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1 Introduction

For some N ∈ Z+, let V be an R-vector space of real polynomials with degree at most N ,
with inner product defined as

⟨p, q⟩ =
∫ 1

0

p(x)q(x)dx

for all p, q ∈ V . This is a well-known inner product space.

Consider the list L = (1, x, x2, . . . , xm) for some m ∈ {0, 1, . . . , N}.
The Gram-Schmidt Orthogonalization Algorithm [2] produces an orthonormal list of

vectors O = (w⃗0, w⃗1, . . . , w⃗m) such that span(O) = span(L).
Matthew Milunic conjectured [1] a closed-form formula for w⃗n for all n ∈ {0, 1, . . . ,m}:

Conjecture 1 (Milunic’s Conjecture). Let n ∈ {0, 1, . . . ,m}. We have

w⃗n(x) =
√
2n+ 1 ·

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk.

We will prove that this conjecture holds.

2 Exploring an Interesting Polynomial

Let n ∈ Z+. Consider the polynomial fn(x) = xn(1− x)n.

Lemma 2.

fn(x) =
n∑

k=0

(−1)k
(
n

k

)
xn+k.
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Proof. By the binomial theorem, we have

fn(x) = xn(1− x)n

= (x− x2)n

=
n∑

j=0

(
n

j

)
xj · (−x2)n−j

=
n∑

j=0

(−1)n−j

(
n

n− j

)
xn+(n−j)

=
n∑

k=0

(−1)k
(
n

k

)
xn+k.

This polynomial is interesting to us, because we can repeatedly take its derivative and
obtain an expression similar to the conjectured summation.

For any function g, denote g(n)(x) =
dn

dxn
g(x).

Lemma 3.
n∑

k=0

(−1)k
(
n

k

)(
n+ k

k

)
xk =

f
(n)
n (x)

n!
.

Proof. By Lemma 2, we have

f (n)
n (x) =

dn

dxn
fn(x)

=
dn

dxn

n∑
k=0

(−1)k
(
n

k

)
xn+k

=
n∑

k=0

(−1)k
(
n

k

)
· (n+ k)!

k!
· xk

=
n∑

k=0

(−1)k
(
n

k

)(
n+ k

k

)
· n! · xk

= n! ·
n∑

k=0

(−1)k
(
n

k

)(
n+ k

k

)
· xk.

Rearranging, we have
n∑

k=0

(−1)k
(
n

k

)(
n+ k

k

)
xk =

f
(n)
n (x)

n!
, as desired.

2



Yinuo Huang, Matthew Milunic 3 Orthogonality

3 Orthogonality

Now, for some n ∈ Z+, consider the polynomial pn defined by

pn(x) =
1(
2n
n

) n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk.

We will show that pn is a monic polynomial that is orthogonal to the subspace of all real
polynomials of degree at most n− 1.

Lemma 4. pn is a monic polynomial.

Proof. The coefficient of xn is equal to

1(
2n
n

) · (−1)n+n

(
n

n

)(
n+ n

n

)
=

(
2n
n

)(
2n
n

) · (−1)2n · 1

= 1,

so pn is indeed a monic polynomial.

Lemma 5. Consider the inner product space V as defined above. If W is the subspace of all
polynomials of degree at most n− 1, then pn ⊥ q for all q ∈ W .

Proof. Let q ∈ W .

We have ⟨pn, q⟩ =
∫ 1

0

pn(x)q(x)dx.

Observe that some algebra gives

pn(x) =
(−1)n(

2n
n

) n∑
k=0

(−1)k
(
n

k

)(
n+ k

k

)
xk.

By Lemma 3, we have pn(x) =
(−1)n(
2n
n

)
· n!

f (n)
n (x).

Therefore,

⟨pn, q⟩ =
(−1)n(
2n
n

)
· n!

∫ 1

0

f (n)
n (x)q(x)dx

Let us analyze the integral

∫ 1

0

f (n)
n (x)q(x)dx. Using integration by parts repeatedly, we

can see it is equal to

n−1∑
j=0

(−1)jf (n−j−1)
n (x)q(j)(x)

∣∣∣1
0
+ (−1)n

∫ 1

0

fn(x)q
(n)(x)dx.
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Let us analyze f
(r)
n for r = n− j − 1, where j ∈ {0, 1, . . . , n− 1}. By the general Leibniz

rule, we have

f (r)
n = (xn(1− x)n)(r) =

r∑
k=0

(
r

k

)
(xn)(r−k) ((1− x)n)(k) .

Note that since r < n, for all k ∈ {0, 1, . . . , r}, we have x(1− x) | (xn)(r−k) ((1− x)n)(k).

Therefore, it must be that f
(r)
n (0) = f

(r)
n (1) = 0.

Substituting back r = n− j − 1, we have f
(n−j−1)
n (0) = f

(n−j−1)
n (1) = 0, so

n−1∑
j=0

(−1)jf (n−j−1)
n (x)q(j)(x)

∣∣∣1
0
= 0.

Furthermore, because q has degree at most n− 1, q(n) is the zero polynomial, so

(−1)n
∫ 1

0

fn(x)q
(n)(x)dx = 0.

Therefore, we have ⟨pn, q⟩ =
(−1)n(
2n
n

)
· n!

(0 + 0) = 0, which means pn ⊥ q, as desired.

With this lemma, we are ready to prove the main theorem.

