
CS2P: Improving Video Bitrate Selection and
Adaptation with Data-Driven Throughput Prediction

Yi Sun⊗, Xiaoqi Yin†, Junchen Jiang†, Vyas Sekar†
Fuyuan Lin⊗, Nanshu Wang⊗, Tao Liu�, Bruno Sinopoli†

⊗ ICT/CAS, † CMU, � iQIYI
{sunyi, linfuyuan, wangnanshu}@ict.ac.cn, yinxiaoqi522@gmail.com,
junchenj@cs.cmu.edu, vsekar@andrew.cmu.edu, liutao@qiyi.com,

brunos@ece.cmu.edu

ABSTRACT
Bitrate adaptation is critical to ensure good quality-of-
experience (QoE) for Internet video. Several efforts have
argued that accurate throughput prediction can dramatically
improve the efficiency of (1) initial bitrate selection to lower
startup delay and offer high initial resolution and (2) mid-
stream bitrate adaptation for high QoE. However, prior ef-
forts did not systematically quantify real-world throughput
predictability or develop good prediction algorithms. To
bridge this gap, this paper makes three contributions. First,
we analyze the throughput characteristics in a dataset with
20M+ sessions. We find: (a) Sessions sharing similar key
features (e.g., ISP, region) present similar initial throughput
values and dynamic patterns; (b) There is a natural “state-
ful” behavior in throughput variability within a given ses-
sion. Second, building on these insights, we develop CS2P,
a throughput prediction system which uses a data-driven ap-
proach to learn (a) clusters of similar sessions, (b) an ini-
tial throughput predictor, and (c) a Hidden-Markov-Model
based midstream predictor modeling the stateful evolution of
throughput. Third, we develop a prototype system and show
using trace-driven simulation and real-world experiments
that: (1) CS2P outperforms existing prediction approaches
by 40% and 50% in terms of the median prediction error
for initial and midstream throughput and (2) CS2P achieves
3.2% improvement on overall QoE and 10.9% higher aver-
age bitrate over state-of-art Model Predictive Control (MPC)
approach, which uses Harmonic Mean for throughput pre-
diction.

CCS Concepts
•Information systems → Multimedia streaming;
•Networks→ Transport protocols; Network measurement;

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianópolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934898

Keywords
Internet Video; TCP; Throughput Prediction; Bitrate Adap-
tation; Dynamic Adaptive Streaming over HTTP (DASH)

1 Introduction
There has been a dramatic rise in the volume of HTTP-based
adaptive video streaming traffic in recent years [1]. De-
livering good application-level video quality-of-experience
(QoE) entails new metrics such as low buffering or smooth
bitrate delivery [5, 22]. To meet these new application-level
QoE goals, video players need intelligent bitrate selection
and adaptation algorithms [27, 30].

Recent work has shown that accurate throughput predic-
tion can significantly improve the QoE for adaptive video
streaming (e.g., [47, 48, 50]). Specifically, accurate predic-
tion can help in two aspects:
• Initial bitrate selection: Throughput prediction can help

select a suitable initial bitrate when a video session starts.
Today’s video players either have to conservatively start
with a low bitrate and converge slowly to the optimal bi-
trate or alternatively incur high startup delay.
• Midstream bitrate adaptation: While it is possible to

develop adaptation approaches without using through-
put estimation (e.g., using only the playback buffer oc-
cupancy [27]), recent work [47] argues that throughput-
aware bitrate adaptation can deliver a better QoE than
pure buffer-occupancy based approaches.

Even though prior work [47, 50] suggests the potential
benefits of throughput prediction, they fall short of providing
concrete prediction algorithms that achieve high accuracy
for real-world video sessions. Despite the rich measurement
literature in characterizing various Internet path properties
(e.g., [21,26,43]), our understanding of throughput variabil-
ity and predictability is quite limited.1

As a first step to bridge this gap, we analyze intra- and
inter-session throughput predictability using a large dataset
from iQIYI [8], a leading commercial video provider in
China. We evaluate a range of proposed prediction ap-
proaches (e.g., [24, 28, 34, 41]) and find that these prior ap-
proaches fail to meet the accuracy needed to deliver good

1There has been surprisingly little work and the closest ef-
forts we are aware of are dated and limited in scope [17,49].

Stage 1:
Training
Models

Session
Clustering

Model
Learning

Prediction
Models

Stage 2:
Predicting
throughput

Initial
throughput

Midstream
throughput

Throughput
Predictions

Stage 3:
Selecting
bitrate

Initial
bitrate

Midstream
bitrate

Chunk
Bitrate

Throughput
Measurements

Session
Features

Off-line Online

CS2P System

P
re

d
ic

ti
o

n
 E

n
gi

n
e

Figure 1: Overall workflow of CS2P.

