is a homeomorph of the star with k leaves). In particular, we show how to take a ρ-
approximation algorithm for the k-repairmen problem [15], and use it to produce a 2ρ-
approximation for the average distortion of embedding a given metric into a k-spider.
Finally, since a line metric is equivalent to a 2-spider, we get the embedding into a line
metric as a corollary.
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Embeddings into Trees. Consider the problem of embedding the given metric d into a
tree metric δ to minimize average distortion. Let  = ∑x,y∈V d(x, y) denote the sum
of all the distances in the metric d, and hence av(d) = /n2 is the average distance in
d. The median of the metric d is the point v ∈ V that minimizes v =

∑
w∈V d(v,w),

and will be denoted by med. Note that we can decompose  as follows:

 =
∑

u,v∈V

d(u, v) =
∑
u∈V

(∑
v∈V

d(u, v)

)
=
∑
u∈V

u ≥ nmed (4)

since med ≤ v for all v ∈ V . Consider a shortest-path tree T (which is a star in a
general metric d) rooted at med, and let dT denote the metric induced by this shortest
path tree. Then the total distance in this tree T is

T = n2 · av(dT ) =
∑

u,v∈V

dT (u, v) ≤
∑

u,v∈V

dT (med, u)+ dT (med, v),

=
∑

u,v∈V

d(med, u)+ d(med, v),= 2nmed,

where the inequality in the second step is just the triangle inequality. This implies that
nmed ≤  ≤ T ≤ 2nmed, and thus:

Lemma 2.4 (see also [36]). Given any graph, the total distance T for the shortest
path tree rooted at the median is at most 2, and is a 2-approximation for the problem
of embedding the graph into trees.

The bound of 2 is tight. For example, in a complete graph the total distance is n(n−1)
and it is n(2n − 3) for the shortest path tree. Also note here that the bound of 2 above is
an absolute bound on the worst-case ratio between the average distance in the output tree
and the graph, and is in the same flavor as the more traditional results on bounding the
maximum distortion of embeddings. We next move toward an approximation approach
by restricting the class of trees into which we embed.

Embeddings into Spiders. We now generalize the previous result to the case of embed-
dings into k-spiders. The vertex of degree k is called the center of the spider, and the
components obtained by removing the center are called its legs [24].

Let d∗k denote the optimal k-spider embedding. We decompose the sum of distances
in d∗k as the sum of k-repairman path rooted at each vertex. Recall that, in the k-traveling
repairman problem, we are given k repairmen starting at a common depot s. The k
repairmen are to visit n customers sitting one per node of the input metric space. The
goal is to find tours on which to send the repairmen to minimize the total time customers
have to wait for a repairman to arrive [15].

Let c be the center of the spider in the optimal k-spider embedding. To construct a
k-repairman paths starting from a vertex r , we do the following. We send one repairman
away from the center along the leg of the spider which contains r . The other k − 1
repairmen travel toward the center c of the spider. From the center, they go off, one
per remaining leg of the spider. The cost of this k-repairman tour is ∗r =

∑
j d∗k (r, j).
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Summing over all choices of the root we see that this is same as the sum of distances in
the embedding d∗k :

n2 · av(d∗k ) =
∑

u,v∈V

d∗k (u, v) =
∑
v∈V

∗v.

Hence, n times the cost of the cheapest k-repairman tour over all choices of the
depots (denoted by opt), is a lower bound on the sum of all the distances, i.e.,∑

u,v∈V

d∗k (u, v) ≥ n ·min
r
{opt

r }.

Consider the cheapest k-repairman tour over all choices of centers. Let it be centered
at a vertex c. This tour defines a non-contracting embedding into a k-spider with c at the
center of the spider. Let dc(u) denote the distance of vertex u from the center c in the
tour. We can bound the sum of distances in this embedding as follows:∑

u,v∈V

dc
k (u, v) ≤

∑
u,v∈V

dc(u)+ dc(v) ≤ 2n
∑
u∈V

dc(u) ≤ 2
∑

u,v∈V

d∗k (u, v).

