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Abstract

Let κ ∈N`+ satisfy κ1+·· ·+κ` = n, and let Uκ denote the multislice of all strings u ∈ [`]n having
exactly κi coordinates equal to i, for all i ∈ [`]. Consider the Markov chain on Uκ where a step is
a random transposition of two coordinates of u. We show that the log-Sobolev constant %κ for the
chain satisfies

%−1
κ ≤ n · ∑̀

i=1

1
2 log2(4n/κi),

which is sharp up to constants whenever ` is constant. From this, we derive some consequences
for small-set expansion and isoperimetry in the multislice, including a KKL Theorem, a Kruskal–
Katona Theorem for the multislice, a Friedgut Junta Theorem, and a Nisan–Szegedy Theorem.

1 Introduction

Suppose we have a deck of n cards, with κ1 of them colored red, κ2 of them colored blue, and κ3 of
them colored green. If we “shuffle” the cards by repeatedly transposing random pairs of cards, how
long does it take for the deck to get to a well-mixed configuration? This question is asking about the
mixing time and expansion in a Markov chain known variously as the multi-urn Bernoulli–Laplace
diffusion process or the multislice.

Let ` ∈N+ denote a number of colors and let n ∈N+ denote a number of coordinates (or positions).
Following computer science terminology, we refer to elements u ∈ [`]n as strings. Given a color i ∈ [`],
we write #iu for the number of coordinates j ∈ [n] for which u j = i. The vector κ= (#1u, . . . ,#`u) ∈N`

is referred to as the histogram of u. In general, if κ ∈N`+ satisfies κ1+·· ·+κ` = n (so κ is a composition
of n), we define the associated multislice to be

Uκ =
{
u ∈ [`]n : #iu = κi for all i ∈ [`]

}
.

The terminology here is inspired by the well-studied case when `= 2, in which case Uκ is a Hamming
slice of the Boolean cube. We also remark that when `= n and κ= (1,1, . . . ,1), the set Uκ is the set of
all permutations of [n].
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The random transposition Markov chain. The symmetric group Sn acts on strings u ∈ [`]n in
the natural way, by permuting coordinates: (uσ) j = uσ( j) for σ ∈ Sn. This action preserves each multi-
slice Uκ. This paper is concerned with the Markov chain on Uκ generated by random transpositions.
Let Trans(n)⊆ Sn denote the set of transpositions on n coordinates. We will specifically be interested
in the reversible, discrete-time Markov chain on state space Uκ in which a step from u ∈Uκ consists
of moving to uτ, where τ ∼ Trans(n) is chosen uniformly at random. (We always use boldface to
denote random variables.) One also has the associated Schreier graph, with vertex set Uκ and edges
{u,uτ} for all u ∈ Uκ and τ ∈ Trans(n). Since this graph is regular, it follows that the invariant dis-
tribution for the Markov chain is the uniform distribution on Uκ. We will denote this distribution by
πκ, or just π if κ is clear from context.

Log-Sobolev inequalities. One of the most powerful ways to study mixing time and “small-set
expansion” in Markov chains is through log-Sobolev inequalities (see, e.g., [Gro75, DS96]). For a
subset A ⊆Uκ, define its conductance (or expansion) to be

Φ[A]= Pr
u∼A

τ∼Trans(n)

[uτ 6∈ A].

Sets A with small conductance are natural bottlenecks for mixing in the Markov chain. An example
when ` = 2 and κ = (n/2,n/2) is the “dictator” set A = {u : u1 = 1}. It has expansion Φ[A] = 1

n−1 , and
indeed, if we start the random walk from a string u with u1 = 1, it will take about n/2 steps on
average before there’s even a chance that u1 will change from 1.

One feature of this example is that the set A is “large”; its (fractional) volume,

vol(A)= |A|/|Uκ| = Pr
u∼π[u ∈ A],

is bounded below by a constant. The “small-set expansion” phenomenon [KKL88, LK99, RS10] (occur-
ring most famously in the standard random walk on the Boolean cube {0,1}n) refers to the possibility
that all “small” sets have high conductance. Intuitively, if small-set expansion holds for a Markov
chain, then a random walk with a deterministic starting point should mix rapidly in its early stages,
with the possibility for slowdown occurring only when the chain is somewhat close to mixed.

A log-Sobolev inequality for the Markov chain is one way that such a phenomenon may be cap-
tured. In particular, if the log-Sobolev constant for the transposition chain on Uκ is %κ, it follows
that

Φ[A]≥ 1
2%κ · ln(1/vol(A)) for all nonempty subsets A ⊆Uκ. (1)

So sets of constant volume must have conductance Ω(%κ), but sets of volume 2−Θ(n) (for example)
must have conductance Ω(n%κ). A known further consequence of a log-Sobolev inequality is a hy-
percontractive inequality, which concerns expansion in the continuous-time version of the Markov
chain. It implies that if σ is the random permutation generated by performing the continuous-time
chain for t = ln c

2%κ
time — i.e.,

σ is the product of Poisson
(

ln c
2%κ

)
random transpositions, c ≥ 1

— then
Pr
u∼A

σ∼Trans(n)

[
uσ 6∈ A

]≥ 1−vol(A)(c−1)/(c+1) for all nonempty subsets A ⊆Uκ.

Thus again, if vol(A) is small, then the Markov chain will almost surely exit A after running for
Θ(%−1

κ ) steps.
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We remark that Inequality (1) is merely a consequence of the log-Sobolev constant being %κ. It
is not the case that %κ is defined to be the largest constant for which Inequality (1) holds (for all A)
— though this is a reasonable intuition. Instead, %κ is defined to be the largest constant for which a
certain generalization of Inequality (1) to nonnegative functions holds; namely,

E
u∼π

τ∼Trans(n)

(√
φ(u)−

√
φ(uτ)

)2 ≥ %κ ·KL(φπ ‖π) for all probability densities φ. (2)

(Here a probability density function is a function φ : Uκ →R
≥0 satisfying Eπ[φ] = 1, and KL(φπ ‖ π)

denotes the KL divergence between distributions φπ and π.) Inequality (2) includes Inequality (1) by
taking φ= 1A/vol(A). For more details, see Section 2.

Our main theorem in this work is a lower bound on the log-Sobolev constant for Uκ:

Theorem 1. Let κ ∈N`+ satisfy κ1 + ·· · +κ` = n, and let %κ denote the log-Sobolev constant for the
transposition chain on the multislice Uκ (i.e., the largest constant for which Inequality (2) holds).
Then

%−1
κ ≤ n · ∑̀

i=1

1
2 log2(4n/κi).

The main case of interest for us is n −→∞ with `=O(1) and κi/n ≥Ω(1) for each i; in other words,
when we are at a “middling” histogram of a high-dimensional multicube [`]n. In this case our bound
is %κ ≥ Ω(1/n), which is the same bound that holds for the standard random walk on the Boolean
cube. Thus for this parameter setting, the random transposition chain on the multislice enjoys all of
the same small-set expansion properties as the Boolean cube (up to constants).

On the sharpness of Theorem 1. When ` is considered to be a constant, Theorem 1 is sharp up
to constant factors (which we did not attempt to optimize); i.e.,

%−1
κ =Θ(n) · log

(
n

mini{κi}

)
for `=O(1). (3)

To see the upper bound on %κ, assume without loss of generality that `= argmini{κi}, and take

A = {
u ∈Uκ : u j = ` for all j ∈ [κ`]

}
.

It is easy to compute that Φ[A] = Θ(κ`/n) and vol(A) = ( n
κ`

)−1 (hence ln(1/vol(A)) = Θ(κ` log(n/κ`))).
Putting this into Inequality (1) shows the claimed upper bound on %κ.

At the opposite extreme, when ` = n and κ = (1,1, . . . ,1), we have the random transposition
walk on the symmetric group Sn. In this case, Theorem 1 as stated gives the poor bound of %κ ≥
Ω(1/n2 logn), whereas the optimal bound is %κ = Θ(1/n logn) [DS96, LY98]. In fact, our proof of
Theorem 1 (which generalizes that of [LY98]) can actually achieve the tight lower bound of %κ ≥
Ω(1/n logn) in this case. However, we tailored our general bound for the case of `=O(1), and did not
try to optimize for the most general scenario of ` varying with n. A reasonable prediction might be
that Equation (3) always holds, up to universal constants, without the assumption of ` = O(1); we
leave investigation of this for future work.

1.1 Applications

There are many known applications of log-Sobolev and hypercontractive inequalities in combina-
torics and theoretical computer science (see, e.g., [O’D14, Ch. 9, 10]). In this paper we present four
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particular consequences of Theorem 1 for analysis/combinatorics of Boolean functions on the mul-
tislice. We anticipate the possibility of several more. Full details of these applications appear in
Section 4; here we describe them informally.

Throughout the remainder of this section, let us think of n as large, of ` as constant, and let us
fix a histogram κ (with κ1 +·· ·+κ` = n) satisfying κi/n ≥Ω(1) for all i. For example, we might think
of `= 3 and κ= (n/3,n/3,n/3), so that Uκ consists of all ternary strings with an equal number of 1’s,
2’s, and 3’s. The isoperimetric problem for Uκ would ask: for a given fixed 0 < α < 1, which subset
A ⊆Uκ with vol(A) =α has minimal “edge boundary”, i.e., minimal Φ[A]? (Here “edge boundary” is
with respect to performing a single transposition, although in our Kruskal–Katona application we
will relate this to the size of A’s “shadows” at neighboring multislices.)

We typically think of α as “constant”, bounded away from 0 and 1. In our example with κ =
(n/3,n/3,n/3), when α= 1/3 the isoperimetric minimizer is a “dictator” set like A = {u : u1 = 1}; it has
Φ[A] = 4/3

n−1 . The “99% regime” version of the isoperimetric question would be: if Φ[A] is within a
factor 1+ o(1) of minimal, must A be “o(1)-close” to a minimizer? This question will be considered in
a companion paper. We will instead consider the “1% regime” version of the isoperimetric question:
if Φ[A] is at most O(1) times the minimum, must A at least “slightly resemble” a minimizer?

To orient ourselves, first note that for constant α (bounded away from 0 and 1), the minimum
possible value ofΦ[A] among A with vol(A)=α isΘ(1/n); indeed, this follows from our Theorem 1 and
Inequality (1). From this fact, we will derive a multislice variant of the Kruskal–Katona Theorem.
Up to O(1) factors, this minimum is achieved not just by “dictator” sets like {u ∈U(n/3,n/3,n/3) : u1 = 1},
but also by any “junta” set, meaning a set A for which absence or presence of u ∈ A depends only
on the colors (u j : j ∈ J) for a set J ⊆ [n] of cardinality c = O(1). It is not hard to see that if A ⊆ Uκ

is such a c-junta, then Φ[A] ≤ O(c/n). We may now ask: if Φ[A] ≤ O(1/n), must A at least slightly
“resemble” a junta?

