THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms EQUALS Turing Machines
UNDECIDABILITY II: REDUCTIONS
TUESDAY Feb 18
\[A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \]

\[A_{TM} \text{ is undecidable: (constructive proof & subtle) } \]

Assume machine H **semi-decides** \[A_{TM} \] (such exist, why?)

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Rejects or loops} & \text{otherwise}
\end{cases}
\]

Construct a new TM \[D_H \] as follows: on input M, run H on (M,M) and output the “**opposite**” of H whenever possible.
\[D_H (D_H) = \begin{cases}
\text{Reject if } D_H \text{ accepts } D_H \\
\text{(i.e. if } H(D_H, D_H) = \text{Accept}) \\
\text{Accept if } D_H \text{ rejects } D_H \\
\text{(i.e. if } H(D_H, D_H) = \text{Reject}) \\
\text{loops if } D_H \text{ loops on } D_H \\
\text{(i.e. if } H(D_H, D_H) \text{ loops})
\end{cases} \]

\textbf{Note:} It must be the case that \(D_H \) loops on \(D_H \)

There is \textbf{no} contradiction here!

Thus we have \textit{effectively} constructed an instance which does not belong to \(A_{TM} \) (namely, \((D_H, D_H)\)) but \(H \) fails to tell us that.
That is:

Given any semi-decision machine H for A_{TM} (and thus a potential decision machine for A_{TM}), we can effectively construct an instance which does not belong to A_{TM} (namely, (D_H, D_H)) but H fails to tell us that.

So H cannot be a decision machine for A_{TM}.
In most cases, we will show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}.

We reduce deciding A_{TM} to deciding the language in question $A_{TM} \ 	ext{"<"} \ L$.
THE HALTING PROBLEM

$\text{HALT}_{\text{TM}} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$

Theorem: HALT_{TM} is undecidable

Proof: Assume, for a contradiction, that TM H decides HALT_{TM}

We use H to construct a TM D that decides A_{TM}

On input (M,w), D runs H on (M,w)

- If H rejects then reject
- If H accepts, run M on w until it halts:
 - Accept if M accepts and
 - Reject if M rejects
If M doesn't halt: REJECT

If M halts:

Does M halt on w?

ACCEPT if halts in accept state
REJECT otherwise
In most cases, we will show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}.

We **reduce** deciding A_{TM} to deciding the language in question.

$$A_{TM} \text{ } \text{“<“} \text{ } L$$

So, $A_{TM} \text{ } \text{“<“} \text{ } \text{Halt}_{TM}$

Is $\text{Halt}_{TM} \text{ } \text{“<“} \text{ } A_{TM}$?
\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

\[\text{HALT}_{TM} = \{ (M, w) \mid M \text{ is a TM that halts on string } w \} \] (*)

\[E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} \] (*)

\[\text{REG}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \] (*)

\[\text{EQ}_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \} \] (*)

\[\text{ALL}_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \} \] (*)

ALL UNDECIDABLE

(*) Use Reductions to Prove Which are SEMI-DECIDABLE?

What about complements?
$E_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof: Assume, for a contradiction, that TM Z decides E_{TM}. Use Z as a subroutine to decide A_{TM}.

Algorithm for deciding A_{TM}: On input (M,w):

1. Create M_w
2. Run Z on M_w

So, $L(M_w) = \emptyset \iff M(w)$ does not accept

$L(M_w) \neq \emptyset \iff M(w)$ accepts
Erase s, run $M(w)$

So, $L(M_w) = \emptyset \iff M(w)$ does not accept

Decision Machine for A_{TM}

Accepts if M does not accept w
Rejects, otherwise

REVERSE accept/reject
Theorem: REGULAR_{TM} is undecidable

Proof: Assume, for a contradiction, that TM \(R \) decides REGULAR_{TM}

Use \(R \) as a subroutine to decide \(A_{TM} \)

1. Create \(M'_w \)

2. Run \(R \) on \(M'_w \)

So, \(L (M'_w) = \Sigma^* \iff M(w) \) accepts

\(L (M'_w) = \{0^n1^n\} \iff M(w) \) does not accept
If $s = 0^n1^n$, accept
Else run $M(w)$

$L(M_w') = \Sigma^*$ if $M(w)$ accepts
{0^n1^n} otherwise

$L(M_w')$ is regular $\iff M(w)$ accepts

Is $L(M_w')$ regular?

Yes $\iff M$ accepts w
MAPPING REDUCIBILITY

$f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

A language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

f is called a **reduction** from A to B.