Thus, if we could compute the optimal k-repairman tour centered at c exactly, we would
obtain a 2-approximation to the problem of embedding the metric into k-spiders. Al-
though the problem of finding an optimal k-repairman tour is NP-hard, the argument
above proves the following.

Theorem 2.5. Given a γ -approximation for the minimum k-repairmen problem on a
metric d, we can obtain a 2γ -approximation for embedding the metric d into a k-spider
in a non-contracting fashion to minimize the average distortion.

The current best known approximation factor for the k-repairman problem is 8.49 (due
to Chaudhuri et al. [14]), leading to the following corollary.

Corollary 2.6. There is a 16.98-approximation for minimizing the average distortion
of a non-contracting embedding of a given finite metric into a k-spider.

3. Approximation Schemes for Trees

In this section we restrict our attention to the special case of tree metrics. We give a
QPTAS for minimizing the average distortion for embeddings into the line metric. Our
algorithm is based on the QPTAS given by Arora and Karakostas [5] for the minimum
latency problem. They proved that a near-optimal latency tour can be constructed by
concatenating O(log|V |/ε) optimal traveling salesman paths, and the best such solution
can be found by dynamic programming.

For an embedding f : V → � into the line, let the span of the embedding be
defined as maxx,y | f (x)− f (y)|, the maximum distance between two points on the line.
We note that an embedding with the shortest span is just the optimal traveling salesman
path. While embedding a given metric into the line metric, minimizing the span of the
embedding could result in very high average distortion. However, we show that it suffices
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to minimize the span locally to find near optimal embedding. In particular, our solution
within (1 + ε) of optimal minimum average distortion is to find an embedding that is
the union of O(log|V |/ε2) traveling salesman paths with a geometrically decreasing
number of vertices.

In what follows, we use n to denote |V |, the number of vertices. For our algorithm,
we assume that all the edge lengths are in the range [1, n2/ε]. Indeed, if D is the
diameter of the metric space and u and v are two vertices such that d(u, v) = D, then∑

x,y∈V d(x, y) ≥∑x∈V d(x, u)+ d(x, v) ≥ nD. We can then merge all pairs of nodes
with inter-node distance at most εD/n2, which affects the sum of distance by at most
εnD. Hence the ratio of maximum to minimum non-zero distance in the metric can be
assumed to be n2/ε.

Relation to TDTSPs. We first show that the Arora–Karakostas QPTAS works also for
the case of the Time Dependent Traveling Salesman Problem (TDTSP) defined by Blum
et al. [9]. In the TDTSP the objective is to minimize a positive linear combination of the
TSP tour value and the total latency of the tour. The objective function is of the form
α TSP+β LAT, where TSP and LAT denote the span of the tour and total latency of the
tour, respectively, and α and β are constants.

We now describe how to break up an optimal tour into locally optimal segments.
Let T denote the optimal tour for the objective function α TSP+β LAT. We break this
tour into k segments (k is O(log n/ε)). In segment i we visit ni nodes, where

ni = �(1+ ε)k−1−i� for i = 1, . . . , k − 1; nk = �1/ε�.
Note that these ni ’s are chosen in such a way that ni ≤ ε

∑
j>i n j . Denote

∑
j>i n j by ri .

Replace the optimal tour in each segment, except the last one, by the minimum-distance
traveling salesman path on the vertices of that segment that starts and ends at the same
pair of vertices.. The new tour now consists of the concatenation of O(log n/ε) locally
optimal traveling salesman paths. This gives us the following lemma.

Lemma 3.1. There is a tour that is a concatenation of O(log n/ε) minimum traveling
salesman paths that has α TSP+β LAT objective value at most (1+ ε) times the optimal
solution (OPT).

Proof. We first give a lower bound on OPT. Let Ti denote the span of the segment i in
OPT. Every node in the mth segment has latency bigger than

∑m−1
j=1 Tj . We sum over all

vertices and get the lower bound on OPT: OPT ≥∑k−1
i=1 (α + βri )Ti .

