NON-DETERMINISM and REGULAR OPERATIONS
UNION THEOREM
The union of two regular languages is also a regular language

“Regular Languages Are Closed Under Union”

INTERSECTION THEOREM
The intersection of two regular languages is also a regular language
Complement **THEOREM**

The complement of a regular language is also a regular language.

In other words, if L is regular than so is $\neg L$, where $\neg L = \{ w \in \Sigma^* \mid w \notin L \}$.

Proof?
$L(M) = \{ w \mid w \text{ begins with } 1 \}$

$\neg L(M) = \{ w \mid w \text{ does not begin with } 1 \}$

Is $\neg L(M)$ regular?
\[\neg L(M) = \{ \text{w} \mid \text{w does not begin with 1} \} \]

Is \(\neg L(M) \) regular?
Suppose our machine reads strings from right to left… What language would be recognized then?

$L(M) = \{ w \mid w \text{ begins with } 1 \}$

$L^R = \{ w \mid w \text{ ends with } 1 \}$

Is L^R regular?
$L^R = \{ w \mid w \text{ ends with } 1 \}$

Is L^R regular?
\(L^R = \{ w \mid w \text{ ends with } 1 \} \)

Is \(L^R \) regular?
$L^R = \{ w \mid w \text{ ends with } 1 \}$

Is L^R regular?
THE REVERSE OF A LANGUAGE

Reverse: $L^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in L, w_i \in \Sigma \}$

If L is recognized by a normal DFA, then L^R is recognized by a DFA reading from right to left!

Can every “Right-to-Left DFA” be replaced by a normal DFA??
REVERSE THEOREM

The reverse of a regular language is also a regular language.

“Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language.
REVERSING DFAs

Assume L is a regular language. Let M be a DFA that recognizes L.

Task: Build a DFA M^R that accepts L^R.

If M accepts w, then w describes a directed path in M from *start* to an *accept* state.

First Attempt: Try to define M^R as M with the arrows reversed. Turn *start state* into a *final state*. Turn *final states* into *start states*.
M^R IS NOT ALWAYS A DFA!

It could have many start states
Some states may have too many outgoing edges, or none at all!
NONDETERMINISM is BORN!

What happens with 100?

We will say that this machine accepts a string if there is some path that reaches an accept state from a start state.
Finite Automata and Their Decision Problems

Abstract: Finite automata are considered in this paper as instruments for classifying finite tapes. Each one-tape automaton defines a set of tapes, a two-tape automaton defines a set of pairs of tapes, et cetera. The structure of the defined sets is studied. Various generalizations of the notion of an automaton are introduced and their relation to the classical automata is determined. Some decision problems concerning automata are shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract prototype of digital computers; workers in the field, however, have felt more and more that the notion of a Turing machine is too general to serve as an accurate model of actual computers. It is well known that even for simple calculations it is impossible to give an a priori upper bound on the amount of tape a Turing machine will need for any given computation. It is precisely this feature that renders Turing's concept unrealistic.

In the last few years the idea of a finite automaton has appeared in the literature. These are machines having a method of viewing automata but have retained throughout a machine-like formalism that permits direct comparison with Turing machines. A neat form of the definition of automata has been used by Burks and Wang and by E. F. Moore, and our point of view is closer to theirs than it is to the formalism of nerve-nets. However, we have adopted an even simpler form of the definition by doing away with a complicated output function and having our machines simply give “yes” or “no” answers. This was also used by Myhill, but our generalizations to the “nondeterministic,” “two-way,” and “many-tape”
At each state, we can have any number of out arrows for each letter $\sigma \in \Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.

$L(M) = \{ w \mid w \text{ contains a } 0 \}$
Possibly many start states

\[L(M) = \{0^i1^j \mid i \in \{0,1\}, j \geq 0\} \]
NFA EXAMPLES

L(M) = \{1, 00\}
A non-deterministic finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \varepsilon \rightarrow 2^Q$ is the transition function
- $Q_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$
Let $w \in \Sigma^*$ and suppose w can be written as
$w_1 \ldots w_n$ where $w_i \in \Sigma_\varepsilon$ ($\varepsilon = \text{empty string}$)

Then N accepts w if there are $r_0, r_1, \ldots, r_n \in Q$ such that

1. $r_0 \in Q_0$
2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for $i = 0, \ldots, n-1$, and
3. $r_n \in F$

$L(N) = \text{the language recognized by } N$
$L = \text{set of all strings machine } N \text{ accepts}$

A language L is recognized by an NFA N if $L = L(N)$.
Deterministic Computation

Non-Deterministic Computation

accept or reject

accept

reject
\(N = (Q, \Sigma, \delta, Q_0, F) \)

\(Q = \{q_1, q_2, q_3, q_4\} \)

\(\Sigma = \{0,1\} \)

\(Q_0 = \{q_1, q_2\} \)

