15-453
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY
THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M_{min} such that $L = L(M_{\text{min}})$

Minimal means wrt number of states
PROOF

1. Let M be a DFA for L (wlog, assume no inaccessible states)
2. For pairs of states (p,q) define:
 p distinguishable from q and p indistinguishable from q ($p \sim q$).
3. Table-filling algorithm: first distinguish final from non-final states and then work backwards to distinguish more pairs.
4. What’s left over are exactly the indistinguishable pairs, ie \sim related pairs. Needs proof.
5. \sim is an equivalence relation so partitions the states into equivalence classes, E_M

6. Define M_{min}

Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{ MIN}}, F_{\text{MIN}})$

$Q_{\text{MIN}} = E_M$, $q_{0\text{ MIN}} = [q_0]$, $F_{\text{MIN}} = \{[q] \mid q \in F\}$

$\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$ show well defined

Claim: $\hat{\delta}_{\text{MIN}}([q], w) = [\hat{\delta}(q, w)]$, $w \in \Sigma^*$

So: $\hat{\delta}_{\text{MIN}}([q_0], w) = [\hat{\delta}(q_0, w)]$, $w \in \Sigma^*$

Follows: $M_{\text{MIN}} \equiv M$
But is M_{min} unique minimum?

Yes, because if $M' \equiv M$ and minimum then M' has no inaccessible states and is irreducible and...

Theorem. M_{min} is isomorphic to any M' with the above properties (need to give mapping and prove it has all the needed properties: everywhere defined, well defined, 1-1, onto, preserves transitions, and \{final states\} map onto \{final states\})

So M_{min} is isomorphic to \textit{any} minimum $M' \equiv M$
How can we prove that two DFAs are equivalent?

One way: Minimize

Another way: Let $C = (\neg A \cap B) \cup (A \cap \neg B)$
Then, $A = B \iff C = \emptyset$

C is the “disjoint union”
CONTEXT-FREE GRAMMARS
AND PUSH-DOWN AUTOMATA
TUESDAY Jan 28
NONE OF THESE ARE REGULAR

$\Sigma = \{0, 1\}, \quad L = \{ 0^n1^n \mid n \geq 0 \}$

$\Sigma = \{a, b, c, \ldots, z\}, \quad L = \{ w \mid w = w^R \}$

$\Sigma = \{ (,) \}, \quad L = \{ \text{balanced strings of parens} \}$

(, ()(), ((()()) are in L, (, ()), (()()) are not in L

PUSHDOWN AUTOMATA (PDA)

FINITE STATE CONTROL

INPUT

STACK (Last in, first out)
A brief history of the stack, Sten Henriksson, Computer Science Department, Lund University, Lund, Sweden.
Non-deterministic
PDA that recognizes $L = \{ 0^n1^n \mid n \geq 0 \}$
Definition: A *(non-deterministic)* PDA is a 6-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

- **Q** is a finite set of states
- **Σ** is the input alphabet
- **Γ** is the stack alphabet
- **$\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow 2^{Q \times \Gamma_\varepsilon}$** is the set of subsets of $Q \times \Gamma_\varepsilon$
- **$q_0 \in Q$** is the start state
- **$F \subseteq Q$** is the set of accept states

$
\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}, \quad \Gamma_\varepsilon = \Gamma \cup \{\varepsilon\}$

Push and **Pop** operations also apply to stack transitions.
Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \ldots w_n$ where $w_i \in \Sigma_\epsilon$ (recall $\Sigma_\epsilon = \Sigma \cup \{\epsilon\}$).

Then P accepts w if there are $r_0, r_1, \ldots, r_n \in Q$ and $s_0, s_1, \ldots, s_n \in \Gamma^*$ (sequence of stacks) such that

1. $r_0 = q_0$ and $s_0 = \epsilon$ (P starts in q_0 with empty stack)

2. For $i = 0, \ldots, n-1$:
 $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_\epsilon$ and $t \in \Gamma^*$ (P moves correctly according to state, stack and symbol read)

3. $r_n \in F$ (P is in an accept state at the end of its input)
\[
Q = \{q_0, q_1, q_2, q_3\} \quad \Sigma = \{0, 1\} \quad \Gamma = \{\$, 0, 1\}
\]

\[
\delta : Q \times \Sigma \times \Gamma \rightarrow 2^{Q \times \Gamma}
\]

\[
\delta(q_1, 1, 0) = \{ (q_2, \varepsilon) \} \quad \delta(q_2, 1, 1) = \emptyset
\]
EVEN-LENGTH PALINDROMES

$\Sigma = \{a, b, c, \ldots, z\}$

Diagram:

- $q_0 \xrightarrow{\varepsilon, \varepsilon} q_1$
- $q_1 \xrightarrow{\sigma, \varepsilon} \sigma$
- $q_1 \xrightarrow{\varepsilon, \varepsilon} \varepsilon$
- $q_2 \xrightarrow{\varepsilon, \$} \varepsilon$
- $q_2 \xrightarrow{\sigma, \sigma} \varepsilon$
- $q_3 \xrightarrow{\varepsilon, \$} \varepsilon$

Examples:
- zeus sees suez
- Madamimadam

(How to recognize odd-length palindromes?)
Build a PDA to recognize
\[L = \{ a^i b^j c^k | i, j, k \geq 0 \text{ and } (i = j \text{ or } i = k) \} \]
Build a PDA to recognize
\[L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } (i = j \text{ or } i = k) \} \]
Build a PDA to recognize
$L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } (i = j \text{ or } i = k) \}$
CONTEXT-FREE GRAMMARS

“Colorless green ideas sleep furiously.”

Noam Chomsky (1957)
Non-deterministic

We say: \(00\#11 \) is generated by the Grammar

Derivation:

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11 \]

(yields)

A \(\Rightarrow^* \) 00\#11
CONTEXT-FREE GRAMMARS

A → 0A1
A → B
B → #

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

(yields)

A ⇒* 00#11
(derives)

We say: 00#11 is generated by the Grammar

Deterministic CFGs??
CONTEXT-FREE GRAMMARS

A → 0A1
A → B
B → #

A → 0A1 | B
B → #
SNOOP'S GRAMMAR
(courtesy of Luis von Ahn)

<PHRASE> → <FILLER><PHRASE>
<PHRASE> → <START WORD><END WORD> DUDE
<FILLER> → LIKE
<FILLER> → UMM
<START WORD> → FO
<START WORD> → FA
<END WORD> → SHO
<END WORD> → SHAZZY
<END WORD> → SHEEZY
<END WORD> → SHIZZLE
SNOOP’S GRAMMAR
(courtesy of Luis von Ahn)

Generate:
Umm Like Umm Umm Fa Shizzle Dude
Fa Sho Dude
A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- Σ is a finite set of terminals (disjoint from V)
- R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
- $S \in V$ is the start variable
A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- Σ is a finite set of terminals (disjoint from V)
- R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
- $S \in V$ is the start variable

$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$ Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the strings in L
A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- Σ is a finite set of terminals (disjoint from V)
- R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
- $S \in V$ is the start variable

$G = \{ \{ S \}, \{ 0, 1 \}, R, S \}$

$R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \}$

$L(G) =$
A context-free grammar (CFG) is a tuple
\(G = (V, \Sigma, R, S) \), where:

- \(V \) is a finite set of variables
- \(\Sigma \) is a finite set of terminals (disjoint from \(V \))
- \(R \) is set of production rules of the form \(A \rightarrow W \), where \(A \in V \) and \(W \in (V \cup \Sigma)^* \)
- \(S \in V \) is the start variable

\[G = \{ \{S\}, \{0,1\}, R, S \} \quad R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \} \]

\[L(G) = \{ 0^n1^n \mid n \geq 0 \} \quad \text{Strings Generated by } G \]
WRITE A CFG FOR EVEN-LENGTH PALINDROMES

\[S \rightarrow \sigma S \sigma \text{ for all } \sigma \in \Sigma \]
\[S \rightarrow \varepsilon \]
WRITE A CFG FOR THE EMPTY SET

G = { {S}, Σ, ∅, S }
PARSE TREES

A → 0A1
A → B
B → #

A 0A1 00A11 00B11 00#11
Build a parse tree for \(a + a \times a\)
Definition: a string is derived **ambiguously** in a context-free grammar if it has more than one parse tree.

Definition: a grammar is **ambiguous** if it generates some string ambiguously.

See G_4 for unambiguous standard arithmetic precedence [adds parens (,)]

$L = \{ a^i b^j c^k | i, j, k \geq 0 \text{ and } (i = j \text{ or } j = k) \}$ is *inherently ambiguous* (xtra credit)

Undecidable to tell if a language has unambiguous parse trees (Post’s problem)
NOT REGULAR

\[\Sigma = \{0, 1\}, \quad L = \{ 0^n1^n \mid n \geq 0 \} \]

But \(L \) is CONTEXT FREE

\[
\begin{align*}
A & \rightarrow 0A1 \\
A & \rightarrow \varepsilon
\end{align*}
\]

WHAT ABOUT?