Now we replace each segment of OPT with the minimum traveling salesman path on
the same set of vertices with the same pair of vertices as start and endpoints. By replacing
a segment with a minimum traveling salesman path, we reduce the span of that segment.
However, latency of the vertices inside a segment can go up. The latency of each vertex
in i th segment will increase by at most ni Ti . Hence the cost of the concatenated tour
increases by at most

∑k−1
i=1 βni Ti . From the property that ni ≤ ε · ri , it immediately

follows that the cost of the concatenated tour is at most (1+ ε)OPT.

We now use Lemma 3.1 to show the following theorem for average distance.
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Theorem 3.2. Any finite metric has a non-contracting embedding into a line that
is composed of O(log n/ε2) minimum traveling salesman path segments with aver-
age distortion no more than (1 + ε) times the minimum possible over all such
embeddings.

Proof. Our strategy is same as in Lemma 3.1. Consider the optimal embedding of the
input tree into a line. We break this embedding up into O(log n/ε) segments. Let ni be
the size of the i th segment defined as before. We now divide the objective function value
according to the segments, so that only the share Ci of segment i changes, if we replace
the embedding of segment i with a different embedding.

Let Ti be the span of the embedding of segment i . If i0 is the leftmost node in the
embedding of segment i , then let Li =

∑
j∈ni

δ(i0, j) be the sum of the distances of all
nodes in segment i from node i0. Note that Li is the total latency of vertices in segment
i with i0 as the root. Let Di =

∑
u,v∈ni

δ(u, v) be the sum of all the pairwise distances
in segment i .

Let qi =
∑

j<i n j and ri =
∑

j>i n j be the number of total nodes to the left and
right of segment i , respectively.

We now describe a lower bound on the total distance of the optimal solution. We
define the contribution of segment i to the lower bound as the sum of the following
distinct terms:

1. If a vertex u is to the left of segment i and a vertex v is to the right, then segment
i adds Ti to the distance between them.

2. If a vertex u is to the left andw is in segment i , then the contribution is δ(i0, w) =
the distance from the leftmost vertex i0 of segment i to w.

3. If a vertex v is to the right and w is in segment i , then the contribution is
Ti − δ(i0, w).

4. If both vertices w and w′ are in segment i , then the contribution is δ(w,w′).

These contributions, when summed up over all pairs of vertices, give

Ci = qiri Ti + qi Li + ri (ni Ti − Li )+ Di . (5)

Note that
∑

i Ci is a lower bound on the total distance. In the following argument
we rearrange the embedding inside each component while making sure that the increase
in the total distance is at most ε

∑
i Ci .

Note that Di ≤ n2
i Ti . For i = 2, . . . , k, we know that ni ≤ qi and ni ≤ ε ·ri . Hence,

comparing Di with the first term in (5), we get

(1+ ε)(qiri Ti + qi Li + ri (ni Ti − Li )) ≥ Ci ≥ qiri Ti + qi Li + ri (ni Ti − Li ). (6)

To prove Theorem 3.2, it suffices to find an embedding of the i th segment such that the
increase in the total distance is within ε times the lower bound in the right-hand side of
the above inequality (6). The expression for the lower bound on the right-hand side of
inequality (6) is a linear combination of TSP and latency values of the tour in segment i .
We can apply Lemma 3.1 to obtain a tour composed of O(log ni/ε) minimum traveling
salesman paths. Note that replacing the original embedding with the tour obtained from
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Lemma 3.1 can only increase the four distinct terms that make up the quantity Ci . From
Lemma 3.1, the increase in the total distance is at most εCi .

A technical detail in this argument is that the coefficient of Li could be negative.
Lemma 3.1 does not handle this case, but note that ni Ti−Li is the total “reverse” latency
in segment i with the rightmost endpoint being the root. Thus we can rewrite the lower
bound as a linear combination of Ti and ni Ti − Li with positive coefficients.

We can thus replace each segment i with a concatenation of O(log ni/ε) traveling
salesman paths, without increasing the cost by more than a factor of (1 + ε). Since
there are O(log n/ε) segments in all, it follows that there is an embedding consisting of
O(log2 n/ε2) shortest traveling salesman paths.

