The uniform marginals lemma in [GPW17]

Xinyu Wu*

September 27, 2018

Abstract

We present an alternative proof of the uniform marginals lemma in [GPW17], using some facts about the level-*k* Fourier weights of Boolean functions.

1 Uniform marginals lemma

First, we change notation to use $\{-1,1\}$ instead of $\{0,1\}$ in the index gadget *g*. Recall that *n* is the number of gadgets, and *m* is the number of inputs of each gadget. Section 4 of [GPW17] reduces the uniform marginals lemma to proving the following. We can take " ρ -structured" to mean that the first *k* coordinates are free, while the next n - k coordinates are fixed. We also only need to use the assumptions of " ρ -structured" instead of " ρ -essentially-structured" in this proof.

Lemma 1 ([GPW17, Lemma 8, restated]). *View X as a probability distribution on* $[m]^k$ and Y as a probability distribution on $(\{-1,1\}^m)^k$, satisfying that for every $I \subseteq [k]$,

(i)
$$D_{\infty}(X_I) \leq 0.1 |I| \log m$$

(ii)
$$D_{\infty}(Y_I) \leq n^3$$

where X_I denotes projection onto the coordinates in I.

Then, for any $z \in \{-1,1\}^k$, G(X,Y) is $1/n^3$ -pointwise-close to the uniform distribution.

The proof makes use of the following lemma.

Lemma 2 ([GPW17, Lemma 9]). If a random variable z over $\{-1, 1\}^k$ satisfies

$$\mathbf{E}\left[\prod_{i\in I} z_i\right] \le 2^{5|I|\log n} \tag{1}$$

for every $I \subseteq [k]$, then z is $1/n^3$ -pointwise-close to uniform.

^{*}Computer Science Department, Carnegie Mellon University. xinyuw1@andrew.cmu.edu

For simplicity, we will show that the conditions to use Lemma 2 are satisfied for I = [k]; restricting to any *I* works since the hypothesis on *X* and *Y* work for any *I*.

Next, we make some definitions and observations. Let $\varphi_Y : (\{-1,1\}^m)^k \to [0,1]$ be the probability density function on Y, defined by

$$\varphi_{\mathbf{Y}}(y) = |\mathbf{Y}| \cdot \mathbf{Pr}[\mathbf{Y} = y].$$

where |Y| denotes the size of the domain of *Y*. Such a density function has the property that $\mathbf{E}[\varphi_Y] = 1$.

We write φ_Y in the Fourier basis as

$$arphi_{\mathrm{Y}}(y) = \sum_{S \subseteq (\{\pm 1\}^m)^k} \widehat{arphi_{\mathrm{Y}}}(S) \chi_S(y)$$

where $\chi_S(y) := \prod_{i \in S} y_i$ is the parity function. We also have the formula for the Fourier coefficients

$$\widehat{\varphi_Y}(S) = \mathop{\mathbf{E}}_{y \text{ unif.}} [\varphi_Y(y)\chi_S(y)].$$

If we have $S \in [m]^k$, we can interpret *S* as an index into the *km* bits of *y*, and define $\widehat{\varphi_Y}(S)$ accordingly.

Also define $\|\varphi_Y\|_{\infty} = \max_y \varphi_Y(y)$ and notice that

$$\log \|\varphi_{\mathbf{Y}}\|_{\infty} = \log \max_{\mathbf{y}} \varphi_{\mathbf{Y}}(\mathbf{y}) = \log \max_{\mathbf{y}} |\mathbf{Y}| \operatorname{Pr}[\mathbf{Y} = \mathbf{y}] = \log |\mathbf{Y}| - H_{\infty}(\mathbf{Y}) = D_{\infty}(\mathbf{Y}).$$

We use the notation $Y^{(i)}$ for the *i*th block of *m* bits, and $Y_{X_i}^{(i)}$ as indexing into the block. Inequality (1) then becomes

$$\left| \mathbf{E} \left[\prod_{i=1}^{k} \boldsymbol{Y}_{\boldsymbol{X}_{i}}^{(i)} \right] \right| \leq 2^{-5k \log n},$$
(2)

Fix $S \in [m]^k$. We then have

$$\left| \underbrace{\mathbf{E}}_{Y \sim \varphi_Y} \left[\prod_{i=1}^k Y_{S_i}^{(i)} \right] \right| = \left| \underbrace{\mathbf{E}}_{y \text{ unif.}} \left[\varphi_Y(y) \prod_{i=1}^k y_{S_i}^{(i)} \right] \right| = |\widehat{\varphi_Y}(S)|.$$