QoE. In particular, we find that these models are not expres-
sive enough to capture the diversity of real-world through-
put patterns (e.g., bottlenecks can occur everywhere along
the transmission path) and the dynamics of throughput evo-
lution within each session (e.g., simple models that use the
previous chunk throughputs are very noisy).

Our analysis also reveals two key insights that form the
basis for our proposed design. First, we observe that simi-
lar sessions (i.e., sessions sharing the same critical features
such as ISP, location) tend to have similar initial and average
throughput values and even exhibit similar structural prop-
erties in throughput variation. This resonates with the find-
ings in recent work [29] that, at the application layer, simi-
lar sessions have similar video QoE performance. Second,
even though the observed throughputs for each video chunk
within a session are inherently noisy, they do exhibit natu-
ral stateful evolving behaviors. Specifically, we see that the
throughput is relatively stable and persistent for some dura-
tion of time but occasionally switches to a different state and
persists in the new state(s).

Building on these data-driven insights, we develop the
CS2P (Cross Session Stateful Predictor) approach for im-
proving bitrate selection and adaptation (Figure 1). CS2P
uses a data aggregator (called Prediction Engine) which
builds prediction models using observed throughputs from
past video sessions. This Prediction Engine uses an offline
clustering step to identify sessions that are likely to exhibit
similar throughput patterns. For each cluster, CS2P employs
a simple approach to predict initial throughput by using the
median throughput of the sessions in this cluster. To im-
prove midstream prediction, CS2P learns a Hidden-Markov-
Model (HMM) for each cluster to model the stateful evolu-
tion of intra-session throughput. The initial throughput and
midstream evolution models can then be plugged into the
bitrate selection and adaptation algorithms running either in
the video players [30,47] or content delivery servers [14,20].
In the broader design space of video delivery, CS2P can be
viewed as a middle ground between fully centralized con-
trol planes (e.g., C3 [23], CFA [29]) and fully decentralized
bitrate adaptation approaches (e.g., Buffer Based-BB [27],
FESTIVE [30], Model Predictive Control (MPC) [47]) as it
uses the centralized visibility to develop better throughput
prediction models but uses decentralized mechanisms to ex-
ecute the actual adaptation decisions.

Our trace-driven simulations show that CS2P outperforms
other throughput predictors and reduces the median predic-
tion error for initial and midstream throughput by 40% and
50% respectively. Moreover, CS2P can drive median over-

all QoE to >93% of offline optimal when combined with
MPC [47]. We also conduct pilot real-world experiments
using an open-source player [3] and deploy CS2P in the op-
erational platform of iQIYI. The results show that CS2P +
MPC improves overall QoE by 3.2% and average bitrate by
10.9% compared with the state-of-art HM (Harmonic Mean)
+ MPC strategy [47], and can accurately predict the total re-
buffering time at the beginning of the session.
Contributions and Roadmap: In summary, this paper
makes three key contributions:
1. A large-scale analysis of throughput stability and pre-

dictability which highlights key challenges in predict-
ing the throughput accurately and suggests data-driven
insights that form the basis for our design (§3).

2. The CS2P architecture for improving bitrate selection
and adaptation via throughput modeling (§4) and a prac-
tical prediction framework that can capture the diverse
and stateful behaviors observed (§5).

3. A practical implementation in a video player (§6) and
the demonstration of the improvements in prediction ac-
curacy and QoE using trace-driven evaluations and pilot
deployments (§7).

We discuss related work in §8, before concluding in §9.
In the next section, we start by motivating the need for ac-
curate throughput prediction for bitrate selection and adap-
tation (§2).

2 Background and Motivation
We begin with a high-level overview of how HTTP-based
adaptive video streaming works and then highlight why we
need good throughput prediction.
Basics of HTTP-based bitrate adaptation: In HTTP-
based video delivery, videos are typically segmented into
chunks and each chunk is encoded at different bitrate lev-
els. Chunks from different bitrate streams are aligned so that
the video player can smoothly switch to a different bitrate, if
necessary, at chunk boundaries.