Finally, we show how to reduce this number to O(log n/ε2). We rewrite the lower
bound in (6) as (qi − ri )Li + (qi + ni )ri Ti . Note that Li ≤ ni Ti . This gives us that
the term (qi − ri )Li is at most ε · (qi + ni )ri Ti , whenever qi − ri is positive. Hence,
if we replace segment i with a shortest traveling salesman path on those vertices, the
cost will be within (1 + ε) of the lower bound in (6). Note that, for i ≥ 1/ε, we have
qi ≥ ri . Hence for i = 1, . . . , 1/ε, using Lemma 3.1, we replace each segment by a
concatenation of O(log n/ε) tours each. Then for segments 1/ε and above, we use only
one minimum traveling salesman path per segment. Overall this results in a concatenation
of O(log n/ε2) traveling salesman paths with the average distortion within (1+ ε) times
that of the optimal.

Consider a ( 1
3 ,

2
3 )-partition of the tree, i.e., a recursive partition of the tree into two

subtrees with a common root, such that for each subtree

1
3 · n ≤ (size of subtree) ≤ 2

3 · n.

It is a folklore result that a ( 1
3 ,

2
3 )-partition exists for any tree. We use the term separator

node for the common root of the subtrees. From the recursive partition, we get separator
nodes for each level of recursion.

Note that an optimal traveling salesman path on a tree is obtained by depth-first
search. Therefore, it needs to cross any separator node at most twice. In the previous
theorem, we proved that a near-optimal non-contracting embedding is given by a con-
catenation of O(log n/ε2) traveling salesman paths. Combining this with the recursive
partition, we get the following theorem.

Theorem 3.3. There exists a non-contracting embedding of a tree metric into a line
with average distortion at most (1+ε) times the minimum possible that, when viewed as
a walk, crosses each separator node O(log n/ε2) times in a recursive node-separator-
based partition defined above.

Using this theorem, we give a dynamic programming algorithm. This is very similar
to the algorithm due to Arora and Karakostas [5].

Theorem 3.4. For any given ε > 0, there is an algorithm that runs in time nO(log n/ε2)

and computes a non-contracting embedding of a given input tree metric into a line with
average distortion at most (1+ ε)-times the minimum.
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Proof. We describe the dynamic program at the heart of our QPTAS.

ALGORITHM

“Guess” the leftmost vertex in the embedding. Find a recursive ( 1
3 ,

2
3 )-partition of

the tree. Do the following steps starting at the bottom level of the partition and working
upwards:

1. Identify a separator node at the current level of the partition.
2. “Guess” the number of times the embedding crosses this node and for each

crossing, the length of the embedding after the crossing and the number of nodes
on that portion.

3. Search the dynamic programming table for subtours consistent with the
“guesses.”

4. Combine the subtours found to create a new bigger subtour and store it in the
dynamic programming table and go to step 1.

“Guessing” in step 2 refers to exhaustive enumeration of all possible values for the triple
(# of crossings, length, # of nodes). At the end of the enumeration, the algorithm will have
created a collection of candidate solutions, one for each possible guess. Its output will
be the embedding of minimum average distortion. One of the embeddings considered by
this algorithm must be near-optimal. Hence the embedding produced by the algorithm
is a (1+ ε) approximation for the optimal average distortion.

We now prove that the running time of the algorithm is bounded by nO(log n/ε2).
The running time is dominated by the number of “guesses.” The number of crossings
through a node is at most O(log n/ε2) and the number of nodes visited between two
crossings cannot be greater than n. To bound the number of guesses for the length of the
embedding between two crossings, we round the lengths as follows. Let L be the length
of the longest path in the input tree. We merge all the pairs of vertices with pairwise
distance smaller than εL/n3. We also round each edge length to its closest multiple
of εL/n3 and divide all the lengths by εL/n3. In this rounded instance, the minimum
length is 1, while the maximum internode distance is n3/ε. After solving the rounded
instance, we reinstate the merged edges to the output embedding. This does not change
the pairwise distance between any pair by more than O(εL/n2). Thus the total change
due to rounding is bounded by O(εL) = O(εOPT).

