15-453
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
A non-deterministic finite automaton (NFA) is a 5-tuple \(N = (Q, \Sigma, \delta, Q_0, F) \)

- \(Q \) is the set of states (finite)
- \(\Sigma \) is the alphabet (finite)
- \(\delta : Q \times \Sigma \varepsilon \to 2^Q \) is the transition function
- \(Q_0 \subseteq Q \) is the set of start states
- \(F \subseteq Q \) is the set of accept states

* \(2^Q \) is the set of subsets of \(Q \) and \(\Sigma \varepsilon = \Sigma \cup \{\varepsilon\} \)
Let \(w \in \Sigma^* \) and suppose \(w \) can be written as \(w_1 \ldots w_n \) where \(w_i \in \Sigma \varepsilon \) (\(\varepsilon \) is viewed as representing the empty string)

Then \(N \) accepts \(w \) if there are \(r_0, r_1, \ldots, r_n \in Q \) such that

1. \(r_0 \in Q_0 \)
2. \(r_{i+1} \in \delta(r_i, w_{i+1}) \) for \(i = 0, \ldots, n-1 \), and
3. \(r_n \in F \)

\[L(N) = \text{the language of machine } N = \text{set of all strings machine } N \text{ accepts} \]

A language \(L \) is recognized by an NFA \(N \) if \(L = L(N) \).
FROM NFA TO DFA

Input: NFA \(N = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
Q' = 2^Q
\]

\[
\delta' : Q' \times \Sigma \rightarrow Q'
\]

\[
\delta'(R, \sigma) = \bigcup_{r \in R} \varepsilon(\delta(r, \sigma))
\]

\[
q_0' = \varepsilon(Q_0)
\]

\[
F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}
\]

For \(R \subseteq Q \), the \(\varepsilon \)-closure of \(R \), \(\varepsilon(R) = \{ q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \varepsilon \text{ arrows} \} \)
RLs ARE CLOSED UNDER STAR

Star: $A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \}$

Let M be a DFA, and let $L = L(M)$

Can construct an NFA N that recognizes L^*
REGULAR LANGUAGES ARE CLOSED UNDER THE REGULAR OPERATIONS

- **Union:** $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

- **Intersection:** $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

- **Negation:** $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

- **Reverse:** $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

- **Concatenation:** $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

- **Star:** $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$
THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS
WHICH OF THESE ARE REGULAR?

\[B = \{0^n1^n \mid n \geq 0\} \]

\[C = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \]

\[D = \{ w \mid w \text{ has equal number of } 1s \text{ and } 0s\} \]
THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there is a positive integer P s.t.

if $w \in L$ and $|w| \geq P$

then can write $w = xyz$, where:

1. $|y| > 0$ (y isn’t ε)
2. $|xy| \leq P$
3. For every $i \geq 0$, $xy^i z \in L$

Why is it called the pumping lemma? The word w gets PUMPED into something longer…
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Assume \(w \in L \) is such that \(|w| \geq P \)

We show: \(w = xyz \)

1. \(|y| > 0 \)
2. \(|xy| \leq P \)
3. \(xy^iz \in L \) for all \(i \geq 0 \)

There must be \(j \) and \(k \) such that \(j < k \leq P \), and \(r_j = r_k \) (why?) (Note: \(k - j > 0 \))
USING THE **PUMPING LEMMA**

Let’s prove that \(B = \{0^n1^n \mid n \geq 0\} \) is not regular

Assume \(B \) is regular. Let \(w = 0^P1^P \)

If \(B \) is regular, can write \(w = xyz, \ |y| > 0, \ |xy| \leq P, \) and for any \(i \geq 0, \ xy^iz \) is also in \(B \)

- \(y \) must be all 0s: Why? \(|xy| \leq P \)

- \(xyyz \) has more 0s than 1s

Contradiction!
USING THE **PUMPING LEMMA**

\[D = \{ w \mid w \text{ has equal number of 1s and 0s}\} \]

is not regular

Assume \(D \) is regular. Let \(w = 0^P1^P \) (\(w \) is in \(D \)!

