A Closed-form Formula of a Particular Gram-Schmidt Process Related to Shifted Legendre Polynomials

Yinuo Huang, Matthew Milunic

Carnegie Mellon University

October 22, 2025

1 Introduction

For some $N \in \mathbb{Z}^+$, let V be an \mathbb{R} -vector space of real polynomials with degree at most N, with inner product defined as

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx$$

for all $p, q \in V$. This is a well-known inner product space.

Consider the list $\mathcal{L} = (1, x, x^2, \dots, x^m)$ for some $m \in \{0, 1, \dots, N\}$.

The Gram-Schmidt Orthogonalization Algorithm [2] produces an orthonormal list of vectors $\mathcal{O} = (\vec{w}_0, \vec{w}_1, \dots, \vec{w}_m)$ such that $\operatorname{span}(\mathcal{O}) = \operatorname{span}(\mathcal{L})$.

Matthew Milunic conjectured [1] a closed-form formula for \vec{w}_n for all $n \in \{0, 1, ..., m\}$:

Conjecture 1 (Milunic's Conjecture). Let $n \in \{0, 1, ..., m\}$. We have

$$\vec{w}_n(x) = \sqrt{2n+1} \cdot \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k.$$

We will prove that this conjecture holds.

2 Exploring an Interesting Polynomial

Let $n \in \mathbb{Z}^+$. Consider the polynomial $f_n(x) = x^n(1-x)^n$.

Lemma 2.

$$f_n(x) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^{n+k}.$$

Proof. By the binomial theorem, we have

$$f_n(x) = x^n (1 - x)^n$$

$$= (x - x^2)^n$$

$$= \sum_{j=0}^n \binom{n}{j} x^j \cdot (-x^2)^{n-j}$$

$$= \sum_{j=0}^n (-1)^{n-j} \binom{n}{n-j} x^{n+(n-j)}$$

$$= \sum_{k=0}^n (-1)^k \binom{n}{k} x^{n+k}.$$

This polynomial is interesting to us, because we can repeatedly take its derivative and obtain an expression similar to the conjectured summation.

For any function g, denote $g^{(n)}(x) = \frac{d^n}{dx^n}g(x)$.

Lemma 3.

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} x^k = \frac{f_n^{(n)}(x)}{n!}.$$

Proof. By Lemma 2, we have

$$f_n^{(n)}(x) = \frac{d^n}{dx^n} f_n(x)$$

$$= \frac{d^n}{dx^n} \sum_{k=0}^n (-1)^k \binom{n}{k} x^{n+k}$$

$$= \sum_{k=0}^n (-1)^k \binom{n}{k} \cdot \frac{(n+k)!}{k!} \cdot x^k$$

$$= \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+k}{k} \cdot n! \cdot x^k$$

$$= n! \cdot \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+k}{k} \cdot x^k.$$

Rearranging, we have $\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} x^k = \frac{f_n^{(n)}(x)}{n!}$, as desired.

3 Orthogonality

Now, for some $n \in \mathbb{Z}^+$, consider the polynomial p_n defined by

$$p_n(x) = \frac{1}{\binom{2n}{n}} \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k.$$

We will show that p_n is a monic polynomial that is orthogonal to the subspace of all real polynomials of degree at most n-1.

Lemma 4. p_n is a monic polynomial.

Proof. The coefficient of x^n is equal to

$$\frac{1}{\binom{2n}{n}} \cdot (-1)^{n+n} \binom{n}{n} \binom{n+n}{n}$$

$$= \frac{\binom{2n}{n}}{\binom{2n}{n}} \cdot (-1)^{2n} \cdot 1$$

$$= 1,$$

so p_n is indeed a monic polynomial.

Lemma 5. Consider the inner product space V as defined above. If W is the subspace of all polynomials of degree at most n-1, then $p_n \perp q$ for all $q \in W$.

Proof. Let $q \in W$.

We have
$$\langle p_n, q \rangle = \int_0^1 p_n(x)q(x)dx$$
.

Observe that some algebra gives

$$p_n(x) = \frac{(-1)^n}{\binom{2n}{n}} \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+k}{k} x^k.$$

By Lemma 3, we have $p_n(x) = \frac{(-1)^n}{\binom{2n}{n} \cdot n!} f_n^{(n)}(x)$.