If we run the algorithm on a rounded instance, the total number of guesses for each
crossing is O(n3/ε) ·n = O(n4/ε). This gives a total of O(log n/ε2 · (n4/ε)O(log n/ε2)) =
nO(log n/ε2) guesses for a node. We do this for each node. Moreover, there are n choices
for the leftmost vertex of the embedding. Therefore, the overall running time of the
algorithm is bounded by O(n · n · nO(log n/ε2)) = nO(log n/ε2).

4. An Exact Algorithm for Minimizing Average Tree-Edge Distortion

For the tree metrics, we consider a slightly different objective function in this section. Let
M = (V, d) be the input metric to be embedded in a non-contracting mapping to a line.
Assume that the input metric M arises from a tree T = (V, E). Instead of considering
distances between all pairs of nodes, we take the average of the distance over the edge



Approximation Algorithms for Minimizing Average Distortion 105

set E of the tree. Let l denote the host metric (i.e., a line). Then we want to minimize∑
(u,v)∈E δ(u, v). We call this the average tree-edge distortion. We give a polynomial

time algorithm for minimizing the average tree-edge distortion.
This problem is quite similar to the MLA [34] problem on trees. Recall that, a linear

arrangement of a graph (V, E) is a mapping π : V → [n]. The objective is to minimize∑
{u,v}∈E |π(u)−π(v)|. However, the crucial difference is that we require the embedding

into a line to be non-contracting.
Our algorithm is based on the algorithm for MLA on trees given by Shiloach [34] with

some crucial extensions. We first begin by finding a centroid of the tree. The following
lemma is folklore (see, e.g., [12]). It is important to note that we allow subdivision of the
edges here, i.e., we allow splitting an edge into two by adding a vertex anywhere along
that edge.

Lemma 4.1. Given a tree T = (V, E) with edge weights, there exists a centroid vertex
v∗ in a subdivision of T , such that the subtrees of T rooted at v∗ have edge weight at
most half the total weight of the tree.

We then show that the subtrees of the centroid are not interleaved in an optimal embed-
ding. This lets us solve the problem recursively on the subtrees. The algorithm constructs
an Eulerian tour of the tree as an optimal embedding.

4.1. Cost Reducing Transformations

We now show that, given a non-contracting embedding of a tree into the line, we can trans-
form it without increasing the average distortion, so that the solutions for subtrees rooted
at the centroid are disjoint contiguous segments of the line. We denote the embedding
by a permutation π of the vertices. Note that for the embedding to be non-contracting,
it suffices to have the distance between adjacent pair of vertices in the permutation the
same as their distance in the tree metric (i.e. δ(i, i + 1) = d(π−1(i), π−1(i + 1)).

We now explain the transformations. Let T be the input tree with v∗ as the centroid.
Let T1 be a subtree of T rooted at v∗. We group all other subtrees as T2 (see Figure 2).
The transformations work toward uninterleaving the embeddings of T1 and T2. There are
two different cases depending on whether end vertices are from the same or different
subtrees.

1. Let the two endpoints be in different subtrees, i.e., we have π−1(1) ∈ T1 and
π−1(n) ∈ T2. A transformation of type A (see Figure 2) converts the ordering π
intoπa , such thatπ restricted to each of T1 and T2 is preserved, and T1 is embedded
entirely to the left of T2; i.e., πa(ui ) < πa(vj ) for all ui ∈ T1 and vj ∈ T2.

v∗u

T2T1

c dba

u v∗

T2T1

a

c

b
d

Fig. 2. Type A transformation.
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v∗T1

T2

a
c

d

u
v∗u

T1
T2

db ca
b

Fig. 3. Type B transformation.

2. Let the two endpoints of the embedding be in the same tree, i.e.π−1(1), π−1(n) ∈
T1. A type B transformation (see Figure 3) produces an orderingπb which is same
as π when restricted to each of T1 and T2. We have two choices: T1 or T2 could
be embedded to the left of the other subtree. We pick the one minimizing average
tree-edge distortion.