We give two closely related positive answers to this question, as a consequence of our log-Sobolev
inequality. The first answer, a KKL Theorem for the multislice (cf. [KKL88]), follows immediately
from previous work [OW13a, OW13b]. It says that for any set with Φ[A] ≤ O(1/n), there must exist
some pair of coordinates j, j′ ∈ [n] with at least constant influence on A, where the influence of the
transposition ( j j′) on A is defined to be

Inf( j j′)[A]= Pr
u∼π

[
1A

(
u

) 6= 1A
(
u( j j′))]. (4)

It is the hallmark of a junta A that every transposition ( j j′) has either Inf( j j′)[A]= 0 or Inf( j j′)[A]≥
Ω(1). In fact, mirroring the original KKL Theorem, our work shows that: (i) if Φ[A]≤ c/n then there
exists ( j j′) with Inf( j j′)[A]≥ exp(−O(c)); (ii) for any A ⊆Uκ with Ω(1)≤ vol(A)≤ 1−Ω(1), there exists
( j j′) with Inf( j j′)[A] ≥ Ω

( logn
n

)
. From this, we can also derive a “robust” version of our Kruskal–

Katona theorem (a là [OW13a]).
A closely related consequence of our work is a Friedgut Junta Theorem for the multislice

(cf. [Fri98]), which follows (using a small amount of representation theory) from work of Wim-
mer [Wim14] (see also [Fil16b] for a different account). It states that for any A with Φ[A]≤ c/n, and
any ε > 0, there is a genuine exp(O(c/ε))-junta A′ ⊆ Uκ that is ε-close to A, meaning vol(A4A′)≤ ε.
The junta theorem can also be generalized to real-valued functions, following the work of Bouyrie [Bou17],
with a worse dependence on ε in the exponent.

Finally, with a little more representation theory effort, we are able to derive from Theorem 1
a Nisan–Szegedy Theorem for the multislice (cf. [NS94]), which is (roughly) an ε = 0 version of
the Friedgut Junta Theorem; this generalizes previous work on the Hamming slice [FI18a]. It says
that if A ⊆ Uκ is of “degree k” — meaning that its indicator function can be written as a linear
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combination of k-junta functions — then A must be an exp(O(k))-junta itself. (The k = 1 case of this
theorem, with the conclusion that A is a 1-junta, was proven recently in [FI18b].)

1.2 Context and prior work

In this section we review similar contexts where log-Sobolev inequalities and small-set expansion
have been studied.

The Boolean cube. The simplest and best-known setting for these kinds of results is the Boolean
cube {0,1}n with the nearest-neighbour random walk. The optimal hypercontractive inequality in
this setting was proven by Bonami [Bon70]. Later, Gross [Gro75] introduced log-Sobolev inequalities,
showed that they were equivalent to hypercontractive inequalities in this setting, and determined
the exact log-Sobolev constant for the Boolean cube, namely %= 2/n. Gross also observed that all the
same results also hold for Gaussian space in any dimension (recovering prior work of Nelson [Nel73]);
Gaussian space is in fact a “special case” of the Boolean cube, by virtue of the Central Limit Theorem.
The Boolean cube also generalizes the well-studied Ehrenfest model of diffusion [EE07].

These inequalities for the Boolean cube, as well as the associated small-set expansion corollaries,
have had innumerable applications in analysis, combinatorics, and theoretical computer science, in
topics ranging from communication complexity to inapproximability; see, e.g., [Led99] or [O’D14,
Chapters 9–11].

A different line of work sought to determine the exact minimum value of Φ[A] in terms of the size
of A. This challenge, known as the edge isoperimetric problem, has been solved by Harper [Har64],
Lindsey [Lin64], Bernstein [Ber67], and Hart [Har76], who have shown that the optimal sets are
initial segments of a lexicographic ordering of the vertices of the Boolean cube. Recently Ellis, Keller
and Lifshitz gave a new proof of the edge isoperimetric inequality using the Kruskal–Katona The-
orem [EKL17]. The same set of authors also recently proved a stability version of the edge isoperi-
metric inequality in the 99% regime [EKL18].

Returning to log-Sobolev inequalities, an extraordinarily helpful feature of the random walk on
the Boolean cube is that it is a product Markov chain, with a stationary distribution that is indepen-
dent across the n coordinates. Because of this, a simple induction lets one immediately reduce the
log-Sobolev (and hypercontractivity) analysis to the base case of n = 1.

Other product chains. For any product Markov chain, one can similarly reduce the analysis to
the n = 1 case. In general, let ν be a probability distribution of full support on [`], and consider the
Markov chain on [`]n in which a step from u ∈ [`]n consists of choosing a random coordinate j ∼ [n]
and replacing u j with a random draw from ν. The invariant distribution for this chain is the product
distribution ν⊗n. Though the n = 1 case of this chain is, in a sense, trivial — it mixes perfectly in one
step — it is not especially easy to work out the optimal log-Sobolev constant. Nevertheless, Diaconis
and Saloffe-Coste [DS96] showed that for the n = 1 chain, the log-Sobolev constant is

%triv
ν = 2

q− p
ln q− ln p

, where p =min
i∈[`]

{ν(i)}, q = 1− p. (5)

It follows immediately that the log-Sobolev constant in the general-n case is %triv
ν /n. In particular, if

κ1+·· ·+κ` = n and ν(i)= κi/n, then ν⊗n resembles the uniform distribution πκ on Uκ, and the product
chain on [`]n somewhat resembles the random transposition chain on Uκ. This gives credence to the
possibility that Equation (3) may hold with absolute constants for any `.
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The Boolean slice / Bernoulli–Laplace model / Johnson graph. Significant difficulties arise
when one moves away from product Markov chains. One of the simplest steps forward is to the
Boolean slice. This is the `= 2 case of the Markov chains studied in this paper, with the “balanced”
case of κ = (n/2,n/2) being the most traditionally studied. This Markov chain is also equivalent
to the Bernoulli–Laplace model for diffusion between two incompressible liquids, and to the stan-
dard random walk on Johnson graphs; taking multiple steps in the chain is similar to the random
walk in generalized Johnson graphs. The chain has been studied in wide-ranging contexts, from
genetics [Mor58], to child psychology [PI76], to computational learning theory [OW13a]. An asymp-
totically exact analysis of the time to stationarity of this Markov chain was given by Diaconis and
Shahshahani [DS87], using representation theory. However, the log-Sobolev constant for the chain
took a rather long time to be determined; it was left open in Diaconis and Saloff-Coste’s 1996 sur-
vey [DS96] before finally being determined (up to constants) by Lee and Yau in 1998 [LY98]. This
sharp log-Sobolev inequality, and its attendant hypercontractivity and small-set expansion inequal-
ities, have subsequently been used in numerous applications — for the Kruskal–Katona and Erdős–
Ko–Rado theorems in combinatorics [OW13a, DK16, FKMW18], for computational learning the-
ory [Wim09, OW13a], for property testing [Mos14], and for generalizing classic “analysis of Boolean
functions” results [OW13a, OW13b, Fil16b, Fil16a, FM16, FKMW18, Bou18].

The Grassmann graph. One direction of generalization for the Johnson graphs are their “q-
analogues”, the Grassmann graphs; understanding this Markov chain was posed as an open problem
even in the early work of Diaconis and Shahshahani [DS87, Example 2]. For a finite field F and
integer parameters n ≥ k ≥ 1, the associated Grassmann graph has as its vertices all k-dimensional
subspaces of Fn, with two subspaces connected by an edge if their intersection has dimension k−1.
Understanding small-set expansion (and lack thereof) in the Grassmann graphs was central to the
very recent line of work that positively resolved the 2-to-2 Conjecture [KMS17, DKK+18b, DKK+18a,
BKS18, KMS18] (with the analogous problems on the Johnson graphs serving as an important
warmup [KMMS18]). Still, it seems fair to say that the mixing properties of the Grassmann graph
are far from being fully understood.

The multislice. We now come to the multislice, the other natural direction of generalization for the
Johnson graphs, and the subject of the present paper. One can see the multislice as a generalization
of the Bernoulli–Laplace model, modeling diffusion between three or more liquids. As well, the space
of functions f : Uκ →R, together with the action of Sn on Uκ, is precisely the Young permutation
module Mκ arising in the representation theory of the symmetric group. Understanding the mixing
properties of the Uκ Markov chain with random transpositions was suggested as an open problem
several times [DS87], [Dia88, p. 59], [FI18a]. The multislice has also played a key combinatorial role
in problems in combinatorics, such as the Density Hales–Jewett problem (where `= 3 was the main
case under consideration) [Pol12].

Although it might at first appear to be a simple generalization of the Boolean slice, there are
several fundamental impediments that arise when moving from ` = 2 even to ` = 3. These include:
the fact that a Hamming slice disconnects the nearest-neighbour graph in [2]` but not in [3]`; the
fact that one can introduce just one variable per coordinate when representing functions [2]`→R as
multilinear polynomials; the fact that 2-row irreps of Sn (Young diagrams) are completely defined
by the number of boxes not in the first row; and, the fact that when ` ≥ 3, the decomposition of the
permutation module Mκ into irreps has multiplicities. The last of these was the main difficulty to
be overcome in Scarabotti’s work [Sca97] giving the asymptotic mixing time for the transposition
walk on balanced multislices U(n/`,...,n/`) (see also [DH02, ST10]). It also prevents the multislice from
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forming an association scheme.
For the purposes of this paper, the main difficulty that arises when analyzing the log-Sobolev

inequality is the following: when ` = 2, any nontrivial step in the Markov chain (switching a 1 and
a 2) has the property that the histogram within [`]n−2 of the unswitched colors is always the same:
(κ1−1,κ2−1). By contrast, once `≥ 3, the multiple “kinds” of transpositions (switching a 1 and a 2, or
a 1 and a 3, or a 2 and a 3, etc.) lead to differing histograms within [`]n−2 for the unswitched colors.
This significantly complicates inductive arguments.

The symmetric group and beyond. Finally, we mention that analysis of the multislice can also
be motivated simply as a necessary first step in a full understanding of spectral analysis on the
symmetric group and other algebraic structures, an opinion also espoused in, e.g., [CFR11]. Such
structures include classical association schemes such as polar spaces and bilinear forms, matrix
groups such as the general linear group, and the q-analog of the multislice.

2 Preliminaries

2.1 Definitions relevant for the log-Sobolev inequality

Given parameters ` ∈N+ (number of colors) and n ∈N+ (number of coordinates), our objects of study
in this paper are multislices, parametrized by a histogram κ ∈N`+ satisfying κ1 +·· ·+κ` = n:

Uκ =
{
u ∈ [`]n : #iu = κi for all i ∈ [`]

}
.

