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Abstract 

Given an undirected graph with nonnegative edge-costs, a subset of nodes of size k called the terminals, and 
an integer q between 1 and k, the minimum q-Steiner forest problem is to find a forest of minimum cost with at 
most q trees that spans all the terminals. When q = 1, we have the classical minimum-cost Steiner tree problem 
on networks. We adapt a primal-dual approximation algorithm for the latter problem due to Agrawal, Klein and 
Ravi to provide one for the former. The algorithm runs in time 0 (n log n + m ) and outputs a solution of cost at 
most 2 ( 1 - l/ (k - q + 1) ) times the value of a lower bound on the cost of any solution. Here n and m denote 
respectively the number of nodes and edges in the input graph. 
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1. Introduction 

We consider a generalization of the classi- 
cal Steiner tree problem in networks called the 
Steiner forest problem. We are given an undi- 
rected graph with nonnegative costs on the 
edges, and a subset of k nodes called terminals. 
Given an integer q between 1 and k, the goal 
is to tind a forest of minimum cost contain- 
ing at most q trees spanning all the terminals. 
When m = 1, we have the classical Steiner tree 
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problem where a single tree of minimum cost 
spanning all the terminals is required. 

The Steiner forest problem, introduced by 
Duin and Volgenant [4], was motivated by 
the following application. A tree in the forest 
spanning a subset of the terminals represents es- 
tablishing a service for the terminals in the tree. 
The cost of the tree may be taken to be the cost 
of providing the service. The q-Steiner forest 
problem corresponds to minimizing the service 
cost for the terminals when there is provision for 
providing the service using q different agents. 
For instance, if the costs obey the triangle in- 
equality, the Euler tour of each tree in the forest 
can be short-cut into a cycle, thus providing a 
tour covering all the terminals in the tree. When 
q agents are available to perform q tours that 
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are required to cover all the terminals at mini- approximation guarantee follows. Note that the 
mum cost, then a solution to the q-Steiner forest Steiner tree problem is a special case of a gen- 
problem on these terminals is a good starting eralized problem where each pair of terminals 
point for this simple heuristic for the q-Steiner is specified as a site-pair (or more efficiently, 
tour problem. Applying our heuristic for the q- a “root” terminal is chosen and for every other 
Steiner tour problem gives a solution of cost at terminal, a site-pair consisting of the root and 
most2(1-l/(k-q+l))timestheminimum. this terminal is specified). 

The Steiner tree problem is one of the first 
few problems proved NP-complete by Karp 
in [lo]. Since then, much work has gone to- 
wards finding exact and approximate solutions 
to the problem [ 7-9,18,19 1. Several researchers 
[ 5,14,16,17 J have independently provided ap- 
proximation algorithms for this problem with 
performance ratio 2 ( 1 - 1 /k ) where k is the 
number of terminals specified to be connected 
in the problem. There have been several effi- 
cient algorithms devised to provide such an 
approximation [ 11,13,20] and the best-known 
running time for such an algorithm is that of 
Mehlhom [ 13 1. Mehlhorn’s algorithm runs in 
time 0 (II log n + m ) where y1 and m are the 
number of nodes and edges in the Input graph 
respectively. Zelikovsky [2 1 ] devised the first 
approximation algorithm with a better perfor- 
mance ratio. His algorithm outputs a solution of 
cost at most 1 l/6 times the minimum. Berman 
and Ramaiyer [ 21 have generalized Zelikovsky’s 
result to provide approximation algorithms with 
even better performance ratios. 

We adapt the algorithm and proof technique of 
Agrawal, Klein and Ravi to provide an approx- 
imation algorithm for the Steiner forest prob- 
lem. In addition, we use Mehlhorn’s technique 
in implementing our algorithm efficiently. The 
following is our main result. 

Theorem 1. For every positive integer q, there 
is an 0 (n log n + m )-time approximation algo- 
rithm for the q-Steinerforestproblem that outputs 
asolutionofcostatmost2(1-l/(k-q+ 1)) 
times the minimum, where k is the number of 
terminals speci$ed in the problem, and n and m 
are the number of nodes and edges in the input 
graph respectively. 

In the special case when all the nodes in the 
graph are terminals, it is not hard to infer that 
our algorithm returns an optimal solution. We 
call this special case the q-spanning forest prob- 
lem. 

Agrawal, Klein and Ravi [l] provided an 
approximation algorithm for a different gener- 
alization of the Steiner problem. They consider 
the generalized Steiner forest problem wherein 
given an undirected graph with nonnegative 
edge-costs, and a set of site-pairs of nodes, a 
subgraph of minimum cost in which each site is 
connected to its mate is required. They provide 
an approximation algorithm with performance 
guarantee 2 ( 1 - 1 /k ) where k is the number of 
nodes specified as sites in the input. They prove 
the performance guarantee of their algorithm 
by relating the cost of the approximate solution 
they find to the value of a packing of cuts that 
separate some site-pair. They argue that the 
value of such a packing is a lower bound on the 
cost of any solution; Since they find a solution 
of cost at most roughly twice this value, the 

Theorem 2. For every positive integer q, there 
is an O(n log n + m)-time algorithm for the q- 
spanning forest problem that outputs a solution 
of minimum cost, where n and m are respectively 
the number of nodes and edges in the input graph. 