If \(D \) is regular, can write \(w = xyz, |y| > 0, |xy| \leq P \), where for any \(i \geq 0 \), \(xy^iz \) is also in \(D \)

\(y \) must be all 0s: Why? \(|xy| \leq P \)

\(xyxyz \) has more 0s than 1s

Contradiction!
WHAT DOES C LOOK LIKE?

\[
C = \{ w \mid \text{w has equal number of occurrences of 01 and 10} \} \\
= \{ w \mid w = 1, w = 0, w = \varepsilon \text{ or w starts with a 0 and ends with a 0 or w starts with a 1 and ends with a 1} \} \\
1 \cup 0 \cup \varepsilon \cup 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1
\]
REGULAR EXPRESSIONS
(expressions representing languages)

\(\emptyset\) is a regexp representing \(\{\emptyset\}\)

\(\varepsilon\) is a regexp representing \(\{\varepsilon\}\)

\(\emptyset\) is a regexp representing \(\emptyset\)

If \(R_1\) and \(R_2\) are regular expressions representing \(L_1\) and \(L_2\) then:

\((R_1R_2)\) represents \(L_1 \cdot L_2\)

\((R_1 \cup R_2)\) represents \(L_1 \cup L_2\)

\((R_1)^*\) represents \(L_1^*\)
PRECEDENCE

* · U
EXAMPLE

\[R_1^* R_2 \cup R_3 = ((R_1^*) R_2) \cup R_3 \]
\{ \text{w} \mid \text{w has exactly a single 1} \}
What language does \emptyset^* represent?

$\{\varepsilon\}$
\{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \}\}

(0U1)(0U1)0(0U1)^*
\{ w \mid \text{every odd position of } w \text{ is a } 1 \} \\
(1(0 \cup 1))^*(1 \cup \varepsilon)
EQUIVALENCE

L can be represented by a regexp
⇔ L is regular

1. L can be represented by a regexp
 ⇒ L is regular

2. L can be represented by a regexp
 ⇐ L is a regular language
1. Given regular expression R, we show there exists NFA N such that R represents $L(N)$

Induction on the *length* of R:

Base Cases (R has length 1):

- $R = \sigma$

 ![Diagram](image1)

- $R = \varepsilon$

 ![Diagram](image2)

- $R = \emptyset$

 ![Diagram](image3)
Inductive Step:

Assume R has length $k > 1$, and that every regular expression of length $< k$ represents a regular language.

Three possibilities for R:

- $R = R_1 \cup R_2$ \hspace{1cm} (Union Theorem!)
- $R = R_1 R_2$ \hspace{1cm} (Concatenation)
- $R = (R_1)^*$ \hspace{1cm} (Star)

Therefore: L can be represented by a regexp $\Rightarrow L$ is regular.
Give an NFA that accepts the language represented by \((1(0 \cup 1))^*\)
2. L can be represented by a regexp

\[L \text{ is a regular language} \]

Proof idea: Transform an NFA for L into a regular expression by **removing states** and re-labeling arrows with regular expressions.
Add \textit{while} each internal state has more than two states:

Pick an internal state, \textit{rip it out} and \textit{re-label the arrows with regexps}, to account for the missing state.
While machine has more than 2 states:

More generally:

\[R(q_1, q_3) \cup R(q_2, q_2) \cup R(q_1(q_2), q_2) R(q_2, q_2)^* R(q_2, q_3) \]
$R(q_0, q_3) = (a^*b)(a \cup b)^*$

represents $L(N)$
Formally: Add q_{start} and q_{accept} to create G (GNFA)

Run CONVERT(G):
(Outputs a regexp)

If $\#\text{states} = 2$
return

If $\#\text{states} \neq 2$
the expression on the arrow going from q_{start} to q_{accept}
Formally: Add q_{start} and q_{accept} to create G (GNFA)

Run CONVERT(G): (Outputs a regexp)

If \#states > 2

select $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept}

define $Q' = Q - \{q_{\text{rip}}\}$

define R' as:

$$R'(q_i, q_j) = R(q_i, q_{\text{rip}})R(q_{\text{rip}}, q_{\text{rip}})^*R(q_{\text{rip}}, q_j) \cup R(q_i, q_j)$$

(R' = the regexps for edges in G')

We note that G and G' are equivalent

return CONVERT(G')
Claim: CONVERT(G) is equivalent to G

Proof by induction on k (number of states in G)

Base Case:
 \[k = 2 \]

Inductive Step:
Assume claim is true for k-1 state GNFAs

Recall that G and G′ are equivalent

But, by the induction hypothesis, G′ is equivalent to CONVERT(G′)

Thus: CONVERT(G′) equivalent to CONVERT(G)

QED
(bb ∪ (a ∪ ba)b*a)* (b ∪ (a ∪ ba)b*)
Convert the NFA to a regular expression

\[(a \cup b) b^* b (b b^* b)^* a \]
\[(a \cup b)b*b(bb*b)*a)* \cup
(a \cup b)b*b(bb*b)*a)*(a \cup b)b*b(bb*b)*\]
DEFINITION

DFA <-> NFA

Regular Language <-> Regular Expression
WWW.FLAC.WS

Finish Chapter 1 for next time.