\[\Sigma = \{0, 1\}, \quad L_1 = \{ 0^n1^n 0^m \mid m, n \geq 0 \} \]
\[\Sigma = \{0, 1\}, \quad L_2 = \{ 0^n1^m 0^n \mid m, n \geq 0 \} \]
\[\Sigma = \{0, 1\}, \quad L_3 = \{ 0^m1^n 0^n \mid m=n \geq 0 \} \]
WHAT ABOUT?

\[\Sigma = \{0, 1\}, \quad L_1 = \{ 0^n1^n 0^m \mid m, n \geq 0 \} \]

\[\Sigma = \{0, 1\}, \quad L_2 = \{ 0^n1^m 0^n \mid m, n \geq 0 \} \]

\[\Sigma = \{0, 1\}, \quad L_3 = \{ 0^m1^n 0^n \mid m=n \geq 0 \} \]
WHAT ABOUT?

$\Sigma = \{0, 1\}, \ L_1 = \{ \ 0^n1^n \ 0^m | \ m, n \geq 0 \ \}$
S \rightarrow AB
A \rightarrow 0A1 $|$ ϵ
B \rightarrow 0B $|$ ϵ

$\Sigma = \{0, 1\}, \ L_2 = \{ \ 0^n1^m \ 0^n | \ m, n \geq 0 \ \}$
S \rightarrow 0S0 $|$ A
A \rightarrow 1A $|$ ϵ

$\Sigma = \{0, 1\}, \ L_3 = \{ \ 0^m1^n \ 0^n | \ m=n \geq 0 \ \}$
THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that

if $w \in L$ and $|w| \geq P$

then can write $w = uv^ixyz$, where:

1. $|vy| > 0$

2. $|vxy| \leq P$

3. For every $i \geq 0$, $uv^ixyz \in L$
WHAT ABOUT?

\[\Sigma = \{0, 1\}, \quad L_3 = \{0^m1^n0^n | m=n \geq 0\} \]

Choose \(w = 0^P 1^P 0^P\).

By the **Pumping Lemma**, we can write \(w = uvxyz\) with \(|vy| > 0, |vxy| \leq P\) such that pumping \(v\) together with \(y\) will produce another word in \(L_3\).

Since \(|vxy| \leq P\), \(vxy = 0^a1^b\), or \(vxy = 1^a0^b\).
WHAT ABOUT?

\[\Sigma = \{0, 1\}, \quad L_3 = \{0^m1^n0^n \mid m=n \geq 0\} \]

Choose \(w = 0^P1^P0^P \).

By the **Pumping Lemma**, we can write \(w = uvxyz \) with \(|vy| > 0, |vxy| \leq P\) such that pumping \(v \) together with \(y \) will produce another word in \(L_3 \).

Since \(|vxy| \leq P\), \(vxy = 0^a1^b \), or \(vxy = 1^a0^b \).

Pumping in the first case will unbalance with the 0’s at the end; in the second case, will unbalance with the 0’s at the beginning. **Contradiction.**
THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that
if $w \in L$ and $|w| \geq P$

then can write $w = uv^ixy^iz$, where:

1. $|vy| > 0$

2. $|vxy| \leq P$

3. For every $i \geq 0$, $uv^ixy^iz \in L$
Idea of Proof: If \(w \) is long enough, then any parse tree for \(w \) must have a path that contains a variable more than once.
Formal Proof:

Let b be the maximum number of symbols (length) on the right-hand side of any rule.

If the height of a parse tree is h, the length of the string generated by that tree is at most: b^h

Let $|V|$ be the number of variables in G.

Define $P = b^{|V|+1}$.

Let w be a string of length at least P.

Let T be a parse tree for w with a minimum number of nodes.

$b^{|V|+1} = P \leq |w| \leq b^h$.

T must have height h at least $|V|+1$.
Let T be a parse tree for w with a minimum number of nodes. T must have height at least $|V| + 1$.

The longest path in T must have $\geq |V| + 1$ variables.

Select R to be a variable that repeats among the lowest $|V| + 1$ variables (in the path).

1. $|vy| > 0$
2. $|vxy| \leq 1$

Let T be a parse tree for w with a minimum number of nodes. T must have height $|V| + 1$.
The longest path in T must have $\geq |V|+1$ variables.

Select R to be a variable in T that repeats, among the lowest $|V|+1$ variables in the tree.

1. $|vy| > 0$ since T has minimum number of nodes.
2. $|vxy| \leq P$ since $|vxy| \leq b^{|V|+1} = P$.

Diagram showing the structure of T with variables u, v, x, y, z, and R. The diagram illustrates the path and the nodes u, v, x, y, and z. The variable R is selected as the one that repeats within the lowest $|V|+1$ variables.