modpow_one

Let’s consider the function $\text{modpow}(a, b, c)$ which computes $a^b \mod c$. This function has many practical applications, including being a key part of the RSA cryptography algorithm.

```c
int modpow_one(int a, int b, int c)
{ //@requires a >= 0 && b >= 0 && c > 0;
    //@requires c - 1 <= int_max()/max(a, c - 1);
    //@ensures 0 <= \result && \result < c;

    int res = 1 % c;
    while (b > 0)
    { //@loop_invariant 0 <= res && res < c;
        res *= a;
        res = res % c;
        b--;    
    }
    return res;
}
```

Prove that this function satisfies its postcondition.

Solution:

Precondition and initial lines of code imply loop invariant. By the precondition on line 2, we know that $c > 0$. In addition, we set res equal to $1 \% c$ (which must be at least 0 and less than c since $c > 0$ and $1 >= 0$) on line 6. So, since $0 <= (1 \% c) \&\& (1 \% c) < c$, we know the loop invariant holds initially.

Preservation of the loop invariant. Assume that at the start of some iteration of the loop, $0 <= res \&\& res < c$.

We know $res' = (a * res) \% c$ (this doesn’t overflow since res $<= c - 1$ and $c - 1 <= int_max()/a$, and doesn’t cause division errors since $c > 0$).

Since $res * a$ doesn’t overflow and both res and a are non-negative, $res * a$ is non-negative. Further, c is positive, so by the definition of the modulo operator $0 <= (res * a) \% c < c$. Hence, $0 <= res' < c$ and so the loop invariant is preserved.

Loop invariant and negated loop guard imply postcondition In this case, we don’t need the negated loop guard. By the loop invariant, $0 <= res \&\& res < c$.

We return res, so $0 <= \result \&\& \result < c$.

Termination When we start, $b >= 0$. Each iteration of the loop, we decrement b, so b will eventually be 0 and we’ll break out of the loop.
modpow_two

Now we’ll look at a different implementation, modpow_two.

```c
int modpow_two(int a, int b, int c)
//@requires a >= 0 && b >= 0 && c > 0;
//@requires (c - 1) <= int_max()/max(a, c - 1);
//@ensures \result == modpow_one(a, b, c);
{
  int res = 1 % c;
  int pow = 0;
  while (pow < b)
  {
    if (pow > 0 && pow <= b/2) {
      res *= res;
      res = res % c;
      pow *= 2;
    } else {
      res *= a;
      res = res % c;
      pow++;
    }
  }
  return res;
}
```

Is this function asymptotically faster than, slower than, or the same speed as modpow_one? Explain.

Solution: This is asymptotically the same speed as modpow_one. This is because once pow > b/2 we must run at worst b/2 steps. $\frac{b}{2} \leq \frac{1}{2} * b$ for all b, so modpow_one is $O(b)$, just as modpow_one is.

(In practice, modpow_two is around twice as fast as modpow_one, since the part of the loop where pow <= b/2 is much much faster than the first half of the modpow_one loop.)

Write loop invariants for modpow_two.

Solution: From looking at the body of the loop, we can see that pow keeps track of the current power we’ve raised a to.

At the end of the function, we want to return modpow_one(a, b, c). We return res, so it’d be helpful if our loop invariant told us something about that. Since pow is the current power, a relevant loop invariant is //@loop_invariant res == modpow_one(a, pow, c);

But just that alone isn’t strong enough. We also need some way of making sure that pow == b at the
end–otherwise, we won’t be able to prove our postcondition.

So, we can have a loop invariant //@loop_invariant 0 <= pow & pow <= b;

So, our loop invariants are:

//@loop_invariant 0 <= pow & pow <= b;
//@loop_invariant res == modpow_one(a, pow, c);

Now, prove that if the preconditions to modpow_two are satisfied, it satisfies its postcondition.

If it helps, you can assume that 0^0 = 0, even though it’s actually indeterminate. You can also assume that modpow_one obeys the properties that

(modpow_one(a, b, c) * a) % c == modpow_one(a, b + 1, c) and
(modpow_one(a, b, c) * modpow_one(a, b, c)) % c == modpow_one(a, 2*b, c)

Solution:

Preconditions and initial lines of code imply loop invariant We set pow to 0 on line 7 and we know
b >= 0 by the precondition, so 0 <= pow & pow <= b.

We’ve set res to 1 % c (on line 6), and pow is 0. modpow_one(a, 0, c) is equivalent to 1 % c, since a^0 = 1 for any a. So, res == modpow_one(a, pow, c).

Thus, the loop invariants hold before the first iteration of the loop.

Preservation of loop invariants Assume 0 <= pow & pow <= b and res == modpow_one(a, pow, c).

We split into cases.

If pow > 0 and pow < b/2, then: res’ == (res * res) % c and pow’ == pow * 2.

By the loop invariant, this means that res’ == (modpow_one(a, pow, c) * modpow_one(a, pow, c)) % c

But, by our assumption above, this is equal to modpow_one(a, 2*pow, c).

Since pow’ == 2*pow, this means that res’ == modpow_one(a, pow’, c). Thus, the second loop invariant holds.

The first invariant holds since pow <= b/2 and pow’ == 2 * pow. That means that pow <= b (division rounds down, so this can’t possibly be greater than b).

In the second case, res’ == (res * a) % c and pow’ = pow + 1.

The first loop invariant is preserved since pow < b (by the loop guard), so pow’ <= b. We know pow’ > pow and pow >= 0 by the loop invariant, so pow’ >= 0. So, the first invariant is preserved in this case.

res’ == (modpow_one(a, pow, c) * a) % c, which by our assumption is equal to modpow_one(a, pow + 1, c).

Since pow’ == pow + 1, this means res == modpow_one(a, pow’, c). Thus, the second loop invariant is preserved in this case.
Thus, both loop invariants are preserved.

Loop invariants and negated loop guard imply postcondition The negated loop guard is \(\text{pow} \geq b \). The first loop invariant tells us that \(\text{pow} \leq b \). Thus, \(\text{pow} = b \).

By the second loop invariant, \(\text{res} = \text{modpow_one}(a, \text{pow}, c) \). But since \(\text{pow} = b \), this means that \(\text{res} = \text{modpow_one}(a, b, c) \).

We return \(\text{res} \), so our postcondition is satisfied.

Termination \(\text{pow} \) starts out at 0 and is strictly increasing, so it will eventually be as larger than \(b \). At that point, the loop terminates. (\(\text{pow} \) won’t overflow since \(b \) is a positive int)

Thus, \(\text{pow_fast} \) returns the same result as \(\text{pow_slow} \).

Questions?

If you have any questions and we’re not out of time, ask them now. We’ll go over some of them and I’ll type up answers to at least some. There will also be a review session on Sunday at 6pm in Rashid Auditorium (GHC 4401) if you have more questions or we don’t get to yours now.