Next, from assumption (i) on *X*, we have

$$\max_{x} \log \Pr[X = x] \le 0.1k \log m - \log |X| = -0.9k \log m$$

Therefore, $\max_{x} \mathbf{Pr}[X = x] \leq \frac{1}{m^{0.9k}}$, so

$$\mathop{\mathbf{E}}_{S\sim \boldsymbol{X}}[|\widehat{\varphi_{Y}}(S)|] \leq \frac{1}{m^{0.9k}} \sum_{S\in[m]^{k}} |\widehat{\varphi_{Y}}(S)|.$$

Then, we use Cauchy–Schwarz on the sum, and get

$$\frac{1}{m^{0.9k}} \sum_{S \in [m]^k} |\widehat{\varphi_Y}(S)| \le \frac{1}{m^{0.4k}} \left(\sum_{S \in [m]^k} \widehat{\varphi_Y}(S)^2 \right)^{1/2} \le \frac{1}{m^{0.4k}} \left(\sum_{\substack{S \subseteq [km] \\ |S| \le k}} \widehat{\varphi_Y}(S)^2 \right)^{1/2}.$$
(3)

In the last inequality, we switch to viewing Y as a distribution on $\{-1,1\}^{km}$. The valid Fourier coefficients in the original case are just those that have exactly one coordinate in each of the k blocks of m bits. So, we relax this by summing all Fourier coefficients of cardinality at most k.

Now, to analyze this quantity, we make the following definition.

Definition 1. The *Fourier weight up to degree k* of a function $f : \{-1, 1\}^n \to [0, 1]$ is

$$\mathbf{W}^{\leq k}[f] = \sum_{\substack{S \subseteq [n] \\ |S| \leq k}} \widehat{f}(S)^2.$$

We also require the following theorem from [O'D14, Chapter 9.5]¹.

Theorem 1 (Level-*k* inequality). Let $f : \{-1,1\}^n \to [0,1]$ have mean $\mathbf{E}[f] = \alpha$ and let $k \in \mathbb{N}^+$ be at most $2 \ln \frac{1}{\alpha}$. Then,

$$W^{\leq k}[f] \leq \left(\frac{2e}{k}\ln\frac{1}{\alpha}\right)^k \alpha^2$$

Corollary 1. Let φ be a density function, and let $k \in \mathbb{N}^+$ be at most $2\ln \|\varphi\|_{\infty}$. Then,

$$W^{\leq k}[\varphi] \leq \left(\frac{2e}{k} \ln \|\varphi\|_{\infty}\right)^{k}.$$

Proof. Let $M := \|\varphi\|_{\infty}$. Apply the Level-*k* inequality to the function $f := \frac{\varphi}{M}$, which gives

$$W^{\leq k}[f] \leq \left(\frac{2e}{k}\ln M\right)^k \frac{1}{M^2}$$

But since $\widehat{f}(S) = \frac{1}{M}\widehat{\varphi}(S)$, we have $\mathbf{W}^{\leq k}[f] = \frac{1}{M^2}\mathbf{W}^{\leq k}[\varphi]$, so we conclude that

$$W^{\leq k}[\varphi] \leq \left(\frac{2e}{k}\ln\|\varphi\|_{\infty}
ight)^k.$$

From Equation (3), setting $C_k := \frac{2e}{k \log e}$, by the corollary and assumption (ii) we have

$$\frac{1}{m^{0.4k}} \left(\sum_{\substack{S \subseteq [km] \\ |S| \le k}} \widehat{\varphi_Y}(S)^2 \right)^{1/2} = \frac{1}{m^{0.4k}} (W^{\le k}[\varphi_Y])^{1/2} \le \frac{1}{m^{0.4k}} (C_k D_\infty(Y))^{1/2} \le \left(C_k \frac{n^3}{m^{0.8}} \right)^{k/2},$$

which is at most n^{-5k} when we set $m = n^{17}$, and this gives us the desired Inequality (2).

¹The inequality there is stated for $f : \{-1,1\}^n \to \{0,1\}$, but it also applies to functions with range [0,1]. Following the proof in [O'D14], the fact that the range is $\{0,1\}$ is used in Corollary 9.8, to say that $\mathbf{E}[|\mathbb{1}_A(x)|^{4/3}|] = \mathbf{E}[\mathbb{1}_A(x)] = \alpha$. But if f is any function with range in [0,1] such that $\mathbf{E}[f] = \alpha$, we have $\mathbf{E}[|f|^{4/3}] \leq \mathbf{E}[f] = \alpha$, which is what we needed in the proof.

2 Acknowledgments

I would like to thank Ryan O'Donnell for suggesting this proof.

References

- [GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP. In Proceedings of the 58th Annual Symposium on Foundations of Computer Science, 2017. (document), 1, 1, 2
- [O'D14] Ryan O'Donnell. Analysis of boolean functions. Cambridge University Press, 2014. 1, 1