We denote the embedding produced by πa or πb by (T1 : T2). Note that there are
two choices for the embedding of T1 (resp. T2): the same order as in π or completely
opposite to π . We always pick the best of these choices.

Observation 4.2. In the embeddings πa and πb, the length of the edges within the trees
T1 and T2 is never more than their counterparts in the embedding π .

Lemma 4.3. The above two transformations do not increase the average tree-edge
distortion of the embedding.

Proof. We handle the two cases separately. We need the property that v∗ is a centroid
vertex only in the second case.

Type A. The only edge that possibly gets expanded in this transformation is (v∗, u). We
show that the increase for this edge is offset by the savings in the edges of the trees T1 and
T2. In particular, if π(ui ) > π(v∗) for i = 1, . . . , k, then in πa the vertices u1, . . . , uk

contribute to the cost of edge (v∗, u). However, in the initial ordering π , these vertices
contribute at least this amount to the edges on the path v∗ → π−1(n). A symmetric
argument holds for the change in the sum of edge lengths in the tree T1.

Type B. Let |T | denote the length of an Euler tour of tree T . We first compute the length
of the edge (u, v∗) in πb. Since we have picked the cheaper of the two available choices,
the length is at most (|T1| + |T2|)/2+ d(u, v∗). Thus the potential increase in the length
of the edge (u, v∗) is (|T1| + |T2|)/2. The decrease in the sum of edge lengths of the
subtree T1 due to the transformation is at least |T2|+d(u, v∗). To see this, consider a path
π−1(1)→ π−1(n) in tree T1. The embedding includes at least an Euler tour of tree T2

along with the edge (u, v∗). Now if |T2|+2d(u, v∗) ≥ (|T1|+ |T2|)/2, then the decrease
offsets the potential increase. In other words, if |T1| − |T2| ≤ 2d(u, v∗), then the type B
transformation does not increase cost. This is certainly true since v∗ is a centroid.
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4.2. Optimal Embeddings Are Euler Tours

Given any embedding π we can apply the transformations A or B to uninterleave the
embeddings of the subtrees. Let v∗ be the centroid. Let T0, T1, . . . , Tk be the subtrees
rooted at v∗. Let |Ti | denote the length of an Euler tour of tree Ti . Let the subtrees be
arranged in decreasing order of the lengths of their Euler tours: |T0| ≥ |T1| ≥ · · · ≥ |Tk |.
Let T0 = T − T0.

First we check if the embedding (T0 : T0) has average tree-edge distortion at most
that of π . If so, then we solve the problem recursively on T0 and T0.

The other case is when (T0 : T0) has average tree-edge distortion greater than π .
From Lemma 4.3 we know that neither π−1(1) nor π−1(n) belongs to T0. Let π−1(1) ∈
Ti1 , then we can apply transformation A or B to π (depending on whether π−1(n) ∈ Ti1 )
and we get the embedding (Ti1 : Ti1). Let the leftmost endpoint of Ti1 belong to the
subtree Ti2 . Once again we apply the appropriate transformation and get the embedding
(Ti1 : (Ti2 : T ′)), where T ′ = T −Ti1−Ti2 . We continue this process until both endpoints
of T ′ = T − Ti1 − · · · − Tij belong to T0. At this step, the candidate transformation is B.
However, it does not decrease cost at this point because v∗ is no longer a centroid in T ′.
Hence we must adopt a different line of attack in this case. Let p be the greatest integer
such that for all i ≤ p, we have

2|Ti | ≥ (|T0|)+ 2d(e0)+ (|T ′|), (7)

where T ′ = T − T0− T1−· · ·− Tp and e0 is the edge from v∗ to the root of T0. Then we
can show that the embedding (T1 : T2 : · · · : Tp : T ), where T = T − T1 − · · · − Tp has
tree-edge distortion smaller than π . Moreover, since neither π−1(1) nor π−1(n) belongs
to T0, we have p > 0.

Thus we have shown that we can solve the problem recursively on these trees and
combine their solutions. From this we get the following important observation.

