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Abstract

We present an alternative proof of the uniform marginals lemma in [GPW17], using some
facts about the level-k Fourier weights of Boolean functions.

1 Uniform marginals lemma

First, we change notation to use {—1,1} instead of {0,1} in the index gadget g. Recall that n
is the number of gadgets, and m is the number of inputs of each gadget. Section 4 of [GPW17]
reduces the uniform marginals lemma to proving the following. We can take “p-structured” to
mean that the first k coordinates are free, while the next n — k coordinates are fixed. We also only
need to use the assumptions of “p-structured” instead of “p-essentially-structured” in this proof.

Lemma 1 ((GPW17, Lemma 8, restated]). View X as a probability distribution on [m]* and Y as a
probability distribution on ({—1,1}™)k, satisfying that for every I C [k],

(i) Doo(X7) <0.1|I|logm
(i) Doo(Y[) < 18

where X denotes projection onto the coordinates in I.
Then, for any z € {—1,1}%, G(X,Y) is 1/n3-pointwise-close to the uniform distribution.

The proof makes use of the following lemma.

Lemma 2 ((GPW17, Lemma 9]). If a random variable z over {—1, 1}k satisfies

0

iel

< 5[I|logn (1)

for every I C [k], then z is 1/n3-pointwise-close to uniform.
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For simplicity, we will show that the conditions to use Lemma 2 are satisfied for I = [k]; restrict-
ing to any I works since the hypothesis on X and Y work for any I.

Next, we make some definitions and observations. Let ¢y : ({—1,1}")* — [0, 1] be the probabil-
ity density function on Y, defined by

¢v(y) = [Y]- PrlY = y].
where |Y| denotes the size of the domain of Y. Such a density function has the property that
E[(py] =1

We write @y in the Fourier basis as

ov(y)= Y, #v(S)xas(y)
SC{E1pmyk

where xs(y) = [T;cs vi is the parity function. We also have the formula for the Fourier coefficients

7(5) = E_ lov(y)s(v)]

If we have S € [m]¥, we can interpret S as an index into the km bits of y, and define @y(S)

accordingly.

Also define || @y |l = max, ¢y(y) and notice that

log|¢y|lec = 10gmyax py(y) = 10gmyax Y| Pr[Y = y] =log|Y| — He(Y) = Do (Y).

We use the notation Y for the i" block of m bits, and Ygg as indexing into the block. Inequal-
ity (1) then becomes

k .
E |:H Ygg:| < 275klog n )

i=1

Fix S € [m]*. We then have

Ym(py |:Z:1 1

o] - s

Next, from assumption (i) on X, we have
maxlog Pr[X = x| < 0.1klogm — log |X| = —0.9klog m.
X

Therefore, max, Pr[X = x| < ﬁ, SO

SEMor(S)]] Z [Py (S



Then, we use Cauchy-Schwarz on the sum, and get

1/2

1 1 1/2 .

o L |@(S”Smwk( D "’AY(S)Z> < —gm| L eS| - 3)
SG[m}k Se[m]k S‘%&’Z]

In the last inequality, we switch to viewing Y as a distribution on {—1,1}*". The valid Fourier
coefficients in the original case are just those that have exactly one coordinate in each of the k
blocks of m bits. So, we relax this by summing all Fourier coefficients of cardinality at most k.

Now, to analyze this quantity, we make the following definition.

Definition 1. The Fourier weight up to degree k of a function f : {—1,1}" — [0,1] is

W] = ) f(s)%
&

We also require the following theorem from [O’D14, Chapter 9.5] '.

Theorem 1 (Level-k inequality). Let f : {—1,1}" — [0,1] have mean E[f] = a and let k € IN" be at

most 21n % Then,
k
WSF[f] < (%2In 1) a2
Corollary 1. Let ¢ be a density function, and let k € IN™ be at most 21n||¢||«. Then,

W=[g] < (21n]¢|l)"

Proof. Let M := ||¢||c. Apply the Level-k inequality to the function f := ;, which gives
W] < (3 M)* .
But since f(S) = 4 9(S), we have W=k f] = ﬁwﬁk[(p], so we conclude that

. k
W= p] < (¥ Inllgll)”. O

From Equation (3), setting Cy := ﬁege, by the corollary and assumption (ii) we have

1/2
1 — S 2 _ 1 Wﬁk 1/2 < 1 C.D(Y 1/2 <|(cC nS K2
104k SC%:]GDY( ) _m0-4’<< [ov]) _W( kDeo(Y)) 77 < k08 ,
Clkm
S| <k

which is at most 775 when we set m = n'7, and this gives us the desired Inequality (2).

IThe inequality there is stated for f : {—1,1}" — {0,1}, but it also applies to functions with range [0, 1]. Following
the proof in [0'D14], the fact that the range is {0, 1} is used in Corollary 9.8, to say that E[|1 4 (x)[*/3|] = E[14(x)] = «.
But if f is any function with range in [0, 1] such that E[f] = a, we have E[|f|*/3] < E[f] = &, which is what we needed
in the proof.
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