\(F = \{q_4\} \subseteq Q \)

\(\delta(q_2, 1) = \{q_4\} \)

\(\delta(q_3, 1) = \emptyset \quad \delta(q_3, \varepsilon) = \{q_2\} \)

\(\delta(q_1, 0) = \{q_3\} \)
\[N = (Q, \Sigma, \delta, Q_0, F) \]

\[Q = \{q_1, q_2, q_3, q_4\} \]

\[\Sigma = \{0, 1\} \]

\[Q_0 = \{q_1, q_2\} \]

\[F = \{q_4\} \subseteq Q \]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>{q_3}</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\emptyset)</td>
<td>{q_4}</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{q_4}</td>
<td>(\emptyset)</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

00 \(\in \) \(L(N) \)?

01 \(\in \) \(L(N) \)?
\[\begin{align*}
N &= (Q, \Sigma, \delta, Q_0, F) \\
Q &= \{q_1, q_2, q_3, q_4\} \\
\Sigma &= \{0, 1\} \\
Q_0 &= \{q_1, q_2\} \\
F &= \{q_4\} \subseteq Q
\end{align*} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\delta & 0 & 1 & \varepsilon \\
\hline
q_1 & \{q_2, q_3\} & \emptyset & \emptyset \\
q_2 & \emptyset & \{q_4\} & \emptyset \\
q_3 & \{q_4\} & \emptyset & \emptyset \\
q_4 & \emptyset & \emptyset & \emptyset \\
\hline
\end{array}
\]

00 \in L(N)?

01 \in L(N)?
N = (Q, Σ, δ, Q₀, F)

Q = \{q₁, q₂, q₃, q₄\}

Σ = \{0, 1\}

Q₀ = \{q₁, q₂\}

F = \{q₄\} ⊆ Q

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>{q₂, q₃}</td>
<td>∅</td>
</tr>
<tr>
<td>q₂</td>
<td>∅</td>
<td>{q₄}</td>
</tr>
<tr>
<td>q₃</td>
<td>{q₄}</td>
<td>∅</td>
</tr>
<tr>
<td>q₄</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

00 ∈ L(N)?

01 ∈ L(N)?
MULTIPLE START STATES

We allow *multiple* start states for NFAs, and Sipser allows only one.

Can easily convert NFA with many start states into one with a single start state:
UNION THEOREM FOR NFAs?
NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language \{1\}:

A DFA that recognizes the language \{1\}:
BUT DFAs CAN **SIMULATE** NFAs!

Theorem: Every NFA has an equivalent* DFA

Corollary: A language is regular iff it is recognized by an NFA

Corollary: \(L \) is regular iff \(L^R \) is regular

* \(N \) is equivalent to \(M \) if \(L(N) = L(M) \)
FROM NFA TO DFA

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To see if NFA accepts, we could do the computation in parallel, maintaining the set of all possible states that can be reached.

Idea:

$Q' = 2^Q$
FROM NFA TO DFA

Input: NFA \(N = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
\begin{align*}
Q' &= 2^Q \\
\delta' &: Q' \times \Sigma \rightarrow Q' \\
\delta'(R, \sigma) &= \bigcup_{r \in R} \varepsilon(\delta(r, \sigma)) \\
q_0' &= \varepsilon(Q_0) \\
F' &= \{ R \in Q' \mid f \in R \text{ for some } f \in F \}
\end{align*}
\]

For \(R \subseteq Q \), the \(\varepsilon \)-closure of \(R \), \(\varepsilon(R) = \{ q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \varepsilon \text{ arrows} \} \)
EXAMPLE OF ε-CLOSURE

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$
$\varepsilon(\{q_1\}) = \{q_1, q_2\}$
$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, \{\{1\}, \ldots\})$$

$\epsilon(\{1\}) = \{1,3\}$
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: equivalent DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \{1\} & \{2\} & \{3\} \\
\end{array}
\]

\(\varepsilon(\{1\}) = \{1,3\} \)
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: equivalent DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
\begin{array}{|c|c|c|}
\hline
\delta' & a & b \\
\hline
\emptyset & \{} & \{} \\
\{1\} & \{} & \{} \\
\{2\} & \{} & \{} \\
\{3\} & \{} & \{} \\
\{1,2\} & \{} & \{} \\
\{1,3\} & \{} & \{} \\
\{2,3\} & \{} & \{} \\
\{1,2,3\} & \{} & \{} \\
\hline
\end{array}
\]

\(q_0' = \varepsilon(\{1\}) = \{1,3\} \)
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: equivalent DFA $M = (Q', \Sigma, \delta', q_0', F')$

$q_0' = \varepsilon(\{1\}) = \{1,3\}$

<table>
<thead>
<tr>
<th>δ'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${1,2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${1,3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${2,3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${1,2,3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Given: NFA $N = (\{1, 2, 3\}, \{a, b\}, \delta, \{1\}, \{1\})$