Lemma 4.4. An optimal non-contracting embedding of a weighted tree T into a line
to minimize average tree-edge distortion corresponds to an Eulerian tour.

4.3. Algorithm

We describe our recursive algorithm here. Let T be the tree from which the input metric
(V, d) arises.

1. Find the centroid v∗ of tree T . Let T0, . . . , Tk be the subtrees of T rooted at v∗.
2. Find the greatest integer p such that for all i ≤ p, we have 2|Ti | ≥ (|T0|) +

2d(e0)+(|T ′|), where T ′ = T−T0−T1−· · ·−Tp, and |T0| ≥ |T1| ≥ |T2| ≥ · · ·.
3. If p = 0, then recursively find the embeddings of T0 and T0. Output the embed-

ding (T0 : T0).
4. If p > 0, then recursively find the embeddings of T1, . . . , Tp, T ′ (where T ′ =

T − T1 − · · · − Tp). Output the best embedding of these subtrees using the
subroutine described below.
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· · ·

e1 e2
ei

T1
T2 Ti

r

Fig. 4. Embedding the subtrees.

Subroutine. We now describe the subroutine to combine the embeddings of subtrees
T1, . . . , Ti rooted at r . We want to find the ordering of these subtrees which minimizes
the tree-edge distortion of the embedding. The objective function for this subroutine is
the sum of the lengths of edges e1, . . . , ei in the embedding. See Figures 4 and 5. Note
that we only include the part of the edge from r to the closest point of its tree.

Let d(ej ) be the length of edge ej in the input metric. Since the embedding is an
Eulerian tour, we know that if edge e1 crosses trees T2, T3, and T4, then it is expanded
by |T2| + |T3| + |T4|. Thus the total length of e1 to account for is d(e1)+ |T2| + |T3| +
|T4| + d ′(e1), where d ′(e1) is the part of the length of e1 inside tree T1. The quantity
d ′(e1) can be taken as the distance of the root of T1 to its closest endpoint. On the other
hand, if there are j edges crossing over tree Tq , then the tree contributes the |Tq | term in
the length of each of those edges. Thus, if tree Tq is ( j + 1)st from left or right endpoint,
then its contribution to the total cost is j |Tq | + d(eq).

This suggests that we can find the optimal ordering of the trees using the minimum
cost matching algorithm. Consider a complete bipartite graph Ki,2i where i is the number
of subtrees hanging off the centroid. The i vertices on one side correspond to the trees
T1, . . . , Ti . If tree Tq is the ( j + 1)st from the left in an embedding, this is represented
by connecting vertex q on the left side of Ki,2i to vertex j + 1 on the other side, by an

· · ·

e1

e2

ei

T1
T2 Ti

r

Fig. 5. Accounting for the lengths of edges.
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edge of weight 2 j |Tq | + d(eq). If Tq is the ( j + 1)st from the right, then we connect the
edge between vertex q to the vertex i + j + 1 on the other side of the same cost. Finding
a minimum-weight matching in this bipartite graph will give us the ordering of trees on
the left and right side of the root.

Theorem 4.5. There is a polynomial-time algorithm for finding a non-contracting em-
bedding of an input tree metric into a line to minimize average tree-edge distortion.

We remark that it is not hard to construct instances where the optimal non-inter-
leaving embedding in the same spirit as above provide very poor approximations to the
minimum average distortion embeddings even for tree metrics. For example, consider
a 3-spider where the vertices are placed at distances l, l2, l3, . . . on each leg. Any non-
interleaving embedding has average distortion�(n), whereas the optimal (interleaving)
embedding has average distortion O(1).

5. Open Problems

For the case of non-contracting embeddings considered in the paper, some open questions
are:

1. Is there a simpler and better approximation algorithm for minimizing average
distortion in trees?

2. Can the QPTAS be extended to planar graphs, or even the simpler case of outer-
planar graphs?

3. A different objective function is to minimize the sum of the distortions of all
pairs of vertices over non-contracting embeddings. Are there approximation al-
gorithms for this objective?
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