4 The Main Theorem

We will now prove the original conjecture about the Gram-Schmidt Orthogonalization
Algorithm by strong induction. Let us formally restate the theorem:

Theorem 6 (the main theorem). For some fixed N ∈ Z+, let V be the R-inner product
space of real polynomials with degree at most N , with inner product defined as

⟨p, q⟩ =
∫ 1

0

p(x)q(x)dx

for all p, q ∈ V .

Let m ∈ {0, 1, . . . , N}.
Consider the list L = (1, x, x2, . . . , xm). Suppose that O = (w⃗0, w⃗1, . . . , w⃗m) is the

orthonormal list of vectors produced by the Gram-Schmidt Orthogonalization Algorithm.

Then, we have

w⃗n(x) =
√
2n+ 1 ·

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk

for all n ∈ {0, 1, . . . ,m}.

Proof. We will prove this theorem by induction on m.
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Base case. Consider the case where m = 0. We have w⃗0 = x0 = 1 by definition. Note that

√
2(0) + 1 ·

0∑
k=0

(−1)0+k

(
0

k

)(
0 + k

k

)
x0 = 1

also, so the equation holds for n = 0, and thus the conjecture holds for m = 0.

Inductive step. Let m ∈ {1, 2, . . . , N}. For our inductive hypothesis, assume that

w⃗n(x) =
√
2n+ 1 ·

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk

holds for all n ∈ {0, 1, . . . ,m− 1}. It remains to show that it also holds for n = m.

Let n = m.

Let W be the subspace of all polynomials of degree at most n− 1.

The Gram-Schmidt Orthogonalization Algorithm on an orthonormal list gives us a (not
necessarily normalized) vector

v⃗n = xn −
n−1∑
k=0

⟨w⃗k, x
n⟩ w⃗k

such that w⃗n =
v⃗n

||v⃗n||
.

Note that v⃗n is a monic polynomial of degree n, because by our inductive hypothesis, w⃗k

has degree at most k for all k ∈ {0, 1, . . . , n− 1}, so the only instance of xn comes from the
initial xn, which has coefficient 1.

Furthermore, a known property of the algorithm is that v⃗n is orthogonal to W .

Consider the polynomial pn defined by

pn(x) =
1(
2n
n

) n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk.

pn is a polynomial of degree n. By Lemma 4, pn is also a monic polynomial. By Lemma
5, pn is also orthogonal to W .

Let q ∈ W . Then we have ⟨v⃗n, q⟩ = ⟨pn, q⟩ = 0.

Thus we have ⟨v⃗n − pn, q⟩ = ⟨v⃗n, q⟩ − ⟨pn, q⟩ = 0− 0 = 0, so v⃗n − pn is orthogonal to W .
But because v⃗n and pn are both monic polynomials of degree n, v⃗n − pn is a polynomial of
degree at most n− 1, so v⃗n − pn ∈ W . The only vector in W that is orthogonal to W is the
zero vector, so v⃗n − pn = 0⃗, which gives v⃗n = pn.
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Thus, we have shown that

v⃗n = xn −
n−1∑
k=0

⟨w⃗k, x
n⟩ w⃗k =

1(
2n
n

) n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk.

Now we can find ||v⃗n||.
By Lemma 3, we have

||v⃗n||2

=

∫ 1

0

(
1(
2n
n

) n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk

)2

dx

=
1(

2n
n

)2 ∫ 1

0

(
n∑

k=0

(−1)k
(
n

k

)(
n+ k

k

)
xk

)2

dx

=
1(

2n
n

)2
(n!)2

∫ 1

0

(
f (n)
n (x)

)2
dx.

Using integration by parts repeatedly, and by similar logic as before, the boundary terms
are all zero, and we have ∫ 1

0

(
f (n)
n (x)

)2
dx

= (−1)n
∫ 1

0

fn(x) · f (2n)
n (x)dx

= (−1)n
∫ 1

0

fn(x) · (2n)!(−1)ndx

= (2n)!

∫ 1

0

xn(1− x)ndx

= (2n)! ·B(n+ 1, n+ 1)

= (2n)! · n!n!

(2n+ 1)!

=
(n!)2

2n+ 1
.

Therefore, we have

||v⃗n||2

=
1(

2n
n

)2
(n!)2

· (n!)2

2n+ 1

=
1(

2n
n

)2
(2n+ 1)

.
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This means that ||v⃗n|| =
1(

2n
n

)√
2n+ 1

, so

w⃗n =
v⃗n

||v⃗n||

=
1(
2n
n

) n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk ·

(
2n

n

)√
2n+ 1

=
√
2n+ 1 ·

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk,

as desired.

Since both the base case and the inductive step hold, by the principle of mathematical
induction, the theorem holds for all m ∈ {0, 1, . . . , N}.

That completes the proof.

5 Conclusion and Future Works

We have constructed, and proved, a closed-form formula for computing the outputs of the
Gram-Schmidt Orthogonalization Algorithm for our particular inner product space and the
choice of elementary basis vectors in the vector space:

w⃗n =
√
2n+ 1 ·

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)
xk

for all n ∈ {0, 1, . . . ,m}.
It should be noted that this expression is very closely related to the shifted Legendre

Polynomials P̃n(x) = Pn(2x + 1). In the future, we will try to prove this theorem using
properties of Legendre Polynomials and look for more interesting relationships between
Gram-Schmidt processes and Legendre Polynomials.
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