We will only consider multislices with at least two colors; in other words, `≥ 2.
We introduce the inner product space of functions on Uκ,

Mκ = { f : Uκ→R}, with 〈 f , g〉 = E
u∼π[ f (u)g(u)],

where π=πκ denotes the uniform distribution on the multislice Uκ.
Let K denote the transition / Markov operator on Mκ associated to the transposition random

walk, defined by
K f (u)= E

τ∼Trans(n)
[ f (uτ)],

where Trans(n) consists of all
(n
2
)

transpositions. Let L denote the Laplacian operator 1−K (where
1 is the identity operator). Then the energy (or Dirichlet form) of f : Uκ→R is

E [ f ]= 〈 f ,L f 〉 = 1
2 E

u∼v

[
( f (u)− f (v))2]

,

where we have introduced the notation u ∼ v to denote that (u,v) is a random edge in the Schreier
graph; equivalently, u ∼π and v= uτ for τ∼Trans(n). One may check that if A ⊆Uκ, then

E [1A]= vol(A) ·Φ[A],

where 1A ∈ Mκ denotes the 0/1-indicator of A. (Recall that Φ[A] is the probability, over u ∼ A and
τ∼Trans(n), that uτ ∉ A.)

Before formally defining the log-Sobolev inequality for the transposition chain on Uκ, we recall
first its simpler counterpart, the Poincaré inequality. For f ∈ Mκ, this is

E [ f ]≥λ1 ·Var
π

[ f ],
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where λ1 is the spectral gap; i.e., the lowest eigenvalue of L other than the trivial λ0 = 0. For the
transposition chain on Uκ it is known that λ1 = 2

n−1 , with “dictator” functions and other “degree-1”
functions providing the tight examples; see Corollary 20 in Section 4.2.

As for the log-Sobolev inequality, it is typically defined as

E [ f ]≥ 1
2% ·Ent[ f 2];

the largest constant % that is acceptable for all f ∈ Mκ being termed the log-Sobolev constant for Uκ.
Here Ent[g]=Eπ[g ln g]−Eπ[g] · lnEπ[g]. We remark that Diaconis and Saloff-Coste [DS96] showed
that %≤λ1 always holds.

In this work we will prefer a slightly different (equivalent) definition for the log-Sobolev inequal-
ity, used in [LY98]. It’s easy to see that replacing f with | f | does not change Ent[ f 2] but can only
decrease E [ f ]. Thus in the log-Sobolev inequality it suffices to consider nonnegative f . Also, the in-
equality is 2-homogeneous (both sides are multiplied by c2 when f is multiplied by c); thus it suffices
to consider nonnegative f with Eπ[ f 2] = 1. We write a general such f as

√
φ, where φ : Uκ →R

≥0

satisfies Eπ[φ]= 1. We call such a φ a probability density function, thinking of it as a relative proba-
bility density with respect to the uniform distribution π= πκ. In other words, we associate φ to the
probability distribution in which u ∈Uκ has probability mass φ(u)π(u). Now when φ= f 2, we have

Ent[ f 2]=Ent[φ]=E
π

[φ lnφ]−E
π

[φ] · lnE
π

[φ]=E
π

[φ lnφ],

where we used lnEπ[φ] = ln1 = 0. This quantity is precisely the Kullback–Leibler divergence (or
relative entropy) between the distribution φπ and the distribution π, denoted KL(φπ ‖ π). Thus we
have shown that the usual formulation of the log-Sobolev inequality is equivalent to

E
[√

φ
]
≥ 1

2%κ ·KL(φπ ‖φ) (6)

for all probability densities φ on Uκ, as stated in Inequality (2).

2.2 Hypercontractivity, influences, and other preliminaries for our applications

In this section we make some further definitions, which will be useful for our applications of the
log-Sobolev inequality. We first decompose L into its components on each transposition τ ∈Trans(n),
introducing the operator Lτ defined by

Lτ f (x)= f (u)− f (uτ)

Note that
L= avg

τ∈Trans(n)
Lτ.

Now for f : Uκ→R we define the influence of transposition τ ∈Trans(n) on f to be

Infτ[ f ]= 〈 f ,Lτ f 〉 = 〈Lτ f , f 〉 = 1
2‖Lτ f ‖2

2

(where we are using norm notation ‖ f ‖p =E[| f |p]1/p). Note that if A ⊆Uκ then we have the following
combinatorial interpretation, agreeing with our notation from Equation (4):

Infτ[A]= Infτ[1A]= Pr
u∼πκ

[u ∈ A, uτ 6∈ A]= Pr
u∼πκ

[u 6∈ A, uτ ∈ A].

For general f : Uκ → R we introduce the following additional notation, for the average influence
(equivalent to energy), total influence, and maximum influence of f :

E [ f ]= avg
τ∈Trans(n)

Infτ[ f ], Inf[ f ]= ∑
τ∈Trans(n)

Infτ[ f ]= (n
2
)
E [ f ] M [ f ]= max

τ∈Trans(n)
Infτ[ f ].
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As recounted in the important survey of Diaconis and Saloff-Coste [DS96], there is an equivalence
between log-Sobolev inequalities and hypercontractivity for reversible Markov chains. To explain
what hypercontractivity means in this abstract setting, we first define the continuous-time analog of
the random transposition walk. This is the continuous-time Markov chain, running from time t = 0
to t = ∞, in which (informally) in any interval of infinitesimal length dt, one performs step of the
random transposition chain with probability dt.

More formally, we can provide the following alternative description: if we initialize the continuous-
time Markov chain at state u, then its state ut at time t ≥ 0 is obtained by performing Poisson(t)
random transpositions on u. From this definition we may define noise operator (or heat kernel) Ht
on Mκ:

Ht f (u)=E[ f (ut)].

It’s well known that we can also express Ht in terms of the Laplacian operator, Ht = e−tL.
Diaconis and Saloff-Coste [DS96, Theorem 3.5(ii)] show that the log-Sobolev inequality implies

hypercontractivity:

Theorem 2. For q ≥ 2 and t = ln(q−1)
2%κ

, the following hold for all f ∈ Mκ:

‖Ht f ‖q ≤ ‖ f ‖2, ‖Ht f ‖2 ≤ ‖ f ‖q′ ,

where q′ is the Hölder conjugate of q (meaning 1/q+1/q′ = 1).

(The first inequality directly appears in [DS96]; the second statement appears only implicitly. It is a
consequence of Ht f being a self-adjoint operator; see, e.g., [O’D14, Prop. 9.19].)

In all our applications, we actually use hypercontractivity, rather than log-Sobolev directly.

2.3 Two numerical lemmas

Here we give some two elementary numerical lemmas we’ll need for our proofs. We start by comput-
ing and bounding the inverse moment of a hypergeometric random variable. The following simple
fact may well be in the literature; the most relevant citation we found was [Gov64]:

Lemma 3. Let X ∼Hypergeometric(N,K ,n).1 Then, writing p = 1− (N−K
n+1

)
/
(N+1

n+1
)
, it holds that

E
[

1
X +1

]
= p

N +1
(n+1)(K +1)

≤ N +1
(n+1)(K +1)

.

Proof. Take an urn with N + 1 balls, K + 1 of them white, one of the white balls being “special”.
Consider an experiment in which we draw n+1 balls without replacement, and then choose a random
white ball among the ones drawn (if any). A “success” occurs if the randomly chosen white ball is the
special one.

A necessary condition for the experiment to succeed is that the special white ball was chosen at
all, which happens with probability n+1

N+1 . Assuming that this happened, the number of remaining
white balls drawn is distributed as X ∼Hypergeometric(N,K ,n). Thus the probability that we finally
choose the special ball is n+1

N+1 E[ 1
X+1 ].

Let us now think of the experiment in a different way. A necessary condition for success is that at
least one white ball is drawn, which happens with probability p. Given that this occurs, the finally

1In other words, X is the number of white balls among n random balls drawn (without replacement) from an urn
containing N balls in total, K of which are white.
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chosen white ball is just a random white ball (among all K +1 white balls), so the probability that it
is the special one is exactly 1

K+1 . Thus

n+1
N +1

E
[

1
X +1

]
= p

K +1
,

completing the proof of the lemma.

Next, we give a bound on the log-Sobolev constant from Equation (5) that is more tractable.

Lemma 4. Let ν be a probability distribution of full support on [`]. Then the log-Sobolev constant %triv
ν

for the associated trivial Markov chain, given in Equation (5), satisfies the bound

(%triv
ν )−1 ≤ 1

2

∑̀
i=1

lg
(

1
νi

)
,

where lg denotes log2.

Proof. Let p = mini∈[`]{ν(i)}, and assume without loss of generality that this minimum is achieved
by i = `. Recall the formula of Diaconis and Saloffe-Coste [DS96],

%triv
ν = 2

q− p
ln q− ln p

, where q = 1− p.

What we need to show is

ln(1/p)− ln(1/(1− p))
1−2p

≤ lg(1/p)+
`−1∑
i=1

lg(1/ν(i)).

By convexity of t 7→ lg(1/t) for t ∈ (0,1], the right-hand side above is at least

lg(1/p)+ (`−1)lg
(
`−1
1− p

)
≥ lg(1/p)+ lg(1/(1− p)),

where the second inequality used `≥ 2. Thus it suffices to show

ln(1/p)− ln(1/(1− p))≤ (1−2p)(lg(1/p)+ lg(1/(1− p))), 0< p ≤ 1/2.

(This inequality is simply the lemma we are trying to prove, restricted to the case `= 2.)
Write p = 1/2−δ/2, where δ ∈ [0,1). Both sides of the above inequality are zero for δ= 0; thus to

establish the inequality it suffices to show the right-hand side’s derivative is at least the left-hand
side’s. Taking derivatives, we need to show

2
1−δ2 ≤ lg

(
4

1−δ2

)
+ 2δ2

(ln2)(1−δ2)
, 0≤ δ< 1.

Multiplying this by 1−δ2

2 > 0 gives

1≤ 1−δ2 + 1
2

(1−δ2) lg
(

1
1−δ2

)
+ δ2

ln2
⇐⇒ 0≤

(
1

ln2
−1

)
δ2 + 1

2
(1−δ2) lg

(
1

1−δ2

)
,

which is evidently true as 1
ln2 −1> 0 and 0< 1−δ2 ≤ 1.
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3 Bounding the log-Sobolev constant

In this section we will frequently identify a histogram κ ∈N`+ with the associated multiset of colors,
namely the multiset with κi copies of i for each i ∈ [`]. Thus we may write n = |κ| = κ1 +·· ·+κ`. We
will also use the notation i ∼ κ to mean that i is chosen uniformly at random from the multiset κ; i.e.,
according to the probability distribution on [`] in which i has probability κi/n. We will write κ for this
probability distribution, and will need to refer to the log-Sobolev constant %triv

κ from Equation (5).
Let us introduce one more piece of notation: if %κ denotes the optimal log-Sobolev constant for

the transposition Markov chain on the multislice Uκ, we will write

Rκ = %−1
κ .