2. Background 

We define and use the notion of multicuts to 
derive a lower bound for our problem. The in- 
put to the problem is an undirected graph G = 
(V, E ) with nonnegative edge-costs and a sub- 
set A of terminals that must be spanned by a q- 
Steiner forest. Let IAl = k. Let the cost on edge 
e be denoted by c (e ) . 

Definition. A multicut M is defined by a parti- 
tion of V into sets 5, Vz, . . . , 6. The set of edges 
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between nodes in different sets in the partition 
constitute the multicut. Call VI,. . . , K the blocks 
of the partition. A block is termed active if it con- 
tains at least one terminal and its complement 
contains at least one terminal. Thus a block 5 is 
activewhenever K::nA # Band (v-V)&4 # 8. 
For a subset vi of nodes, we use r (vi> to denote 
the set of edges with exactly one endpoint in K. 

The following lemma is immediate. 

Lemma 3. Let F denote the set of edges of a q- 
Steinerforest and let V,, V,, . . . . V, denote a multi- 
cut with q’ active blocks where q’ > q. Then 

c Ir(K)nFI 2 q’-q+ 1. 
active blocks V, 

We can generalize the above lemma by con- 
sidering an edge-disjoint collection of multicuts. 

Lemma 4. Let F denote the set of edges of a 
q-Steiner forest and let MI, Mz, . . . . Ml be edge- 
disjoint multicuts where Mi has qi (> q) active 
blocks. Then 

multicuts M, active blocks 4 E Mi 

a (4i-4 + 1). 

We can use the above lemma to provide a 
lower bound on the number of edges in a q- 
Steiner forest using multicuts with more than q 
active blocks in them. To generalize this notion 
to the case when the edges have costs, we need 
more definitions. 

We associate a rational weight 1p with multi- 
cut Mp. Define the load on an edge of the graph 
due to a multicut Mp with weight Ap as follows. 
If an edge has endpoints in two distinct blocks 
K and 5 of P, and if both V and Vj are active, 
then the load on the edge due to the multicut Mp 
is defined to be 2 + jlp. If only one of I/;: and Vj 
is active, then the load on the edge due to Mp 
is defined to be ,lp. Otherwise, the edge has zero 
load due to Mp. Lemma 3 generalizes as follows 
to the weighted case. 

Lemma 5. Let F denote the set of edges of a q- 
Steiner forest and let M = V,, V2, . . . . V, denote a 
multicut of weight AM with q’ active blocks where 
q’ > q. Then the cost of the edges in F is at least 
(4’ - 4 + 1 )AM. 

A c-packing of multicuts in a graph is a collec- 
tion of multicuts Ml, M2, . . . . M,, each multicut 
Mi associated with a rational weight ;li, such that 
for every edge e, the sum of the loads on e due 
to all the multicuts in the collection is at most 
c (e ), the cost of the edge. Further the number 
of active blocks qi in multicut Mi is greater than 
q for all i. Applying Lemma 5, we arrive at the 
following generalization of Lemma 4. 

Lemma 6. Let F denote the set of edges of a q- 
Steiner forest and let MI, M2, . . . . Ml denote a c- 
packing of multicuts, where multicut Mi has qi 
(> q) active blocks and weight Ai. Then the cost 
of the edges in F is at least Ci (qi - q + 1 )Ai. 

We define the quantity xi (qi -q + 1 )Ai in the 
above lemma as the lower bound on the problem. 
We use this lower bound in our analysis of the 
performance guarantee. 

3. The algorithm 

The notion of a multicut is dual to that of 
a q-Steiner forest. Our algorithm is primal-dual 
in that it runs in iterations and, in each iter- 
ation, collects a greedy c-packing of multicuts 
and at the same time partially constructs the 
Steiner forest. During the iterations, we main- 
tain that the cost of the partial forest constructed 
is roughly at most twice the lower bound col- 
lected from the multicuts using Lemma 6. 

The multicuts are collected by growing ordi- 
nary cuts greedily starting from all the terminals 
in a breadth-first fashion. This way of collect- 
ing a dual solution was introduced by Agrawal, 
Klein and Ravi in [ 11. Each of these greedy 
cuts around terminals is considered an active 
block of the partition defining a multicut in the 
dual solution. All the nodes of the graph not 
in an active block together form an inactive 



188 R. Ravi /Information Processing Letters 50 (1994) 185-190 

block in the multicut partition. If we have q’ ac- 
tive blocks that grow for distance 6, then using 
Lemma 5, the value of the lower bound col- 
lected by the multicut defined by this partition 
is (q’ - q + 1)6. When two growing cuts around 
active blocks “collide” or load an edge com- 
pletely, then we merge them into a single active 
block of the partition. Note that the multicuts 
we collect all have at most one inactive block. 