Think of f as a "**computable coding**".
A is mapping reducible to B, $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that $w \in A \iff f(w) \in B$

Also, $\neg A \leq_m \neg B$, why?
Theorem: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

Proof: Let \(M \) decide \(B \) and let \(f \) be a reduction from \(A \) to \(B \).

We build a machine \(N \) that decides \(A \) as follows:

On input \(w \):

1. Compute \(f(w) \)
2. Run \(M \) on \(f(w) \)
Theorem: If $A \leq_m B$ and B is (semi) decidable, then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a reduction from A to B

We build a machine N that (semi) decides A as follows:

On input w:

1. Compute $f(w)$
2. Run M on $f(w)$
All undecidability proofs from today can be seen as constructing an \(f \) that reduces \(A_{TM} \) to the proper language.

(Sometimes you have to consider the complement of the language.)
All undecidability proofs from today can be seen as constructing an f that reduces A_{TM} to the proper language $A_{TM} \leq_m Halt_{TM}$ (So also, $\neg A_{TM} \leq_m \neg Halt_{TM}$):

Map $(M, w) \rightarrow (M', w)$
where $M'(w) = M(w)$ if $M(w)$ accepts
loops otherwise

So $(M, w) \in A_{TM} \iff (M', w) \in Halt_{TM}$
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

$E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

CLAIM: $A_{TM} \leq_m \neg E_{TM}$

CONSTRUCT $f : \Sigma^* \rightarrow \Sigma^*$

$f : (M,w) \rightarrow M_w$ where $M_w(s) = M(w)$

So, $M(w)$ accepts $\iff L(M_w) \neq \emptyset$

So, $(M, w) \in A_{TM} \iff M_w \in \neg E_{TM}$

So $\neg E_{TM}$ is NOT DECIDABLE, but it is SEMI-DECIDABLE (why?) Is E_{TM} SEMI-DECIDABLE?
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

$REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

CLAIM: $A_{TM} \leq_m REG_{TM}$ So REG_{TM} is UNDECIDABLE

CONSTUCT $f : \Sigma^* \rightarrow \Sigma^*$

$f: (M,w) \rightarrow M'_w \text{ where } M'_w(s) = \text{ accept if } s = 0^n1^n M(w) \text{ otherwise}$

So, $L(M'_w) = \Sigma^*$ if $M(w)$ accepts

$\{0^n1^n\}$ if not

So, $(M, w) \in A_{TM} \iff M'_w \in REG_{TM}$

Is REG SEMI-DECIDABLE? (\neg REG is not. Why?)
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

$REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

CLAIM: $\neg A_{TM} \leq_{m} REG_{TM}$ So REG_{TM} is NOT SEMI-DECIDABLE

CONSTRUCT $f : \Sigma^* \rightarrow \Sigma^*$

$f: (M,w) \rightarrow M''_w$ where $M''_w(s) = \text{accept if } s = 0^n1^n$ and $M(w)$ accepts

Loop otherwise

So, $L(M'_w) = \{0^n1^n\}$ if $M(w)$ accepts

\emptyset if not

So, $(M, w) \notin A_{TM} \iff M''_w \in REG_{TM}$

So, REG NOT SEMI-DECIDABLE
\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

\[\text{HALT}_{TM} = \{ (M, w) \mid M \text{ is a TM that halts on string } w \} \]

\[E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[\text{REG}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

\[\text{EQ}_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \} \]

\[\text{ALL}_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \} \]

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

What about complements?
\[E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \} \]

CLAIM: \(E_{TM} \leq_m EQ_{TM} \) \(\Rightarrow \) \(EQ_{TM} \) is UNDECIDABLE

CONSTRUCT \(f : \Sigma^* \rightarrow \Sigma^* \)

\[f : M \rightarrow (M, M \emptyset) \text{ where } M \emptyset (s) = \text{Loops} \]

\[\text{So, } M \in E_{TM} \iff (M, M \emptyset) \in EQ_{TM} \]

Is \(EQ_{TM} \) SEMI-DECIDABLE? \(\text{NO, since,} \]

\[\neg A_{TM} \leq_m E_{TM} \leq_m EQ_{TM} \]

What about \(\neg EQ_{TM} \)?
$A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \}$

$EQ_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \}$

CLAIM: $A_{TM} \leq_m EQ_{TM}$

So, $\neg EQ_{TM}$ is not semi-decidable

CONSTRUCT $f : \Sigma^* \rightarrow \Sigma^*$

$f : (M, w) \rightarrow (M_w, M_A)$

Where for each s in Σ^*,

$M_w(s) = M(w)$ and $M_A(s)$ always accepts

So, $(M, w) \in A_{TM} \iff (M_w, M_A) \in EQ_{TM}$
Undecidable given a TM to tell if the language it recognizes is empty. It’s not even semi-decidable, altho it is semi-decidable to tell if the language is non-empty.