Thus the goal of our Theorem 1 is to upper-bound Rκ. The midpoint of the proof will be establishing
the following inductive bound:

Lemma 5. Let κ ∈N`+ with n = |κ| > 2. Then

Rκ ≤ n−1
n · (%triv

κ )−1 + max
i1,i2∈[`]
distinct

{
E

i∼κ\{i1,i2}
Rκ\i

}
. (7)

Given Lemma 5, the deduction of Theorem 1 will be elementary, though not completely straight-
forward; this is in Section 3.2. As for the deduction of Lemma 5 itself, it will mostly follow the proof
Lee and Yau used [LY98] to analyze %κ in the cases ` = 2 (the Hamming slice) and ` = n (the sym-
metric group Sn). Notice, however, that in both of these cases the “max” appearing in Inequality (7)
becomes superfluous. In the ` = 2 case, the only possibility for {i1, i2} is {1,2}, so we have the much
simpler recursion

Rκ ≤ n−1
n · (%triv

κ )−1 + E
i∼κ\{1,2}

Rκ\i.

In the `= n case (meaning κi = 1 for all i ∈ [`]), we see by symmetry that every choice of i1, i2 leads
to an isomorphic subproblem, that of bounding the log-Sobolev constant for Sn−1. That is, we have
the even simpler recursion

R(1n) ≤ n−1
n · (%triv

(1/n,...,1/n))
−1 +R(1n−1) .

1
2 lnn+R(1n−1),

where the asymptotic inequality used Equation (5). This recursion straightforwardly yields the
known bound for the symmetric group, R(1N ) .

1
2 n lnn. A key point of our work is recognizing that

one can use the Lee–Yau methodology to obtain Inequality (7), and that despite its somewhat com-
plicated form, this recursion can be solved to yield a good bound.

3.1 Proving Lemma 5

Although much of the proof of Lemma 5 is from [LY98], we recapitulate it here for completeness and
clarity. Fix κ ∈N`+ with n = |κ| > 2. Recall from Inequality (6) that Rκ is the smallest constant such
that

KL(φπ ‖π)≤ 2Rκ ·E
[√

φ
]

(8)

holds for all probability densities on Uκ.
The way we recursively bound Rκ involves applying the chain rule for KL divergence to KL(φπ ‖π).

We will set up the notation for invoking the chain rule with respect to the nth coordinate. In fact,
we will eventually apply it for each coordinate k ∈ [n], and then take expectations over a uniformly
random k. However, it will be notationally convenient to focus just on the k = n case.

11



To this end, given a probability distribution ξ on Uκ (which will be either φπ or π), we will
write ξn to denote its marginal on the nth coordinate (a probability distribution on [`]). Also, given a
particular a ∈ [`], we will write ξ|a to denote ξ’s distribution on Uκ conditioned on the last coordinate
having color a.

To begin the analysis of Inequality (8), let us write

ψ=φπ (a probability distribution on Uκ)

and then apply the chain rule for KL divergence with respect to the nth coordinate:

KL(ψ ‖π)=KL(ψn ‖πn)︸ ︷︷ ︸
MARGINALn

+ E
a∼ψn

[
KL(ψ|a ‖π|a)

]
︸ ︷︷ ︸

CONDITIONALn

.

We will now bound MARGINALn and CONDITIONALn. In each case we will prove a bound that has
a certain “dependence on the nth coordinate”. We will then remark that we could have equally well
proved an analogous bound involving the kth coordinate, for any k ∈ [n]. Finally, we will average
this analogous bound over all k ∈ [n]. Adding the two averaged bounds from the MARGINAL and
CONDITIONAL cases yields a valid upper bound on KL(ψ ‖π),

KL(ψ ‖π)≤ avg
k∼[n]

{
bound on MARGINALk

}
+ avg

k∼[n]

{
bound on CONDITIONALk

}
. (9)

From this we will derive a recursive upper bound on Rκ via Inequality (8).

3.1.1 Bounding MARGINALn

Our bound on MARGINALn is from [LY98]. We think of the trivial Markov chain on [`] with in-
variant distribution πn, noting that πn is nothing more than κ. Applying the associated log-Sobolev
inequality, we get

KL(ψn ‖πn)≤ 2 · (%triv
κ )−1 ·Eπn

[√
ψn/πn

]
, (10)

where we wrote Eπn to denote the energy functional for the trivial Markov chain. It is simple to check
that the function ψn/πn on [`] is just a 7→Eu∼π|a [φ(u)]. Thus

Eπn

[√
ψn/πn

]
= 1

2
E

a,b∼πn

(√
E

u∼π|a
[φ(u)]−

√
E

v∼π|b
[φ(v)]

)2

. (11)

We would prefer if the two inner expectations here were over the same probability space. To that end,
observe that for any a,b ∈ [`] (not necessarily distinct), we can make a draw v ∼ π|b in the following
unusual way. First, draw u ∼ π|a. Next, draw j ∼ u−1(b), where we have introduced the notation
u−1(b) for the set of all coordinates j with u j = b. Finally, form v = u( j n). (Here we are abusing
notation by allowing the possibility of j = n, so that the “transposition” ( j n) may be the identity.)
Thus we have

E
v∼π|b

[φ(v)]= E
u∼π|a

j∼u−1(b)

[φ( j n)(u)],

where use the notation φτ(u) :=φ(uτ). Putting this into Equation (11) (and also “pointlessly” choosing
j ∼ u−1(b) in the first inner expectation) we get

Eπn

[√
ψn/πn

]
= 1

2
E

a,b∼πn

∣∣∣∣∣∣∣
√

E
u∼π|a

j∼u−1(b)

[φ(u)]−
√

E
u∼π|a

j∼u−1(b)

[φ( j n)(u)]

∣∣∣∣∣∣∣
2

. (12)
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Considering the quantity inside the outer expectation, we further use∣∣∣∣∣∣∣
√

E
u∼π|a

j∼u−1(b)

[
φ(u)

]−√
E

u∼π|a
j∼u−1(b)

[
φ( j n)(u)

]∣∣∣∣∣∣∣=
∣∣∣∣∥∥∥√

φ
∥∥∥

2
−

∥∥∥∥√
φ(· n)

∥∥∥∥
2

∣∣∣∣≤ ∥∥∥∥√
φ−

√
φ(· n)

∥∥∥∥
2
,

where ‖·‖2 is the 2-norm defined by the distribution on (u, j), and we used the triangle inequality.
Putting this back into Equation (12) yields

E
[√

µn/πn

]
≤ 1

2
E

a,b∼πn

[∥∥∥∥√
φ−

√
φ(· n)

∥∥∥∥2

2

]
= E

a,b∼πn
E

u∼π|a
j∼u−1(b)

[
e
(√

φ;u,u( j n)
)]

, (13)

where we have introduced the shorthand

e( f ;u,v)= 1
2 ( f (u)− f (v))2.

In the right-hand expectation in Inequality (13), u is simply distributed according to π. Furthermore,
suppose we fix any outcome u = u. Let us consider the joint distribution of b ∼ πn and j ∼ u−1(b).
Since u ∈ Uκ, we could equivalently form b by choosing a random color within u. But in this case,
j is formed by first choosing a random color within u, and then taking a random coordinate where u
has that same color. It is clear that the resulting distribution on j is simply uniformly random on [n].
Thus the right-hand side of Inequality (13) is simply

E
u∼π E

j∼[n]

[
e
(√

φ;u,u( j n)
)]

.

Putting this into Inequality (13) and then into Inequality (10), we conclude

MARGINALn ≤ 2 · (%triv
κ )−1 · E

u∼π E
j∼[n]

[
e
(√

φ;u,u( j n)
)]

.

This bound we have derived depends on the nth coordinate only through the transposition of j with n.
If we repeat this derivation for a general coordinate k ∈ [n], and then average over k, we will get

avg
k∼[n]

{
bound on MARGINALk

}
= 2 · n−1

n · (%triv
κ )−1 · E

u∼π
τ∼Trans(n)

[
e
(√

φ;u,uτ
)]

= 2 · n−1
n · (%triv

κ )−1 ·E
[√

φ
]
, (14)

where the n−1
n factor accounts for the fact that when j and k are uniformly random, there is a 1

n
chance that they are equal — in which case the “transposition” ( j k) is the identity and we get a
contribution of e(

√
φ;u,u)= 0.

3.1.2 Bounding CONDITIONALn

To bound CONDITIONALn, we again follow [LY98] to a certain point. By definition of R we have

E
a∼ψn

[
KL(ψ|a ‖π|a)

]≤ E
a∼ψn

[
2Rκ\a ·Eκ\a

[√
ψ|a
π|a

]]
.

Note that ψ|a =ψ(· ,a)/ψn(a), similarly for π, and also that E [c · f ]= c2 ·E [ f ]. Thus

E
a∼ψn

[
2Rκ\a ·Eκ\a

[√
ψ|a
π|a

]]
= 2 E

a∼ψn

[
Rκ\a · πn(a)

ψn(a)
·Eκ\a

[√
ψ(· ,a)
π(· ,a)

]]
= 2 E

a∼πn

[
Rκ\a ·Eκ\a

[√
ψ(· ,a)
π(· ,a)

]]
.
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We can further write

Eκ\a

[√
ψ(· ,a)
π(· ,a)

]
= Eκ\a

[√
φ(· ,a)

]
= E

u∼πκ\a
τ∼Trans(n−1)

[
e
(√

φ; (u,a), (uτ,a)
)]

.

Combining all previous deductions, we get

E
a∼ψn

[
KL(ψ|a ‖π|a)

]≤ 2 E
a∼πn

Rκ\a· E
u∼πκ\a

τ∼Trans(n−1)

[
e
(√

φ; (u,a), (uτ,a)
)]

= 2 E
u∼π

τ∼Trans(n−1)

[
e
(√

φ;u,uτ
)
·Rκ\un

]
.

This is our desired bound for CONDITIONALn, except we make a slight adjustment so that the
expectation is over all τ in Trans(n), obtaining the equivalent bound

CONDITIONALn ≤ 2 E
u∼π

τ∼Trans(n)

[
e
(√

φ;u,uτ
)
· 1[n is fixed by τ]

1−2/n ·Rκ\un

]
.

Again, had we repeated this derivation for an arbitrary coordinate k in place of the nth, and then
averaged over k, we would get

avg
k∼[n]

{
bound on CONDITIONALk

}
= 2 E

u∼π
τ∼Trans(n)

[
e
(√

φ;u,uτ
)
· E
k∼Fix(τ)

Rκ\uk

]
, (15)

where Fix(τ) denotes the fixed points of transposition τ.
This is the point at which, by necessity, we depart from [LY98]. To proceed, we simply take a

worst-case upper bound on the two colors swapped by τ; no matter what u and τ are, we have

E
k∼Fix(τ)

Rκ\uk ≤ max
i1,i2∈[`]

{
E

i∼κ\{i1,i2}
Rκ\i

}
.