As we grow such active blocks to form a se- 
ries of multicuts, we also maintain a tree for 
each active block that connects all the terminals 
within the block. Whenever we merge two active 
blocks into one, we connect the corresponding 
trees using a shortest path that is testimony to 
the collision of these two blocks. The breadth- 
first growth of the active blocks lends a notion 
of time to the running of the algorithm. At any 
instant in the running of the algorithm, the total 
distance from the start of the algorithm that any 
of the currently active blocks have grown for is 
defined to be the current time. Using this detini- 
tion of time, if two active blocks collide at time 
t, then there is a path of length at most 2t be- 
tween a pair of terminals, one from each of these 
colliding blocks. We use this path to connect the 
trees of the colliding blocks. 

We continue until there are at most q active 
blocks in the multicut at which point we have at 
most q trees spanning all the terminals. We stop 
and output this q-Steiner forest as the approxi- 
mate solution. 

4. Performance guarantee 

The proof of the performance guarantee is 
based on the following lemma that we prove by 
using induction on the steps of the algorithm. 

Lemma 7. At any time t in the running of the 
algorithm, let LBI denote the total lower bound 
accumulated until time t using the multicuts col- 
lected so far in the running of the algorithm, and 
let kr (> q ) denote the number of active blocks in 
the multicut. Let F, denote the cost of the forest 
built up so far. Then 

~(4) < 2(LB,-(k-q+ l).t), 

where c ( Ft ) is the sum of the costs of all the edges 
in Ft. 

Proof. The proof uses induction on the running 
of the algorithm. Assume that the lemma holds 
for any time t’ < t. We prove it for time t. There 
are two distinct kinds of steps that the algorithm 
performs: a grow step which happens over a pe- 
riod of time, and a build-network step that hap- 
pens at certain instants of time. We show that 
during both types of steps of the algorithm, the 
claim in the lemma is maintained. 

Suppose the algorithm grows a multicut for the 
period from t’ to t without adding any edge to the 
solution F. Then Ft = F,I and kt = kr . More- 
over, the increase in the lower bound is exactly 
(kt - q + 1) (t - t’). Using this and the induc- 
tion hypothesis at time t’, we see that the claim 
in the lemma continues to hold. 

The build-network step of the algorithm hap- 
pens at certain instants of time. Consider such 
an instant t. In this step, we merge two active 
blocks into one thus reducing kt by one. But at 
the same time we connect the spanning trees of 
the two merging blocks using a path of length at 
most 2t. Thus assuming that the statement of the 
lemma holds just before the merge, it continues 
to hold after the merge as well since the increase 
in the left-hand side in the cost of the solution is 
at most the increase in the right-hand side due 
to the decrease in kr. 

This completes the inductive verification of 
the lemma. 0 

Suppose the algorithm stops at time ts and out- 
puts a q-Steiner forest F, then by applying the 
above lemma, we have that 

c(F) < 2GB, - ts) 

since k,, = q. Since the maximum value of LB, 
is attained if all the multicuts collected have the 
maximum number of active blocks, we have that 

LBt, G (k-q + l).t,. 

Substituting above and simplifying gives the per- 
formance guarantee in Theorem 1. 
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5. Implementation 

To arrive at an efficient implementation of 
the algorithm, observe that the algorithm may 
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be simply restated as follows: Compute an aux- 
iliary distance-graph on the terminals where the 
edge between two terminals has weight equal to 
the shortest path between them in the graph. 
Run a Minimum Spanning Tree algorithm in this 
graph until there are at most q connected com- 
ponents. Add the shortest paths corresponding 
to the edges added in the auxiliary graph to ob- 
tain the final q-Steiner forest. This is because the 
uniform breadth-first growth of the active blocks 
would cause exactly the shortest-paths between 
distinct active blocks to be picked in the same 
order in which they would be picked by the MST 
algorithm. 

We can now use the algorithm of Mehlhorn 
[ 131 to compute an auxiliary graph that is 
equivalent to the one we described above in 
terms of running the MST algorithm. However, 
Mehlhorn showed that this alternative graph 
can be computed using just one single-source 
shortest-path computation. This takes time 
0 ( IZ log IZ + m ) using Fredman and Tarjan’s 
implementation of Dijkstra’s algorithm [ 6 1. 
Running the MST algorithm in this alternative 
graph until at most q components result and 
converting this to a q-Steiner forest can be ac- 
complished in this time as well. This proves the 
running time in Theorem 1. 

6. Remarks 

It is not hard to see that the algorithm reduces 
to a truncated version of Kruskal’s algorithm for 
MSTs [ 121 in the case of q-spanning forests ad- 
dressed in Theorem 2. At any step in Kruskal’s 
algorithm when x edges have been added to the 
solution, these edges form a minimum-cost set 
of x edges that induce an acyclic subgraph. Thus 
it is also easy to see that this algorithm outputs 
a minimum-cost solution as claimed in Theo- 
rem 2. 
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