Undecidable given a TM to tell if it is equivalent to a FSM. It’s not even semi-decidable, nor is it semi-decidable to tell if it is not equivalent to a FSM.

Undecidable given 2 TMs to tell if they are equivalent. It’s not even semi-decidable, nor is it semi-decidable to tell if they are not
A_{TM} = \{ (M,w) | M \text{ is a TM that accepts string } w \} \\
ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \} \\

CLAIM: A_{TM} \leq_m \neg ALL_{PDA} \\

CONSTRUCT f : \Sigma^* \rightarrow \Sigma^* \\

Idea! More subtle construction

Map \((M,w)\) to a PDA \(P_w\) that recognizes \(\Sigma^*\) if and only if \(M\) does not accept \(w\)

So, \((M, w) \notin A_{TM} \iff P_w \in ALL_{PDA}\)

\(P_w\) will recognize all (and only those) strings that are NOT accepting computation histories for \(M\) on \(w\)
CONFIGURATIONS

11010q_700110

q_7

11010100001110
COMPUTATION HISTORIES

An accepting computation history is a sequence of configurations C_1, C_2, \ldots, C_k, where

1. C_1 is the start configuration,
2. C_k is an accepting configuration,
3. Each C_i follows from C_{i-1}

An rejecting computation history is a sequence of configurations C_1, C_2, \ldots, C_k, where

1. C_1 is the start configuration,
2. C_k is a rejecting configuration,
3. Each C_i follows from C_{i-1}
An **accepting computation history** is a sequence of configurations C_1, C_2, \ldots, C_k, where

1. C_1 is the start configuration,
2. C_k is an accepting configuration,
3. Each C_i follows from C_{i-1}

An **rejecting computation history** is a sequence of configurations C_1, C_2, \ldots, C_k, where

1. C_1 is the start configuration,
2. C_k is a rejecting configuration,
3. Each C_i follows from C_{i-1}

M accepts w if and only if there exists an accepting computation history that starts with $C_1 = q_0w$
P will recognize all strings (read as sequences of configurations) that:

1. Do not start with C_1 or
2. Do not end with an accepting configuration or
3. Where some C_i does not properly yield C_{i+1}

Non-deterministic checks for 1, 2, and 3.
P will reject all strings (read as sequences of configurations) that:

1. Start with C_1 and
2. End with an accepting configuration and
3. Where each C_i properly yields C_{i+1}

Non-deterministic checks for 1, 2, and 3.
\{ 0^{2^n} \mid n \geq 0 \}
\{ 0^{2n} \mid n \geq 0 \}
P recognizes all strings except accepting computation histories:

$$\text{#C}_1 \text{# C}_2^R \text{#C}_3 \text{#C}_4^R \text{#C}_5 \text{#C}_6^R \text{#...# C}_k$$

If i is odd, put C_i on stack and see if C_{i+1}^R follows properly:

For example,

If $uaq_i bv$ and $\delta (q_i, b) = (q_j, c, R)$,

then C_i properly yields $C_{i+1} \iff C_{i+1} = uacq_jv$
P recognizes all strings except accepting computation histories:

#\text{C}_1# \text{C}_2^R \#\text{C}_3 \#\text{C}_4^R \#\text{C}_5 \#\text{C}_6^R \#\ldots\# \text{C}_k

If \(i\) is odd, put \text{C}_i on stack and see if \text{C}_{i+1}^R follows properly:

For example,

If \(=u\text{aq}_i\text{b}v\) and \(\delta (q_i, b) = (q_j, c, L),\)
then \(C_k\) properly yields \(C_{k+1} \Leftrightarrow C_{k+1} = u\text{q}_j\text{a}c\text{v}\)
P recognizes all strings except accepting computation histories:

#C₁# C₂^{R} #C₃ #C₄^{R} #C₅ #C₆^{R} #....# Cₖ

If i is even, put Cᵢ^{R} on stack and see if Cᵢ₊₁ follows properly.
EVEN
EVEN

q_00000

q_1000

q_300

xq_300

$x0q_40$

$x0xq_3$

$x0q_2x$

xq_20x

q_2x0x

$q_00000#000q_1#xq_300#0q_40x#x0xq_3#...#$
\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

\[\text{ALL}_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \} \]