In fact, when inserting this into Inequality (15), we can do slightly better. Notice that if τ swaps
two colors of u that are the same, then e

(√
φ;u,uτ

) = 0 anyway. Thus we may insert the indicator
random variable 1[τ swaps distinct colors in u] into the expectation in Inequality (15), and then use

1[τ swaps distinct colors in u] · E
k∼Fix(τ)

Rκ\uk ≤ max
i1,i2∈[`]
distinct

{
E

i∼κ\{i1,i2}
Rκ\i

}
.

Putting this inequality into Inequality (15) yields

avg
k∼[n]

{
bound on CONDITIONALk

}
≤ 2 max

i1,i2∈[`]
distinct

{
E

i∼κ\{i1,i2}
Rκ\i

}
·E

[√
φ

]
. (16)

3.1.3 Completing the proof of Lemma 5

Putting together Inequalities (9), (14) and (16) yields

KL(φπ ‖π)≤ 2

 n−1
n · (%triv

κ )−1 + max
i1,i2∈[`]
distinct

{
E

i∼κ\{i1,i2}
Rκ\i

} ·E
[√

φ
]
,

which immediately implies Lemma 5.
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3.2 Deducing Theorem 1 from Lemma 5

In this section we upper-bound Rκ using the recursion given by Lemma 5. Let us make a few sim-
plifications to the statement of Lemma 5. First, let us drop the factor n−1

n for simplicity. Second,
let us use the upper bound on (%triv

κ )−1 from Lemma 4. Finally, let us drop the condition that i1, i2
be distinct in the max; this condition greatly simplifies the recursion when `= 2 (as in [LY98]), but
doesn’t help us much when `> 2. Thus we will finally use

Rκ ≤ c(κ)+ max
{i1,i2}⊆κ

{
E

i∼κ\{i1,i2}
Rκ\i

}
, c(κ) := 1

2

∑
i : κi>0

lg
( |κ|
κi

)
for |κ| > 2. (17)

We remind the reader that in the above, {i1, i2} and κ are considered to be multisets of [`]. In fact,
we will always consider κ to merely be a multiset of the colors on which it is supported. That is to
say, whenever some κi becomes 0 in the above recursion (through the removal of a color inside the
expectation), we will treat the color i as no longer existing (rather than allowing κi = 0). This is
acceptable, since the definition of Rκ is not affected by removing colors that don’t appear in κ. This
is why we dropped the hypothesis κ ∈N`+ in writing Inequality (17), and why we wrote the sum in
c(κ) as being over {i : κi > 0}, rather than over all i ∈ [`]. It might seem that dropping the hypothesis
κ ∈N`+ (and hence κi > 0 for all i) in Inequality (17) could cause a problem for the case when the
number of colors drops to just one, meaning κ = {i, i, . . . , i} for some i. However, in this degenerate
case, the correct value of Rκ is 0, and we also have c(κ)= 0.

Regarding the base cases of |κ| = 2 for our recursion Inequality (17), we have the true values

R{a,b} =
{

0 if a = b
1/2 if a 6= b

}
≤ 1/2. (18)

Indeed, %triv
{1,2} = 1 according to Equation (5), and the energy of this trivial chain is half that of the

transposition chain on U{1,2}.

“Strategies”. Given κ, let’s define a strategy for κ to be a mapping p that takes in an arbitrary
nonempty µ⊆ κ and outputs a pair {i1, i2}⊆µ. We’ll say that p(µ)= {i1, i2} is the pair protected by p.
We’ll write Strat(κ) for the set of all strategies for κ. Then from Inequality (17) we have that

Rκ ≤ max
p∈Strat(κ)

Sp(κ), (19)

where Sp(κ) is defined to be the solution of the recursion

Sp(κ)= c(κ)+ E
i∼κ\p(κ)

Sp(κ\ i), (20)

with the base case Sp(pair)= 1/2 from Inequality (18). Let us write

c(κ)= ∑
a∈[`]

c(a)(κ), where c(a)(κ) := 1[κa 6= 0] · 1
2

lg
( |κ|
κa

)
.

Then it follows from Equation (20) that we have

Sp(κ)= ∑̀
a=1

S(a)
p ,

where
S(a)

p (κ)= c(a)(κ)+ E
i∼κ\p(κ)

S(a)
p (κ\ i). (21)
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Thus returning to Inequality (19), we have

Rκ ≤ max
p∈Strat(κ)

{∑̀
a=1

S(a)
p (κ)

}
≤ ∑̀

a=1
max

p∈Strat(κ)
S(a)

p (κ). (22)

Next, it will be convenient if c(a)(κ) is a decreasing function of κa (considering |κ| fixed), even for
κa = 0. So let us

redefine c(a)(κ) := 1
2

lg
(

2|κ|
1+κa

)
. (23)

This redefinition only increases c(a)(κ); it increases it from zero to a nonzero value when κa = 0; and,
when κa > 0, the increase from κa to κa +1 in the denominator is at most a factor of 2, and this is
compensated for by the new factor of 2 in the numerator. Thus Inequality (22) is still valid under our
redefinition.

The advantage of the redefinition is, as mentioned, that c(a)(κ) always goes up when κa drops by
one, even when dropping from 1 down to 0. Thus for each fixed a ∈ [`], it is now clear from from
Equation (21) that the optimal strategies p ∈Strat(κ) for maximizing S(a)

p (κ) are precisely the “greedy”
ones. Here the “greedy” strategies for color a mean the ones that “always protect non-a colors” (to the
extent this is possible — if µ has only m < 2 non-a colors then p(µ) will be obliged to contain 2−m
a’s). It is also not hard to see that every such greedy strategy g is equally effective; for the purposes
of computing S(a)

g (κ), it doesn’t matter what non-a colors appear in the µ⊆ κ that arise — only how
many of them there are. (This observation relies in part on using the same upper bound, 1/2, for both
cases in Inequality (18).)

Greedy strategies. Let S(a)
g (κ) denote the solution for a greedy protection strategy, which, as we

have argued, equals maxp∈Strat(κ){S(a)
p (κ)}. Our final goal will be to establish

S(a)
g (κ)≤ 1

2
n lg

4n
κa

. (24)

Putting this bound into Inequality (22) will yield Theorem 1.
We first dispense with the edge case when κ contains fewer than 2 non-a’s. In this case, under

the greedy strategy i is always a in Equation (21), and so “solving the recursion” just amounts to
computing a sum. When κa = |κ|, the result is

S(a)
g = 1

2
lg

2n
1+n

+·· ·+ 1
2

lg
2 ·3
1+3

+ 1
2

,

and when κa = |κ|−1, the result is

S(a)
g = 1

2
lg

2n
n

+·· ·+ 1
2

lg
2 ·3
3

+ 1
2

.

In both cases, each of the n−1 summands is at most 1
2 lg2, from which Inequality (24) immediately

follows.
We now come to the main case, when κ contains at least 2 non-a’s. In this case, the greedy strat-

egy involves always protecting two non-a’s, and as argued, the quantity S(a)
g (κ) only depends on κa.

Thus for analysis purposes, we may henceforth assume ` = 2 and a = 1. Now from Inequality (22)
and Equation (23) we conclude that S(a)

g (κ) is the solution of

S(1)
g (κ)= 1

2
lg

(
2|κ|

1+κ1

)
+ κ1

κ1 +κ2 −2
S(1)

g (κ\1)+ κ2 −2
κ1 +κ2 −2

S(1)
g (κ\2),
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with base case S(1)
g ({2,2})= 1/2. It is easier to analyze this recursion in terms of λ := κ\{2,2}. Writing

G(λ)= S(1)
g (κ), we have

G(λ)= 1
2

lg
(

2(λ1 +λ2 +2)
1+λ1

)
+ λ1

λ1 +λ2
G(λ\1)+ λ2

λ1 +λ2
G(λ\2), (25)

with base case G(;) = 1/2. In fact, it will be convenient to overpay for the base case, taking G(;) =
1
2 lg

(
2(0+0+2)

1+0

)
= 1.

Finally, we can solve the recursion in Equation (25) by giving it a probabilistic interpretation.
Suppose we choose a random string u in Uλ. Then we begin a deterministic process with “stages”
numbered |λ|, |λ|−1, |λ|−2, . . . ,1,0. In each stage, we “pay” 1

2 lg
(

2(#1u+#2u+2)
1+#1u

)
, and then we delete the

last character in u. It is easy to see that the solution of Equation (25) is equal to the expectation
(over the initial choice of u) of the total payment in this process. By linearity of expectation, this total
payment is the sum of the expected payment in each stage, and in the mth stage it is clear that the
random variable #1u is distributed as Hypergeometric(λ1+λ2,λ1,m). Thus the expected payment in
the mth stage is

E
[

1
2

lg
(

2(m+2)
1+ X

)]
≤ 1

2
lg

(
E

[
2(m+2)

1+ X

])
, for X ∼Hypergeometric(λ1 +λ2,λ1,m).

By Lemma 3, this is at most

1
2

lg
(

2(m+2)(λ1 +λ2 +1)
(λ1 +1)(m+1)

)
≤ 1+ 1

2
lg
λ1 +λ2 +1
λ1 +1

.

(The bound here is a little loose, but we valued simplicity over optimization of lower-order terms.)
When this is summed over 0≤ m ≤ |λ|, we get an upper bound of

|λ|+1+ |λ|
2

lg
|λ|+1
λ1 +1

.

Recalling λ= κ\{2,2}, and using |κ|−1= n−1≤ n, the above upper bound is at most

n+ 1
2

n lg
n
κ1

= 1
2

n lg
4n
κ1

,

confirming Inequality (24).

4 Applications

4.1 KKL and Kruskal–Katona for multislices

By viewing the multislice as a Schreier graph, we can apply the results of [OW13a, OW13b] to obtain
the KKL Theorem in this setting (in fact, Talagrand’s strengthening [Tal94] of it):

Theorem 6. Let f : Uκ→ {0,1}. Then

avg
τ∈Trans(n)

{
Infτ[ f ]

lg(2/Infτ[ f ])

}
& ρκ ·Var

πκ
[ f ].

(Since we have written &, hiding a universal constant, it doesn’t matter if we take f ’s range to
be {0,1} or {−1,1}.) Substituting our lower bound on ρκ from Theorem 1 yields concrete new results.
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For example, consider our model scenario of n −→∞ with `=O(1) and κi/n ≥Ω(1) for each i; suppose
further that f is “roughly balanced”, meaning Ω(1)≤Var[ f ]≤ 1−Ω(1). Then

avg
τ∈Trans(n)

{
Infτ[ f ]

lg(2/Infτ[ f ])

}
&

1
n

, and hence M [ f ]&
logn

n
.

The latter statement here is the traditional conclusion of the KKL Theorem.
Let us record here one more concrete corollary of Theorem 6. In our model scenario, that theorem

(roughly speaking) says that the energy E [1A]= avgτ∈Trans(n) Infτ[1A] is at least Ω
( logn

n
)

unless some
transposition (i j) has a rather large influence, like 1/n.01, on 1A.