Therefore,

$$\langle p_n, q \rangle = \frac{(-1)^n}{\binom{2n}{n} \cdot n!} \int_0^1 f_n^{(n)}(x) q(x) dx$$

Let us analyze the integral $\int_0^1 f_n^{(n)}(x)q(x)dx$. Using integration by parts repeatedly, we can see it is equal to

$$\sum_{j=0}^{n-1} (-1)^j f_n^{(n-j-1)}(x) q^{(j)}(x) \Big|_0^1 + (-1)^n \int_0^1 f_n(x) q^{(n)}(x) dx.$$

Let us analyze $f_n^{(r)}$ for r = n - j - 1, where $j \in \{0, 1, \dots, n - 1\}$. By the general Leibniz rule, we have

$$f_n^{(r)} = (x^n (1-x)^n)^{(r)} = \sum_{k=0}^r \binom{r}{k} (x^n)^{(r-k)} ((1-x)^n)^{(k)}.$$

Note that since r < n, for all $k \in \{0, 1, ..., r\}$, we have $x(1-x) | (x^n)^{(r-k)} ((1-x)^n)^{(k)}$. Therefore, it must be that $f_n^{(r)}(0) = f_n^{(r)}(1) = 0$.

Substituting back r = n - j - 1, we have $f_n^{(n-j-1)}(0) = f_n^{(n-j-1)}(1) = 0$, so

$$\sum_{j=0}^{n-1} (-1)^j f_n^{(n-j-1)}(x) q^{(j)}(x) \Big|_0^1 = 0.$$

Furthermore, because q has degree at most $n-1,\,q^{(n)}$ is the zero polynomial, so

$$(-1)^n \int_0^1 f_n(x)q^{(n)}(x)dx = 0.$$

Therefore, we have $\langle p_n, q \rangle = \frac{(-1)^n}{\binom{2n}{n} \cdot n!} (0+0) = 0$, which means $p_n \perp q$, as desired. \square

With this lemma, we are ready to prove the main theorem.

4 The Main Theorem

We will now prove the original conjecture about the Gram-Schmidt Orthogonalization Algorithm by strong induction. Let us formally restate the theorem:

Theorem 6 (the main theorem). For some fixed $N \in \mathbb{Z}^+$, let V be the \mathbb{R} -inner product space of real polynomials with degree at most N, with inner product defined as

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx$$

for all $p, q \in V$.

Let $m \in \{0, 1, ..., N\}$.

Consider the list $\mathcal{L} = (1, x, x^2, \dots, x^m)$. Suppose that $\mathcal{O} = (\vec{w}_0, \vec{w}_1, \dots, \vec{w}_m)$ is the orthonormal list of vectors produced by the Gram-Schmidt Orthogonalization Algorithm.

Then, we have

$$\vec{w}_n(x) = \sqrt{2n+1} \cdot \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k$$

for all $n \in \{0, 1, \dots, m\}$.

Proof. We will prove this theorem by induction on m.

Base case. Consider the case where m=0. We have $\vec{w_0}=x^0=1$ by definition. Note that

$$\sqrt{2(0)+1} \cdot \sum_{k=0}^{0} (-1)^{0+k} {0 \choose k} {0+k \choose k} x^{0} = 1$$

also, so the equation holds for n=0, and thus the conjecture holds for m=0.

Inductive step. Let $m \in \{1, 2, ..., N\}$. For our inductive hypothesis, assume that

$$\vec{w}_n(x) = \sqrt{2n+1} \cdot \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k$$

holds for all $n \in \{0, 1, \dots, m-1\}$. It remains to show that it also holds for n = m.

Let n = m.

Let W be the subspace of all polynomials of degree at most n-1.

The Gram-Schmidt Orthogonalization Algorithm on an orthonormal list gives us a (not necessarily normalized) vector

$$\vec{v}_n = x^n - \sum_{k=0}^{n-1} \langle \vec{w}_k, x^n \rangle \, \vec{w}_k$$

such that $\vec{w}_n = \frac{\vec{v}_n}{||\vec{v}_n||}$.

Note that $\vec{v_n}$ is a monic polynomial of degree n, because by our inductive hypothesis, $\vec{w_k}$ has degree at most k for all $k \in \{0, 1, \dots, n-1\}$, so the only instance of x^n comes from the initial x^n , which has coefficient 1.

Furthermore, a known property of the algorithm is that \vec{v}_n is orthogonal to W.