Construct: equivalent DFA $M = (Q', \Sigma, \delta', q_0', F')$

$q_0' = \varepsilon(\{1\}) = \{1, 3\}$

δ'

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${1}$</td>
<td>${1}$</td>
<td>${1}$</td>
</tr>
<tr>
<td>${2}$</td>
<td>${2}$</td>
<td>${2}$</td>
</tr>
<tr>
<td>${3}$</td>
<td>${3}$</td>
<td>${3}$</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>${1, 2}$</td>
<td>${1, 2}$</td>
</tr>
<tr>
<td>${1, 3}$</td>
<td>${1, 3}$</td>
<td>${1, 3}$</td>
</tr>
<tr>
<td>${2, 3}$</td>
<td>${2, 3}$</td>
<td>${2, 3}$</td>
</tr>
<tr>
<td>${1, 2, 3}$</td>
<td>${1, 2, 3}$</td>
<td>${1, 2, 3}$</td>
</tr>
</tbody>
</table>
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: equivalent DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{1\} & \emptyset & \{2\} \\
\{2\} & \{3\} & \{1,2\} \\
\{3\} & \{1,3\} & \{2,3\} \\
\{1,2,3\} & \{1,2,3\} & \{1,2,3\}
\end{array}
\]

\(q_0' = \varepsilon(\{1\}) = \{1,3\} \)
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: equivalent DFA \(M = (Q', \Sigma, \delta', q_0', F') \)
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: equivalent DFA $M = (Q', \Sigma, \delta', q_0', F')$
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: equivalent DFA \(M = (Q', \Sigma, \delta', q'_0, F') \)

\(q'_0 = \epsilon(\{1\}) = \{1,3\} \)
NFAs CAN MAKE PROOFS MUCH EASIER!

Remember this on your Homework!
REGULAR LANGUAGES CLOSED UNDER CONCATENATION

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Given DFAs \(M_1 \) and \(M_2 \), connect accept states in \(M_1 \) to start states in \(M_2 \)
REGULAR LANGUAGES CLOSED UNDER CONCATENATION

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Given DFAs M_1 and M_2, connect accept states in M_1 to start states in M_2.

$L(N) = L(M_1) \cdot L(M_2)$
RLs ARE CLOSED UNDER STAR

Star: $A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \}$

Let M be a DFA, and let $L = L(M)$

Can construct an NFA N that recognizes L^*
Formally:

Input: \(M = (Q, \Sigma, \delta, q_1, F) \)

Output: \(N = (Q', \Sigma, \delta', \{q_0\}, F') \)

\[
Q' = Q \cup \{q_0\}
\]

\[
F' = F \cup \{q_0\}
\]

\[
\delta'(q,a) = \begin{cases}
\{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \varepsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon \\
\emptyset & \text{else}
\end{cases}
\]
Show: \(L(N) = L^*\) where \(L = L(M)\)

1. \(L(N) \supseteq L^*\)

2. \(L(N) \subseteq L^*\)
1. \(L(N) \supseteq L^* \) (where \(L = L(M) \))

Assume \(w = w_1...w_k \) is in \(L^* \), where \(w_1,...,w_k \in L \)

We show \(N \) accepts \(w \) by induction on \(k \)

Base Cases:
- \(k = 0 \) \((w = \varepsilon) \)
- \(k = 1 \) \((w \in L) \)

Inductive Step:

Assume \(N \) accepts all strings \(v = v_1...v_k \in L^* \), \(v_i \in L \)

and let \(u = u_1...u_k u_{k+1} \in L^* \), \(u_j \in L \)

Since \(N \) accepts \(u_1...u_k \) (by induction) and \(M \) accepts \(u_{k+1} \), \(N \) must accept \(u \)
Assume \(w \) is accepted by \(N \), we show \(w \in L^* \)

If \(w = \varepsilon \), then \(w \in L^* \)

If \(w \neq \varepsilon \), write \(w \) as \(w = uv \), where \(v \) is the substring read after the last \(\varepsilon \)-transition.
REGULAR LANGUAGES ARE CLOSED UNDER THE REGULAR OPERATIONS

- **Union:** $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

- **Intersection:** $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

- **Negation:** $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

- **Reverse:** $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

- **Concatenation:** $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

- **Star:** $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$
SOME LANGUAGES **ARE NOT** REGULAR

\[B = \{0^n1^n \mid n \geq 0\} \text{ is NOT regular!} \]
WHICH OF THESE ARE REGULAR

\[C = \{ w \mid w \text{ has equal number of occurrences of 01 and 10} \} \]

REGULAR!!!

\[D = \{ w \mid w \text{ has equal number of 1s and 0s} \} \]

NOT REGULAR
WWW.FLAC.WS

Read Chapters 1.3 and 1.4 of the book for next time