Corollary 7. Let A ⊆Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε≤ vol(A)≤ 1−ε. Then

E [1A]≥Ω
(

ε

` log(1/p)

)
· log(1/M [1A])

n
.

Proof. This is immediate from Theorem 6 and Theorem 1, using lg(2/Infτ[1A]) ≥ lg(2/M [1A]), ρ−1
κ .

n ·` · log(1/p), and Var[1A]= vol(A)(1−vol(A))≥ ε/2.

Following [OW13a], we will use this to show a variant of the Kruskal–Katona Theorem for mul-
tislices.2

The classical Kruskal–Katona Theorem [Sch59, Kru63, Kat68] concerns subsets of Hamming
slices of the Boolean cube. To recall it, let us write a 2-color histogram κ ∈ N2+ as (κ0,κ1), with
n = κ0 +κ1. If A ⊆Uκ, then the (lower) shadow of A is defined to be

∂A = {
v ∈U(κ0+1,κ1−1) : v ≤ u for some u ∈ A

}
.

It is not hard to show that vol(∂A) ≥ vol(A) always (here the fractional volume vol(∂A) is vis-à-vis
the containing slice U(κ0+1,κ1−1)). The Kruskal–Katona Theorem improves this by giving an exactly
sharp lower bound on vol(∂A) as a function of vol(A). The precise function is somewhat cumbersome
to state, but the qualitative consequence, assuming that vol(A) and κ0/n are bounded away from
0 and 1, is that vol(∂A) ≥ vol(A)+Ω(1/n). This is sharp, up to the constant in the Ω(·), as witnessed
by the “dictator set” A = {u : u1 = 0}. See [OW13a, Sec. 1.2] for more discussion.

To extend the Kruskal–Katona Theorem to multislices, we first need to extend the notion of
neighboring slices and shadows. Fix an ordering on the colors, 1 ≺ 2 ≺ ·· · ≺ `. This total order
extends to a partial order on strings in [`]n in the natural way.

Definition 8. Let κ ∈N`+ be a histogram. We say that histogram κ′ is a lower neighbor of κ, and
write κ′/κ, if there exists some c ≺ d ∈ [`] such that κ′c = κd +1, κ′d = κc −1, and κ′i = κi for all other
colors i. In the opposite case, when c Â d, we say κ′ is an upper neighbor of κ, and write κ′.κ.

The main difference between the Boolean case and the multicolored case is that each multislice
now has multiple upper and lower neighbors.

Definition 9. Let A ⊆Uκ, and let κ′/κ. The lower shadow of A at κ′ is

∂κ′ A = {u ∈Uκ′ : u ≺ v for some v ∈ A}.

We similarly define upper shadows. We may use the same notation ∂κ′ A for both kinds of shadows,
since whether a shadow is upper or lower is determined by whether κ′.κ or κ′/κ.

2Our variants are unrelated to those of Clements [Cle84, Cle94, Cle98].
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Towards proving Kruskal–Katona theorems, we relate the volume of A’s lower shadows to E [1A].
Recalling that A now has multiple lower shadows, we show that a certain weighted average of their
volumes is noticeably larger than the volume of A. We first define the appropriate weighted average.

Definition 10. Given a histogram κ ∈N`+, we define a natural probability distribution lower(κ) on
the lower neighbors of κ as follows. To draw κ′ ∼ lower(κ): take an arbitrary u ∈Uκ; choose j, j′ ∼ [n]
independently and randomly, conditioned on u j 6= u j′ ; let c,d denote the two colors u j,u j′ , with the
convention c ≺ d; finally, let κ′ be the lower neighbor of κ with κ′c = κc +1 and κ′d = κd −1.

We similarly define a probability distribution upper(κ) on the upper neighbors of κ by inter-
changing the roles of c and d.

Proposition 11. Given a histogram κ ∈N`+, let h(κ) = 1−∑`
i=1

κi(κi−1)
n(n−1) ≤ 1. (This is the probability

that applying a random transposition to a string in Uκ actually changes it.) Then for any A ⊆Uκ,

E
κ′∼lower(κ)

[vol(∂κ′ A)]≥ vol(A)+E [1A]/h(κ).

In particular, at least one lower neighbor of A has volume at least vol(A)+E [1A]/h(κ).

Remark 12. The same proposition also holds if we consider upper neighbors, κ′ ∼upper(κ).

Proof. By definition,

E [1A]= Pr
u∼πκ

τ∼Trans(n)

[u ∈ A, uτ 6∈ A]= h(κ) ·Pr[u ∈ A, v 6∈ A], (26)

where the random string v ∈ Uκ is defined to be uτ conditioned on u 6= uτ. In other words, the pair
(u,v) is distributed as a random pair of strings differing by a “nontrival” color-swap. Let c,d ∈ [`]
denote the two colors swapped, with the convention c ≺ d. Then if we define κcd / κ to be the
lower neighbor of κ having one fewer d and one more c, it holds that κcd is distributed according to
lower(κ). Finally, let w ∈Uκcd to be the string that agrees with u,v on the unswapped coordinates,
and has color c on the swapped coordinates.

It is easy to see the following: v is uniformly distributed on Uκ; conditioned on c and d, the
string w is uniformly distributed on Uκcd ; and, w ≺ u, w ≺ v. In light of the last of these, we may
make the following deductions: If v ∈ A, then w ∈ ∂κcd A. Furthermore, even when v 6∈ A, if u ∈ A
then w ∈ ∂κcd A. Thus

Pr[w ∈ ∂κcd A]≥Pr[v ∈ A]+Pr[u ∈ A, v 6∈ A]

=⇒ E
c,d

[vol(∂κcd A)]≥ vol(A)+E [1A]/h(κ).

In this deduction, on the right we used that v is uniformly distributed on Uκ and we used Equa-
tion (26). On the left we used that — conditioned on c and d — the string w is uniform on Uκcd . The
proof is completed by recalling that κcd is distributed according to lower(κ).

We can now immediately deduce our first Kruskal–Katona Theorem, using just the log-Sobolev
inequality Theorem 1, and Inequality (1):

Theorem 13. For A ⊆Uκ we have

E
κ′∼lower(κ)

[vol(∂κ′ A)]≥ vol(A)+ 1
n
·vol(A) ln(1/vol(A)) ·

(
n∑

i=1
log2(4n/κi)

)−1
.

In particular, at least one lower shadow of A has volume at least the right-hand side. The analogous
statement for upper shadows also holds.
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Thus in the model case when vol(A) and each κi/n is bounded away from 0 and 1, and ` = O(1),
we get that the average lower shadow of A has volume at least vol(A)+Ω(1/n). Now using our KKL
Theorem (Corollary 7) we can get a “robust” version of this statement; the volume increase is in fact
on the order of (logn)/n unless there is a highly influential transposition for A:

Theorem 14. Let A ⊆Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε≤ vol(A)≤ 1−ε. Then for any δ> 0
we have

E
κ′∼lower(κ)

[vol(∂κ′ A)]≥ vol(A)+ logn
n

·Ω
(

εδ

` log(1/p)

)
,

or else there exists τ ∈Trans(n) with Infτ[A]≥ 1/nδ. The analogous statement for upper shadows also
holds.

As in [OW13a], we now give a conceptual improvement to the “or else” clause in Theorem 14.
Let us work with upper shadows rather than lower shadows going forward. The natural example for
sets A with upper-shadow expansion “only” Ω(1/n) are “dictator” sets such as A = {u : u1 = `}. For
such sets, all transpositions of the form (1 j) indeed have huge influence. However, it’s not so natural
to single out one such (1 j) as the “reason” for the small expansion; instead, we would prefer to say
the reason is that A is highly “correlated” with coordinate 1. To this end, let us make a definition.

Definition 15. Let A ⊆Uκ, let j ∈ [n], and let c ≺ d be colors in [`]. The correlation of A with respect
to coordinate j and colors c,d is

corr j,c,d[A]= Pr
u∼πκ

[u ∈ A | u j = d]− Pr
u∼πκ

[u ∈ A | u j = c].

For simplicity, we present the following theorem without stating the most general possible set-
tings for parameters:

Theorem 16. For n −→∞, let A ⊆ Uκ, with ` = O(1), κi/n ≥Ω(1) for all i ∈ [`] and Ω(1) ≤ vol(A) ≤
1−Ω(1). Then

E
κ′∼upper(κ)

[vol(∂κ′ A)]≥ vol(A)+Ω
(

logn
n

)
, (27)

or else there exists j ∈ [n] and colors c ≺ d ∈ [`] with corr j,c,d[A]≥ 1/n.01.

Suppose that Inequality (27) doesn’t hold. Then there must exist τ ∈Trans(n) such that Infτ[A]≥
1/n.01. Without loss of generality, we can assume that τ = (1 2). We then deduce two consequences
of this, relating the volume of A and its upper shadows. Finally we will combine these to get
that A is correlated to a single color change on one coordinate. The proof here has similar ideas
to [OW13a, Lemma A.6], but we reproduce it for completeness. We also introduce the notation
volc(A) :=Pru∼πκ[u ∈ A | u1 = c].

Lemma 17. Let A ⊆ Uκ, with `= O(1) as n →∞. Let ε≤ κc/n ≤ 1− ε for all c ∈ [`]. Further suppose
that

E
κ′∼upper(κ)

[vol(∂κ′ A)]−vol(A)≤ η.

For every c,d ∈ [`] with c ≺ d, let κdc.κ be the upper neighbor with one more d and one less c than κ.
Then we have ∑

e∈{c,d}

(
Pr

v∼πκdc

[
v ∈ ∂κdc A∧v1 = e

]− Pr
u∼πκ

[u ∈ A∧u1 = e]
)
≤ 1
ε2η. (28)
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Proof. Let Pc,d be the probability that κ′ ∼ upper(κ) is such that κ′ has one more d and one less
c than κ. We use the convention that u ∼ Uκ and v is sampled from an upper neighbor of u. By
definition,

E
κ′∼upper(κ)

[vol(∂κ′ A)]−vol(A)= ∑
c,d,e∈[`]

vole(∂κdc A)Pr[v1 = e]Pc,d − ∑
c,d,e∈[`]

vole(A)Pr[u1 = e]Pc,d.

If we sample u ∼Uκ conditioned on u1 = e, and change a random c to a d, this distribution is uniform
on Uκdc conditioned on the first coordinate being e. Therefore, conditioned on c and d, for e ∈ [`],
vole(A)≤ vole(∂κdc A). We also have that for e 6= c,d, Pr[v1 = e]=Pr[u1 = e]. Putting these together,∑

c,d∈[`]

∑
e∈{c,d}

(
vole(∂κdc A)Pr[v1 = e]Pc,d −vole(A)Pr[u1 = e]Pc,d

)≤ η.

In particular, every pair c,d ∈ [`] satisfies

∑
e∈{c,d}

(
Pr

v∼πκdc

[
v ∈ ∂κdc A∧v1 = e

]− Pr
u∼πκ

[u ∈ A∧u1 = e]
)
Pc,d ≤ η.

