First class I taught at CMU.

This class will be a small variation of the Of Lenore Blum’s Spring 2014. (quizes)
Office Hours

Prof. Rudich: Tuesday, 1:30-2:30 PM
GHC 7219

Asa: Monday, 6:30-8:00 PM

Owen: Wednesday, 7:00-9:00 PM

Andrew: TBD

(Locations TBD)
http://www.contrib.andrew.cmu.edu/~okahn/flac-s15/index.html
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Reading</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue Jan 13</td>
<td>Overview; Deterministic Finite Automata and Regular Languages</td>
<td>Chapters 0, 1.1</td>
<td></td>
</tr>
<tr>
<td>Thu Jan 15</td>
<td>Non-determinism and Regular Operations</td>
<td>Chapter 1.2</td>
<td>HW 1 out</td>
</tr>
<tr>
<td>Tue Jan 20</td>
<td>Regular Expressions and the Pumping Lemma for Regular Languages</td>
<td>Chapter 1.3, 1.4</td>
<td></td>
</tr>
<tr>
<td>Thu Jan 22</td>
<td>Minimizing DFAs</td>
<td>Finish Chapter 1</td>
<td>HW 1 due HW 2 out</td>
</tr>
<tr>
<td>Tue Jan 27</td>
<td>Push-Down Automata and Context-Free Grammars; Pumping Lemma for CFLs</td>
<td>Chapter 2.1, 2.2, 2.3</td>
<td></td>
</tr>
<tr>
<td>Thu Jan 29</td>
<td>Equivalence of PDAs and CFGs</td>
<td></td>
<td>HW 2 due HW 3 out</td>
</tr>
<tr>
<td>Tue Feb 3</td>
<td>Chomsky Normal Form, Turing Machines</td>
<td>Chapter 2, Chapter 3</td>
<td></td>
</tr>
<tr>
<td>Thu Feb 5</td>
<td>Undecidability</td>
<td>Chapter 3, Chapter 4</td>
<td>Project Report 1 due HW 3 due</td>
</tr>
<tr>
<td>Tue Feb 10</td>
<td>Review</td>
<td></td>
<td>HW 3 due</td>
</tr>
<tr>
<td>Thu Feb 12</td>
<td>Midterm 1</td>
<td></td>
<td>HW 4 out</td>
</tr>
</tbody>
</table>
HOMEWORK

Homework will be assigned every Thursday and will be due one week later at the beginning of class. Late homework will be accepted only under exceptional circumstances.

All assignments must be typeset (exceptions allowed for diagrams). Each problem should be done on a separate page.
HOMEWORK

Homework will be assigned every Thursday and will be due one week later at the beginning of class. Late homework will be accepted only under exceptional circumstances.

All assignments must be typeset (exceptions allowed for diagrams). Each problem should be done on a separate page.

You must list your collaborators (including yourself) and all references in every homework assignment in a References section at the end.
COURSE PROJECT

Choose a (unique) topic

Learn about your topic

Write progress reports
(Feb 5, March 24)

Meet with an instructor/TA once a month

Prepare an 8-minute presentation
(April 21-30)

Final Report (April 30)
Suggested places to look for project topics

Any paper that has appeared in the proceedings of FOCS or STOC in the last 5 years. FOCS (Foundations of Computer Science) and STOC (Symposium on the Theory of Computing) are the two major conferences of general computer science theory. The proceedings of both conferences are available at the E&S library or electronically.

- Electronic version of the proceedings of STOC
- Electronic version of the proceedings of FOCS

What's New
This class is about mathematical models of computation
Course Outline

PART 1
Automata and Languages:
finite automata, regular languages, pushdown automata, context-free languages, pumping lemmas.

PART 2
Computability Theory:
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications:
time complexity, classes P and NP, NP-completeness, space complexity, PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized complexity, classes RP and BPP.
Mathematical Models of Computation
(predated computers as we know them)

PART 1 1940’s-50’s (neurophysiology, linguistics)
Automata and Languages: finite automata, regular languages, pushdown automata, context-free languages, pumping lemmas.

PART 2 1930’s-40’s (logic, decidability)
Computability Theory: Turing Machines, decidability, reducibility, the arithmetic hierarchy, the recursion theorem, the Post correspondence problem.

PART 3 1960’s-70’s (computers)
Complexity Theory and Applications: time complexity, classes P and NP, NP-completeness, space complexity, PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized complexity, classes RP and BPP.
This class will emphasize **PROOFS**

A good proof should be:

Easy to understand

Correct
Suppose $A \subseteq \{1, 2, \ldots, 2n\}$ with $|A| = n+1$

TRUE or FALSE:
There are always two numbers in A such that one divides the other

TRUE
THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon
THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon
HINT 1:
THE PIGEONHOLE PRINCIPLE
If you put \(n+1 \) pigeons in \(n \) holes then at least one hole will have more than one pigeon

HINT 2:
Every integer \(a \) can be written as \(a = 2^k m \), where \(m \) is an odd number
PROOF IDEA:

Given: \(A \subseteq \{1, 2, \ldots, 2n\} \) and \(|A| = n+1 \)

Show: Use PHP to prove There is an integer \(m \) and elements \(a_1 = a_2 \) in \(A \) such that \(a_1 = 2^i m \) and \(a_2 = 2^j m \)
Suppose $A \subseteq \{1, 2, \ldots, 2n\}$ with $|A| = n+1$

Write every number in A as $a = 2^k m$, where m is an odd number between 1 and $2n-1$

How many odd numbers in $\{1, \ldots, 2n\}$? n

Since $|A| = n+1$, there must be two numbers in A with the same odd part

Say a_1 and a_2 have the same odd part m. Then $a_1 = 2^i m$ and $a_2 = 2^j m$, so one must divide the other
Suppose $A \subseteq \{1, 2, \ldots, 2n\}$ with $|A| = n+1$

Write every number in A as $a = 2^k m$, where m is an odd number between 1 and $2n-1$

Put pigeon a in hole $m \leq 2n-1$

n holes = odd numbers in $\{1, 3\ldots, 2n-1\}$

There exists a hole m with 2 pigeons $2^i m$ and $2^j m$, so one must divide the other
DETERMINISTIC FINITE AUTOMATA and REGULAR LANGUAGES
The automaton accepts a string if the process ends in a double circle.