CLAIM: \(A_{TM} \leq_m \neg \text{ALL}_{PDA} \)

CONSTRUCT \(f : \Sigma^* \rightarrow \Sigma^* \)

\[f : (M, w) \rightarrow P_w \text{ where } \]

\[P_w (s) = \text{accept} \iff s \text{ is NOT an accepting computation of } M(w) \]

So, \((M, w) \notin A_{TM} \iff P_w \in \text{ALL}_{PDA} \)

So, \((M, w) \in A_{TM} \iff P_w \in \neg \text{ALL}_{PDA} \)

EXPLAIN THE PROOF TO YOUR NEIGHBOR
\(A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \)

\(\text{HALT}_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \} \)

\(E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} \)

\(\text{REG}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \)

\(\text{EQ}_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \} \)

\(\text{ALL}_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \} \)

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

What about complements?
Read chapter 5.1-5.3 of the book for next time
THE PCP GAME

ba

a

a

ab

b

bcb

b

a
GENERAL RULE #1

If every top string is longer than the corresponding bottom one, there can’t be a match
GENERAL RULE #2

If there is a domino with the same string on the top and on the bottom, there is a match
POST CORRESPONDENCE PROBLEM
Given a collection of dominos, is there a match?
PCP = \{ P \mid P \text{ is a set of dominos with a match} \}

PCP is undecidable!
THE FPCP GAME

... is just like the PCP game except that a match has to start with the first domino
FPCP

aaa

a

c

aa

a

c

a
Theorem: FPCP is undecidable

Proof: Assume machine C decides FPCP

We will show how to use C to decide A_{TM}
Given \((M, w)\)

we will construct a set of dominos \(P_{M,w}\) where a match is an accepting computation history for \(M\) on \(w\)

\[
P_{M,w} = \begin{array}{ccc}
\text{caa} & \text{aba} & \text{...} \\
\text{c} & \text{bb} & \text{d}
\end{array}
\]
\{ 0^{2^n} \mid n \geq 0 \}

Diagram:

- States: q_0, q_1, q_2, q_3, q_4
- Transitions:
 - 0 \rightarrow \square, R
 - x \rightarrow x, R
 - x \rightarrow x, L
 - 0 \rightarrow 0, L
 - 0 \rightarrow 0, R
\{ 0^{2n} \mid n \geq 0 \}
Given \((M,w)\), we will construct an instance \(P_{M,w}\) of FPCP in 7 steps.

Assume \(M\) on \(w\) never attempts to move off the left hand edge of tape.
STEP 1

Put \#q_0w_1w_2\ldots w_n\# into P

For start configuration

START
STEP 2

If $\delta(q,a) = (p,b,R)$ then add \underbrace{qa}_{bp}

STEP 3

If $\delta(q,a) = (p,b,L)$ then add \underbrace{cqa}_{pcb} for all $c \in \Gamma$
$$\{ 0^{2^n} \mid n \geq 0 \}$$
STEP 4

For all \(a \in \Gamma \) add:

For tape cells not adjacent to head.

STEP 5

For configuration separator add:

To simulate the blanks on the right hand side of tape.

CONTINUE
STEP 4

Add a for all $a \in \Gamma$

STEP 5

Add $#$ for all $a \in \Gamma$

STEP 6

Add aq_{acc} for all $a \in \Gamma$
STEP 7

add $q_{acc}##$

END
Given \((M,w)\), we can construct an instance of FPCP that has a match if and only if \(M\) accepts \(w\).
Can convert an instance of FPCP into one of PCP:

Let $u = u_1u_2\ldots u_n$, define:

\[\star u = \star u_1 \star u_2 \star u_3 \star \ldots \star u_n \]

\[u\star = u_1 \star u_2 \star u_3 \star \ldots \star u_n \star \]

\[\star u\star = \star u_1 \star u_2 \star u_3 \star \ldots \star u_n \star \]

FPCP:

\[
\begin{array}{ccc}
 t_1 & & t_k \\
 \hline \\
 b_1 & & b_k
\end{array}
\]

PCP:

\[
\begin{array}{ccc}
 \star t_1 & & \star t_k \\
 \hline \\
 \star b_1 & & \star b_k
\end{array}
\]

\[
\begin{array}{c}
 \star \diamond
\end{array}
\]
Given \((M, w)\), we can construct an instance of PCP that has a match if and only if \(M\) accepts \(w\)