Finally, we bound Pc,d. This is the probability that, for any u ∈Uκ and i, j ∈ [n] chosen uniformly and
independently, {ui,u j}= {c,d} conditioned on ui 6= u j. We can calculate this probability explicitly:

Pr
i, j∼[n]

[
ui = c,u j = d | ui 6= u j

]= κc

n
· κd

n−κc
·h(κ)−1 ≥ ε2.

Therefore, ∑
e∈{c,d}

(
Pr

v∼πκdc

[
v ∈ ∂κdc A∧v1 = e

]− Pr
u∼πκ

[u ∈ A∧u1 = d]
)
≤ 1
ε2η.

Lemma 18. Let A ⊆Uκ, with `=O(1) as n −→∞. Let ε≤ κc/n ≤ 1− ε for all c ∈ [`]. Further suppose
that

Inf(1 2)[A]≥ `2γ.

Then there exist c,d ∈ [`] with c ≺ d such that the upper neighbor κdc.κ satisfies

Pr
v∼πκdc

[
v ∈ ∂κdc A | vi = d

]− Pr
u∼πκ

[u ∈ A | ui = c]≥ γ (29)

for i = 1 or 2.

Proof. Draw u ∼πκ, and write u = (u1,u′)= (u1,u2,w) with w ∈ [`]n−2. We have

Inf(1 2)[A]≥Pr[(u1,u2,w) ∉ A∧ (u2,u1,w) ∈ A]≥ `2γ.

Since there are `2 choices of colors for u1 and u2, it must be true that for some choice of c,d ∈ [`],

Pr[u1 = c∧u2 = d∧ (c,d,w) ∉ A∧ (d, c,w) ∈ A]≥ γ.

We consider the case that c ≺ d and reach the case of i = 1 in the conclusion; the other case is similar.
If (d, c,w) ∈ A then (d,d,w) ∈ ∂κdc A. Therefore

Pr[u1 = c∧u2 = d∧ (c,d,w) ∉ A∧ (d,d,w) ∈ ∂κdc A]≥ γ.

Every u in the event above also satisfies u ∉ A∧ (d,u′) ∈ ∂κdc A, so

Pr[u1 = c∧u ∉ A∧ (d,u′) ∈ ∂κdc A]≥ γ,
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and thus
Pr[u ∉ A∧ (d,u′) ∈ ∂κdc A | u1 = c]≥ γ

κc/n
≥ γ.

Finally, let u′ ∼ πκ′ , where κ′ is obtained from κ by removing one c. If (c,u′) ∈ A then (d,u′) ∈
∂κdc A, and so

Pr
v′∼πκ′

[
(d,v′) ∈ ∂κdc A

]− Pr
u′∼πκ′

[
(c,u′) ∈ A

]= Pr
u′∼πκ′

[
(d,u′) ∈ ∂κdc A∧ (c,u′) ∉ A

]
.

Now (c,u′) is uniformly distributed on Uκ conditioned on u1 = c, so

Pr
u′∼πκ′

[
(d,u′) ∈ ∂κdc A∧ (c,u′) ∉ A

]= Pr
u∼πκ

[
u ∉ A∧ (d,u′) ∈ ∂κdc A | u1 = c

]≥ γ,

and also
Pr

u′∼πκ′
[
(c,u′) ∈ A

]= Pr
u∼πκ

[u ∈ A | ui = c].

Meanwhile, (d,u′) is uniformly distributed on Uκdc conditioned on u1 = d, and so

Pr
v′∼πκ′

[
(d,v′) ∈ ∂κdc A

]= Pr
v∼πκdc

[
v ∈ ∂κdc A | vi = d

]
.

Proof of Theorem 16. Apply Theorem 14 with δ= .02, and assume that Inequality (27) does not hold.
The theorem shows that Infτ[A]≥ 1/n.02 for some transposition τ, which without loss of generality is
τ = (1 2). We can therefore apply Lemma 18 (with γ = 1/(`2n.02)), obtaining two colors c ≺ d, which
without loss of generality satisfy the conclusion of the lemma for i = 1:

vold(∂κdc A)≥ 1
`2n.02 +volc(A). (30)

We will show that A is correlated to the first coordinate and the colors c and d.
Since Inequality (27) does not hold, we can apply Lemma 17 (with η=O(logn/n)) to obtain

Pr[v1 = d]vold(∂κdc A)+Pr[v1 = c]volc(∂κdc A)−Pr[u1 = d]vold(A)−Pr[u1 = c]volc(A)≤ 1
ε2η.

Combining Inequality (30) with Pr[v1 = d]≥ ε and volc(∂κdc A)≥ volc(A), we deduce

Pr[u1 = d]vold(A)≥Pr[v1 = d]vold(∂κdc A)+Pr[v1 = c]volc(∂κdc A)−Pr[u1 = c]volc(A)− 1
ε2η

≥ ε

`2n.02 + (Pr[v1 = d]+Pr[v1 = c]−Pr[u1 = c])volc(A)− 1
ε2η

≥Pr[u1 = d]volc(A)+ ε

`2n.02 − 1
ε2η.

Dividing by Pr[u1 = d], we conclude that

corr1,c,d[A]= vold(A)−volc(A)≥ ε

`2n.02 − 1
ε2η.

Since η=O(logn/n), `=O(1), and ε=Ω(1), for large enough n, corr1,c,d[A]≥ 1
n.01 .
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4.2 Harmonic analysis on the symmetric group, and Friedgut on the multislice

In this section we will recap some aspects of harmonic analysis on the symmetric group and on the
multislice, paying particular attention to the notion of the “low-degree” components of a function.
For more details, see e.g. [Dia88].

First, we briefly discuss partitions. A partition λ of n is a nonincreasing sequence of positive
integers summing to n. (Equivalently, it is a sorted histogram κ; i.e., one with κ1 ≥ κ2 ≥ ·· · ≥ κ`.)
We write λ ` n. Sometimes we extend λ into an infinite sequence, by padding it with infinitely
many zeroes. We say that λ dominates or majorizes µ, written λ�µ, if for all i ≥ 1 the inequality
λ1 +·· ·+λi ≥µ1 +·· ·+µi holds.

Though we will eventually be interested in functions on multislices, we begin by studying the
larger vector space V of functions f : Sn →R on the symmetric group. Note that we can naturally ex-
tend the operators K, L, Ht to this space V . The partitions λ of n index the irreducible representations
of the symmetric group Sn. In particular this means that V has an orthogonal decomposition

V = { f | f : Sn →R}= ⊕
λ`n

Vλ,

where the isotypic component Vλ corresponds to the irreducible representations λ (counted with
multiplicity). In analogy with the level/degree decomposition on the Boolean cube, we denote the
orthogonal projection of f onto Vλ by f =λ.

One utility of this decomposition is that Vλ is an eigenspace for the operator K, with eigen-
value equal to χ̂λ(τ), the normalized character evaluated at a(ny) transposition τ ∈ Trans(n). Frobe-
nius [Fro00] determined an explicit formula for these character values:

K f = ∑
λ`n

cλ f =λ, where cλ = 1
n(n−1)

∑̀
i=1

[λ2
i − (2i−1)λi]. (31)

See [DS81, Cor. 1 & Lem. 7] for an explicit proof of the above. Immediate consequences of the above
formula are the following:

L f =∑
λ

dλ f =λ, where dλ = 1− cλ; (32)

Ht f = e−tL f =∑
λ

e−tdλ f =λ. (33)

From Equation (33) we can see that Ht is an invertible operator for all t ≥ 0, and that it is natural to
write H−1

t =H−t.
An important feature of the formula for cλ (and hence dλ) is its relation to majorization order.

The following simple calculation was observed in, e.g., [DS81, Lem. 10]:

Lemma 19. If λ�µ then cλ > cµ and hence dλ < dµ.

From this we may immediately determine the spectral gap3 of the transposition chain on Sn,
which is achieved at λ= (n−1,1).

Corollary 20. The minimal nontrivial eigenvalue of operator L on V is 2
n−1 .

As we explain shortly, given λ we will be particularly interested in the parameter k = n−λ1.
An immediate consequence of Lemma 19 is that we can determine the minimal and maximal value
of dλ in terms of this parameter k. We skip the straightforward calculations (most of which appear
in [Dia88, Ch. 3D, Lem. 2]):

3Although the spectral gap is usually notated λ1, we avoid this notation here due to confusion with the standard
notation λ for partitions.
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Corollary 21. For λ` n and λ1 = n−k, we have

k
n−1

≤ dλ ≤ 2k
n−1

.

The upper bound has equality if λ= (n−k,1, . . . ,1). Further, if k ≤ n/2 we have

dλ ≥
(
1− k−1

n

)
2k

n−1
,

with equality if λ= (n−k,k).

Why consider the parameter k = n−λ1? It turns out that this parameter is very much analogous
to “Fourier degree” for functions on the Boolean cube, as the following result (proved in, e.g., [EFP11,
Thm. 7]) shows:

Theorem 22. Let f : Sn →R be a nonzero function. The degree of f is the least k ∈N such that f
can be represented as a linear combination of “k-juntas” (meaning functions g such that g(π) depends
only on some k values π( j1), . . . ,π( jk)). It is also equal to the least k such that f =λ = 0 for all λ with
n−λ1 > k.

We now provide two simple applications of Corollary 21 concerning functions of bounded degree:

Lemma 23. If f : Sn →R has degree at most k, then Inf[ f ]≤ kn‖ f ‖2
2.

Proof. Using Equation (32) and Corollary 21,

Inf[ f ]= (n
2
)〈 f ,L f 〉 = (n

2
) ∑
λ�(n−k,1,...,1)

dλ‖ f =λ‖2
2 ≤

∑
λ�κ

kn‖ f =λ‖2
2 = kn‖ f ‖2

2.

Lemma 24. If f : Sn →R has degree at most k, then for all t ≥ 0,

‖Ht f ‖2 ≥ e−2kt/(n−1)‖ f ‖2,

and for all t ≤ 0,
‖Ht f ‖2 ≤ e−2kt/(n−1)‖ f ‖2.

Proof. Corollary 21 shows that for t ≥ 0,

‖Ht f ‖2
2 =

∑
λ�(n−k,1,...,1)

e−2tdλ‖ f =λ‖2
2 ≥ e−4kt/(n−1)‖ f ‖2

2.

The bound for t ≤ 0 follows in a similar fashion.

We now move on to discussing functions on the multislice. Let κ ∈N`+ be a histogram of size n.
By relabeling the colors we may assume κ1 ≥ κ2 ≥ ·· · ≥ κ` and hence that κ ` n. Let us denote by
u0 ∈ [`]n the following canonical string:

u0 = 11 · · ·1︸ ︷︷ ︸
κ1

times

22 · · ·2︸ ︷︷ ︸
κ2

times

· · ·`` · · ·`︸ ︷︷ ︸
κ`

times

.