Read string left to right.
ANATOMY OF A DETERMINISTIC FINITE AUTOMATON

states

q_0

start state (q_0)

q_1

q_2

q_3

accept states (F)

states

0, 1

1

0, 1

0

0

1
ANATOMY OF A DETERMINISTIC FINITE AUTOMATON
SOME VOCABULARY

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ

Σ^* = the set of strings over Σ

For string x, $|x|$ is the length of x

The unique string of length 0 will be denoted by ε and will be called the empty or null string

A language over Σ is a set of strings over Σ

In other words: a language is a subset of Σ^*
A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where:

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

Suppose $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \ldots w_n \in \Sigma^*$. Then M accepts w iff there are $r_0, r_1, \ldots, r_n \in Q$, s.t.

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \ldots, n-1$, and
- $r_n \in F$
A deterministic finite automaton (DFA) is a 5-tuple

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \) is the set of states (finite)
- \(\Sigma \) is the alphabet (finite)
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept/final states

\[M \text{ accepts } \varepsilon \text{ iff } q_0 \in F \]
A deterministic finite automaton (DFA) is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \) where:

- \(Q \) is the set of states (finite)
- \(\Sigma \) is the alphabet (finite)
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept/final states

\[L(M) = \text{set of all strings that } M \text{ accepts} = \text{“the language recognized by } M \text{”} \]
$L(M) = ?$
$L(M) = \{0,1\}^*$
L(M) = \{ w \mid w \text{ has an even number of 1s}\}
$L(M) = \{ w \mid w \text{ has an odd number of } 1\text{s}\}$
THEOREM: $L(M) = \{ w \mid w \text{ has odd number of 1s} \}$

Proof: By induction on n, the length of a string.

Base Case: $n=0$: $\varepsilon \notin \text{RHS}$ and $\varepsilon \notin L(M)$. Why?

Induction Hypothesis: Suppose for all $w \in \Sigma^*$, $|w| = n$, $w \in L(M)$ iff w has odd number of 1s.

Induction step: Any string of length $n+1$ has the form $w0$ or $w1$. Now $w0$ has an odd # of 1's $\iff w$ has an odd # of 1's $\iff M$ is in state q after reading w (why?) $\iff M$ is in state q after reading $w0$ (why?) $\iff w0 \in L(M)$
THEOREM:

$L(M) = \{w | w \text{ has odd number of 1s} \}$

Proof: By induction on n, the length of a string.

Base Case: $n=0$: $\varepsilon \notin \text{RHS}$ and $\varepsilon \notin L(M)$. Why?

Induction Hypothesis: Suppose for all $w \in \Sigma^*$, $|w| = n$, $w \in L(M)$ iff w has odd number of 1s.

Induction step: Any string of length $n+1$ has the form $w0$ or $w1$.

Now $w1$ has an odd # of 1’s \iff w has an even # of 1’s \iff

M is in state p after reading w (why?) \iff

M is in state q after reading $w1$ (why?) $\iff w1 \in L(M)$ QED
Invariant Condition

If M in state p, M has read a W with an even number of 1s.
If M in state q, M has read a W with an odd number of 1s.

Base Case, Invariant is true at start:
Initially, M has seen 0 1s, and starts in state p.

Inductive step:
M has read W with even number of 1s and is in p.
OR
M has read W with odd number of 1s and is in q.

Next M sees 0, remains in same state, maintaining parity.
OR
M sees 1, changing state, maintaining parity invariant.

Thus, the invariant condition is always true.
What the little machine is thinking:

If I am in p, I have seen an even number of 1s
If I am in q, I have seen an odd number of 1s
Build a DFA that accepts all and only those strings that contain 001

PROVE
$L = \text{all strings containing } ababbb \text{ as a consecutive substring}$

Invariant: I am state s exactly when s is the longest suffix of the input (so far) that forms a prefix of $ababbb$.
DEFINITION: A language L is regular if it is recognized by a DFA, i.e. if there is a DFA M s.t. $L = L(M)$.

$L = \{ w \mid w \text{ contains 001} \}$ is regular

$L = \{ w \mid w \text{ has an even number of 1s} \}$ is regular

$L = \{ w \mid w \text{ has an odd number of 1s} \}$ is regular
UNION THEOREM

Given two languages, L_1 and L_2, define the union of L_1 and L_2 as

$$L_1 \cup L_2 = \{ w | w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language
Theorem: The union of two regular languages is also a regular language.

Proof: Let
\[M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) \] be finite automaton for \(L_1 \) and
\[M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2) \] be finite automaton for \(L_2 \).

We want to construct a finite automaton
\[M = (Q, \Sigma, \delta, q_0, F) \] that recognizes \(L = L_1 \cup L_2 \).
Idea: Run both M_1 and M_2 at the same time!

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$= \{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) | q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Theorem: The union of two regular languages is also a regular language.
INTERSECTION?
Intersection THEOREM

Given two languages, L_1 and L_2, define the **intersection of L_1 and L_2** as

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$$

Theorem: The intersection of two regular languages is also a regular language.