Consider the polynomial p_n defined by

$$p_n(x) = \frac{1}{\binom{2n}{n}} \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k.$$

 p_n is a polynomial of degree n. By Lemma 4, p_n is also a monic polynomial. By Lemma 5, p_n is also orthogonal to W.

Let $q \in W$. Then we have $\langle \vec{v}_n, q \rangle = \langle p_n, q \rangle = 0$.

Thus we have $\langle \vec{v}_n - p_n, q \rangle = \langle \vec{v}_n, q \rangle - \langle p_n, q \rangle = 0 - 0 = 0$, so $\vec{v}_n - p_n$ is orthogonal to W. But because \vec{v}_n and p_n are both monic polynomials of degree n, $\vec{v}_n - p_n$ is a polynomial of degree at most n-1, so $\vec{v}_n - p_n \in W$. The only vector in W that is orthogonal to W is the zero vector, so $\vec{v}_n - p_n = \vec{0}$, which gives $\vec{v}_n = p_n$.

Thus, we have shown that

$$\vec{v}_n = x^n - \sum_{k=0}^{n-1} \langle \vec{w}_k, x^n \rangle \, \vec{w}_k = \frac{1}{\binom{2n}{n}} \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k.$$

Now we can find $||\vec{v}_n||$.

By Lemma 3, we have

$$\begin{aligned} &||\vec{v}_n||^2 \\ &= \int_0^1 \left(\frac{1}{\binom{2n}{n}} \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k \right)^2 dx \\ &= \frac{1}{\binom{2n}{n}^2} \int_0^1 \left(\sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+k}{k} x^k \right)^2 dx \\ &= \frac{1}{\binom{2n}{n}^2 (n!)^2} \int_0^1 \left(f_n^{(n)}(x) \right)^2 dx. \end{aligned}$$

Using integration by parts repeatedly, and by similar logic as before, the boundary terms are all zero, and we have

$$\int_{0}^{1} (f_{n}^{(n)}(x))^{2} dx$$

$$= (-1)^{n} \int_{0}^{1} f_{n}(x) \cdot f_{n}^{(2n)}(x) dx$$

$$= (-1)^{n} \int_{0}^{1} f_{n}(x) \cdot (2n)! (-1)^{n} dx$$

$$= (2n)! \int_{0}^{1} x^{n} (1-x)^{n} dx$$

$$= (2n)! \cdot B(n+1, n+1)$$

$$= (2n)! \cdot \frac{n! n!}{(2n+1)!}$$

$$= \frac{(n!)^{2}}{2n+1}.$$

Therefore, we have

$$||\vec{v}_n||^2$$

$$= \frac{1}{\binom{2n}{n}^2 (n!)^2} \cdot \frac{(n!)^2}{2n+1}$$

$$= \frac{1}{\binom{2n}{n}^2 (2n+1)}.$$

This means that
$$||\vec{v}_n|| = \frac{1}{\binom{2n}{n}\sqrt{2n+1}}$$
, so

$$\vec{w}_n = \frac{\vec{v}_n}{||\vec{v}_n||}$$

$$= \frac{1}{\binom{2n}{n}} \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k \cdot \binom{2n}{n} \sqrt{2n+1}$$

$$= \sqrt{2n+1} \cdot \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k,$$

as desired.

Since both the base case and the inductive step hold, by the principle of mathematical induction, the theorem holds for all $m \in \{0, 1, ..., N\}$.

That completes the proof.

5 Conclusion and Future Works

We have constructed, and proved, a closed-form formula for computing the outputs of the Gram-Schmidt Orthogonalization Algorithm for our particular inner product space and the choice of elementary basis vectors in the vector space:

$$\vec{w}_n = \sqrt{2n+1} \cdot \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{n+k}{k} x^k$$

for all $n \in \{0, 1, \dots, m\}$.

It should be noted that this expression is very closely related to the shifted Legendre Polynomials $\tilde{P}_n(x) = P_n(2x+1)$. In the future, we will try to prove this theorem using properties of Legendre Polynomials and look for more interesting relationships between Gram-Schmidt processes and Legendre Polynomials.

References

- [1] Matthew Milunic. "A Fun Closed Formula". Published Oct 20, 2025.
- [2] Sergei Treil. Linear Algebra Done Wrong. Version 2024-08-20, CC BY-NC-ND 3.0. Department of Mathematics, Brown University, 2024. URL: https://www.math.brown.edu/~treil/papers/LADW/LADW_2024_08-20.pdf.