Note that as π runs over all permutations in Sn, the string uπ0 runs over all strings in Uκ, with
equal multiplicity κ1!κ2! · · ·κ`!. In this way, each function f in the permutation module Mκ (i.e., the
multislice Uκ considered as a representation of Sn) can be naturally identified with a “pullback”
function f ∈ V , via f (π) = f (uπ0). Conversely, the functions g ∈ V that correspond to functions on the
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multislice Uκ are precisely those that are invariant to the action of the Young subgroup Sκ1×·· ·×Sκ` .
Classical results in the representation theory of the symmetric group show that this subspace has
the following isotypic decomposition:

Mκ = ⊕
λ�κ

Vλ
κ , (34)

where Vλ
κ is (isomorphic to) a nonzero subspace of Vλ (specifically, Vλ

κ consists of Kλκ copies of the
irrep associated to λ, where Kλκ is the Kostka number. Since this decomposition always includes
V (n−1,1)
κ ≤V (n−1,1) (unless κ= (n)), we conclude:

Corollary 25. The minimal nontrivial eigenvalue of the operator L on any Mκ (for κ 6= (n)) is also
2

n−1 .

We now define the notion of “degree” for functions on multislices:

Definition 26. Let f : Uκ →R be a nonzero function. The degree of f is the least k ∈N such that f
can be represented as a linear combination of “k-juntas” (functions g such that g(u) depends only on
some k values u j1 , . . . ,u jk ). It is also equal to the least k such that f =λ = 0 for all λ with n−λ1 > k (in
f ’s decomposition as in Equation (34)).

Claim 27. The two definitions of “degree” above are indeed the same.

Proof. If g ∈ Mκ is a k-junta, it’s easy to see that its pullback g : Sn →R is a k-junta. Thus if f ∈ Mκ

is a linear combination of k-juntas, so too is its pullback f : Sn →R. From Theorem 22 we get that
f
=λ = 0 for all λ with n−λ1 > k and so the same is true of f =λ.

In the other direction, if f =λ = 0 for all λ with n−λ1 > k, the same is true of f
=λ

, and hence
f is a linear combination of k-juntas (by Theorem 22 again). We need to show that f is also a lin-
ear combination of k-juntas. By linearity, it suffices to assume that f is itself a k-junta; indeed,
it further suffices to assume f is of the form f (π) = 1[π(i1) = j1, . . . ,π(ik) = jk] for some coordinates
i1, . . . , ik, j1, . . . , jk ∈ [n]. By definition we have f (v)= f (π) for any π ∈ Sn such that uπ0 = v. In particu-
lar, it equals the average of f (π) over all such π; i.e.,

f (v)= E
π∈Sn
uπ0 =v

[ f (π)]= Pr
π∈Sn
uπ0 =v

[π(i1)= j1, . . . ,π(ik)= jk]= 1[vi1 = j1, . . . ,vik = jk].

This means that f is indeed a k-junta on Uκ.

An immediate consequence is the following:

Corollary 28. Lemmas 23 and 24 hold equally well for functions f ∈ Mκ of degree at most k.

Finally, we relate the main theorem in our paper to the comparison of norms for low-degree
functions on the multislice:

Lemma 29. Fix a histogram κ ∈N`+ and let p = miniκi/n. Suppose that f ∈ Mκ has degree k. Then
for all finite q ≥ 2:

‖ f ‖q ≤ (q−1)Θ(k log(1/p))‖ f ‖2,

‖ f ‖2 ≤ (q−1)Θ(k log(1/p))‖ f ‖q′ ,

where q′ is given by 1/q+1/q′ = 1.
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Proof. Theorem 1 shows that %−1
κ =Θ(n log(1/p)). Theorem 2 therefore shows that ‖Ht g‖q ≤ ‖g‖2 and

‖Ht g‖2 ≤ ‖g‖q′ for all g ∈ Mκ, where

t = ln(q−1)
2%κ

=Θ(ln(q−1) ·n log(1/p)).

Applying this to g =H−1
t f (which has the same degree as f ) and using Lemma 24 (and Corollary 28),

we deduce
‖ f ‖q ≤ ‖H−t f ‖2 ≤ e2tk/(n−1)‖ f ‖2 = (q−1)Θ(k log(1/p))‖ f ‖2,

and similarly for the second claimed inequality.

We end this section by providing an analogue of Friedgut’s Junta Theorem [Fri98] for functions
on multislices:

Theorem 30. Let f : Uκ → {0,1} be such that Inf[ f ] ≤ Kn. Write pi = κi/n. Then for every ε> 0 there

exists h : Uκ→ {0,1} depending on at most
(

1
p1 p2···p`

)O(K /ε)
coordinates such that Pru∼πκ[ f (u) 6= h(u)]≤ ε.

The proof is essentially identical to Wimmer’s proof [Wim14, Sec. VI] of the analogous theorem for
functions on the Boolean slice (i.e., the ` = 2 case of the above). After replacing Wimmer’s pullback
function (notated f g therein) with our generalization f , it only remains to substitute in our main
log-Sobolev inequality for the multislice Uκ.

4.3 Nisan–Szegedy Theorem on the multislice

The Nisan–Szegedy Theorem says that a degree-k Boolean-valued function on the Hamming cube
is a k2k-junta. (We remark that the smallest quantity γ2(k) that can replace k2k here is now
known [CHS18] to satisfy 3 ·2k−1 −2 ≤ γ2(k) < 22 ·2k.) In [FI18a], an analogous result for functions
on Hamming slices was shown; they conjectured a similar result for functions on multislices. We
resolve this conjecture, following the structure of their proof. This proof structure involves proving
three successively stronger versions of the desired theorem.

The first version pertains only to functions on balanced multislices; it was originally established
for Hamming slices in [FKMW18]:

Theorem 31. Fix `≥ 2, assume n is a multiple of `, and let κ= (n/`, . . . ,n/`) ∈N`+. If f : Uκ → {0,1}
has degree at most k, then f is an `O(k)-junta.

To prove Theorem 31, we first use our hypercontractivity result to establish the following ana-
logue of [FI18a, Lem. 3.1]:

Lemma 32. In the setting of Theorem 31, every nonzero influence Infτ[ f ] is at least `−O(k) (where the
O(·) hides a universal constant).

Proof. Since f has degree at most k, the same is true of Lτ f . Thus Lemma 29 shows (taking, say,
q = 4) that

Infτ[ f ]= 1
2‖Lτ f ‖2

2 ≤ `O(k) · ‖Lτ f ‖2
4/3.

Since f is Boolean-valued, Lτ f takes values in {0,±1}, and so

‖Lτ f ‖2
4/3 = (‖Lτ f ‖2

2)3/2 = (2Infτ[ f ])3/2.

Combining these yields that either Infτ[ f ]= 0 or else Infτ[ f ]−1/2 ≤ `O(k), as needed.

26



With Lemma 32 in hand (as well as Lemma 23) follows exactly as in [FI18a, Sec. 3.1].

The same argument works as long as mini{κi} = Ω(n). The second, stronger version of Nisan–
Szegedy for multislices shows that in fact, it suffices to assume only that mini{κi}≥ `O(k).

Theorem 33. There are universal constants C ≥ C′ such that the following holds. For all k ∈N+ and
all κ ∈N`+ with mini{κi}≥ `Ck, if f : Uκ→ {0,1} has degree at most k, then f is an `C′k-junta.

Roughly speaking, C = 3C′, where C′ is the constant hidden in the O(·) of Theorem 31. The proof
of Theorem 33 exactly follows the argumentation in [FI18a, Sec. 3.2]. Essentially, starting from The-
orem 31, they show that the truth of the statement is preserved whenever one of the quantities κi is
incremented.

Before stating our third Nisan–Szegedy variant, let us extend the definition of γ2(k); we’ll define
γ`(k) to be the least integer such that the following statement is true:

Every degree-k Boolean-valued function f : [`]n → {0,1} on the “`-multicube” is a γ`(k)-junta.

Here we say that f : [`]n →R has degree at most k if it is a linear combination of k-juntas (as usual
for functions on product spaces, see [O’D14, Def. 8.32]). As remarked at the end of [FI18a], it’s easy
to show that `k−1 ≤ γ`(k) ≤ γ2(dlog2`ek). When ` is a power of 2, this upper bound is at most 22 ·`k,
very close to the lower bound; in general we have γ`(k)< 22 ·`2k.

Our third and final Nisan–Szegedy Theorem for the multislice improves the junta size in The-
orem 33 to γ`(k), which is optimal (since the analogue of [FI18a, Lem. 3.10] equally holds in our
setting). We do not know, however, the weakest lower bound we can assume on mini{κi}.

Theorem 34. There is a universal constant C such that the following holds. For all k ∈N+ and all
κ ∈N`+ with mini{κi}≥ `Ck, if f : Uκ→ {0,1} has degree at most k, then f is an γ`(k)-junta.

The way we prove this departs somewhat from the polynomials-based proof in [FI18a, Lem. 3.9].

Proof. From Theorem 33 we know that f is an `C′k-junta, where C′ ≤ C. Without loss of generality,
say that f (u) depends only on coordinates u1, . . . ,uJ , where J ≤ `C′k. Note that as we vary u ∈Uκ, we
see all `J possibilities for the substring (u1, . . . ,uJ); this is because mini{κi} ≥ J. As a consequence,
we can define a function g : [`]J → {0,1} by

g(u1, . . . ,uJ)= E
uJ+1,...,un∈[`] :

u∈Uκ

[ f (u)].

Since f has degree k, it is a linear combination of k-juntas, and in particular, a linear combination of
functions of the form 1[ui1 = c1, . . . ,uik = ck]. We show below that

hi,c := E
uJ+1,...,un∈[`] :

u∈Uκ

[
1[ui1 = c1, . . . ,uik = ck]

]
is a degree k function, and so g has degree k. Thus g is (by definition) a γ`(k)-junta, and hence so is
f .

It remains to show that hi,c has degree k. Suppose first that i1, . . . , ik > L. Let d = (#1c, . . . ,#`c) be
the histogram of c1, . . . , ck, and let w = (#1u≤L, . . . ,#`u≤L) be the histogram of u1, . . . ,uL. The reader
can verify that

hi,c = (κ1 −w1)d1 . . . (κ`−w`)d`

(n−L)k ,
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where ab = a(a−1). . . (a−b+1). Since d1 + . . .+d` = k, this is a degree k function.
When some of the indices i1, . . . , ik are in [L], we have to modify the argument slightly. Suppose

that i1, . . . , ir ∈ [L] and ir+1, . . . , ik ∉ [L]. Redefine d to capture the histogram of cr+1, . . . , ck. The
reader can verify that

hi,c = 1[ui1 = c1, . . . ,uir = cr]× (κ1 −w1)d1 . . . (κ`−w`)d`

(n−L)k−r ,

which has degree k since d1 + . . .+d` = k− r.
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