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Abstract

We present an alternative proof of the uniform marginals lemma in [GPW17], using some
facts about the level-k Fourier weights of Boolean functions.

1 Uniform marginals lemma

First, we change notation to use {−1, 1} instead of {0, 1} in the index gadget g. Recall that n
is the number of gadgets, and m is the number of inputs of each gadget. Section 4 of [GPW17]
reduces the uniform marginals lemma to proving the following. We can take “ρ-structured” to
mean that the first k coordinates are free, while the next n− k coordinates are fixed. We also only
need to use the assumptions of “ρ-structured” instead of “ρ-essentially-structured” in this proof.

Lemma 1 ([GPW17, Lemma 8, restated]). View X as a probability distribution on [m]k and Y as a
probability distribution on ({−1, 1}m)k, satisfying that for every I ⊆ [k],

(i) D∞(X I) ≤ 0.1|I| log m

(ii) D∞(Y I) ≤ n3

where X I denotes projection onto the coordinates in I.

Then, for any z ∈ {−1, 1}k, G(X, Y) is 1/n3-pointwise-close to the uniform distribution.

The proof makes use of the following lemma.

Lemma 2 ([GPW17, Lemma 9]). If a random variable z over {−1, 1}k satisfies∣∣∣∣∣E
[
∏
i∈I

zi

]∣∣∣∣∣ ≤ 25|I| log n (1)

for every I ⊆ [k], then z is 1/n3-pointwise-close to uniform.
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For simplicity, we will show that the conditions to use Lemma 2 are satisfied for I = [k]; restrict-
ing to any I works since the hypothesis on X and Y work for any I.

Next, we make some definitions and observations. Let ϕY : ({−1, 1}m)k → [0, 1] be the probabil-
ity density function on Y , defined by

ϕY(y) = |Y | · Pr[Y = y].

where |Y | denotes the size of the domain of Y . Such a density function has the property that
E[ϕY] = 1.

We write ϕY in the Fourier basis as

ϕY(y) = ∑
S⊆({±1}m)k

ϕ̂Y(S)χS(y)

where χS(y) := ∏i∈S yi is the parity function. We also have the formula for the Fourier coefficients

ϕ̂Y(S) = E
y unif.

[ϕY(y)χS(y)].

If we have S ∈ [m]k, we can interpret S as an index into the km bits of y, and define ϕ̂Y(S)
accordingly.

Also define ‖ϕY‖∞ = maxy ϕY(y) and notice that

log‖ϕY‖∞ = log max
y

ϕY(y) = log max
y
|Y | Pr[Y = y] = log |Y | − H∞(Y) = D∞(Y).

We use the notation Y (i) for the ith block of m bits, and Y (i)
X i

as indexing into the block. Inequal-
ity (1) then becomes ∣∣∣∣∣E

[ k

∏
i=1

Y (i)
X i

]∣∣∣∣∣ ≤ 2−5k log n, (2)

Fix S ∈ [m]k. We then have∣∣∣∣∣ E
Y∼ϕY

[ k

∏
i=1

Y(i)
Si

]∣∣∣∣∣ =
∣∣∣∣∣ E
y unif.

[
ϕY(y)

k

∏
i=1

y(i)Si

]∣∣∣∣∣ = |ϕ̂Y(S)|.

Next, from assumption (i) on X, we have

max
x

log Pr[X = x] ≤ 0.1k log m− log |X| = −0.9k log m.

Therefore, maxx Pr[X = x] ≤ 1
m0.9k , so

E
S∼X

[|ϕ̂Y(S)|] ≤
1

m0.9k ∑
S∈[m]k

|ϕ̂Y(S)|.
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Then, we use Cauchy–Schwarz on the sum, and get

1
m0.9k ∑

S∈[m]k
|ϕ̂Y(S)| ≤

1
m0.4k

(
∑

S∈[m]k
ϕ̂Y(S)2

)1/2

≤ 1
m0.4k

 ∑
S⊆[km]
|S|≤k

ϕ̂Y(S)2


1/2

. (3)

In the last inequality, we switch to viewing Y as a distribution on {−1, 1}km. The valid Fourier
coefficients in the original case are just those that have exactly one coordinate in each of the k
blocks of m bits. So, we relax this by summing all Fourier coefficients of cardinality at most k.

Now, to analyze this quantity, we make the following definition.

Definition 1. The Fourier weight up to degree k of a function f : {−1, 1}n → [0, 1] is

W≤k[ f ] = ∑
S⊆[n]
|S|≤k

f̂ (S)2.

We also require the following theorem from [O’D14, Chapter 9.5] 1.

Theorem 1 (Level-k inequality). Let f : {−1, 1}n → [0, 1] have mean E[ f ] = α and let k ∈ N+ be at
most 2 ln 1

α . Then,

W≤k[ f ] ≤
( 2e

k ln 1
α

)k
α2.

Corollary 1. Let ϕ be a density function, and let k ∈ N+ be at most 2 ln‖ϕ‖∞. Then,

W≤k[ϕ] ≤
( 2e

k ln‖ϕ‖∞
)k.

Proof. Let M := ‖ϕ‖∞. Apply the Level-k inequality to the function f := ϕ
M , which gives

W≤k[ f ] ≤
( 2e

k ln M
)k 1

M2 .

But since f̂ (S) = 1
M ϕ̂(S), we have W≤k[ f ] = 1

M2 W≤k[ϕ], so we conclude that

W≤k[ϕ] ≤
( 2e

k ln‖ϕ‖∞
)k.

From Equation (3), setting Ck := 2e
k log e , by the corollary and assumption (ii) we have

1
m0.4k

 ∑
S⊆[km]
|S|≤k

ϕ̂Y(S)2


1/2

=
1

m0.4k (W
≤k[ϕY])

1/2 ≤ 1
m0.4k (CkD∞(Y))1/2 ≤

(
Ck

n3

m0.8

)k/2

,

which is at most n−5k when we set m = n17, and this gives us the desired Inequality (2).

1The inequality there is stated for f : {−1, 1}n → {0, 1}, but it also applies to functions with range [0, 1]. Following
the proof in [O’D14], the fact that the range is {0, 1} is used in Corollary 9.8, to say that E[|1A(x)|4/3|] = E[1A(x)] = α.
But if f is any function with range in [0, 1] such that E[ f ] = α, we have E[| f |4/3] ≤ E[ f ] = α, which is what we needed
in the proof.
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