The player uses bitrate selection and adaptation algo-
rithms that choose the bitrate levels for future chunks to de-
liver the highest possible QoE. Here, the adaptation algo-
rithm needs to balance multiple QoE considerations as dis-
cussed in prior work [15,16,22,47]. These include the initial
startup latency for the video to start playback, the amount
of rebuffering the user experiences during the session, the
average bitrate of the rendered video, and the smoothness
of the rendered video as measured by the number of bi-
trate switches. Since many of these requirements are in-
trinsically at odds with each other, the design of this adap-
tation algorithm is non-trivial and there has been consid-
erable interest in recent years in addressing this problem
(e.g., [22, 30, 31, 47]).
Need for better throughput prediction: Even though it is
possible to design adaptation strategies that avoid any form
of throughput prediction (e.g., [27]), accurate throughput
prediction can help in two aspects:
1. Initial bitrate selection: A video player should ideally

pick the highest initial bitrate that is sustainable (i.e., be-

Streaming
protocol

Examples Limitations How through-
put prediction
helps

Fixed bi-
trate

NFL,
Lynda,
NY-
Times

Bitrate too
low, a few
chunks are
wasted to
probe
throughput

Higher bitrate
with no
rebuffering or
long startup
timeAdaptive

bitrate
ESPN,
Vevo,
Netflix

Table 1: Limitations of current initial bitrate selection.

low the throughput). Existing approaches to initial bi-
trate selection without accurate throughput prediction,
however, are inefficient. Table 1 shows anecdotal ev-
idence of such inefficiencies from several commercial
providers. By analyzing the performance of their players,
we categorize them into two main cases: (1) fixed-bitrate
and (2) adaptive playback. Fixed-bitrate players that use
the same bitrate for the whole video session often inten-
tionally use low bitrate to prevent midstream rebuffer-
ing (e.g., NFL, Lynda). Even if bitrate can be adapted
midstream (e.g., [10, 27, 30]) the player may conserva-
tively start with a low bitrate and take a long time to reach
the optimal bitrate (e.g., Netflix). Furthermore, for short
video clips such adaptation may not reach the desired bi-
trate before the video finishes (e.g., Vevo music clips).2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

N
or

m
al

iz
ed

 Q
oE

Prediction Error

MPC BB

Figure 2: Midstream QoE v.s. prediction accuracy. Ac-
tual QoE is normalized w.r.t. the theoretical optimal
achievable with perfect knowledge of future throughput.

2. Midstream adaptation: Good initial bitrate selection
by itself is not sufficient as the network conditions may
change dynamically during the playback. Thus, most
players try to adapt the midstream bitrate as well. As
such, a good throughput predictor is a necessary com-
ponent of several prior proposals for bitrate adaptation
algorithms (e.g., [30,45,47]). To confirm the importance
of accurate throughput prediction, we replicate the anal-
ysis performed by Yin et al. [47] to study the impact of
prediction error on the achieved QoE by Model Predic-
tive Control (MPC) based bitrate adaptation mechanism.

2Other providers (e.g., YouTube) are anecdotally also ob-
served to use information from the previous sessions of the
same client.

Figure 2 shows the variation of normalized QoE3 with
the increase of throughput prediction error. The result
shows that when the error is ≤20%, the n-QoE of MPC
is close to optimal (>85%). We also reconfirmed their
results that in this regime the performance can be signifi-
cantly better than pure Buffer-Based adaptation approach
(i.e., BB in Figure 2). Other concurrent work has also
confirmed this in the context of cellular networks [50].

Even though the above discussion and prior work make
the case for throughput prediction, there has been little work
on understanding how predictable throughput is in the wild
or what types of prediction algorithms we need to use in
the context of video bitrate adaptation. In the next section,
we use a large-scale dataset to understand throughput pre-
dictability to inform the design of our CS2P approach.

3 Dataset and Analysis
In this section, we describe the dataset we use for analy-
sis. We highlight the limitations of strawman solutions for
initial and midstream throughput prediction and present key
insights that lead to a better throughput prediction algorithm.

Dataset: To understand throughput variability across ses-
sions and within a session, we need continuous measure-
ments over sufficiently long session durations that contain
enough repeated measurements of given client-server pairs.
Note that this is in contrast to other kinds of end-to-end mea-
surements of network latency, loss, jitter, or bottleneck ca-
pacity estimation (e.g., [19,25,33,49]). Unfortunately, there
are few, if any, public datasets that enable such in-depth anal-
ysis of throughput stability and predictability at scale.4

To this end, we use a proprietary dataset of HTTP
throughput measurement from the operational platform of
iQIYI collected in September 2015. iQIYI is a leading on-
line video content provider in China with a total monthly
user base of more than 219 million. It ranks in the top-3
among the Chinese Internet video content providers in a se-
ries of key metrics such as daily/monthly active users, and
viewing time. Our dataset comes from the operational CDN
platform of iQIYI. The dataset consists of over 20 million
sessions covering 3 million unique client IPs and 18 server
IPs over 8 days in September 2015. The clients span 736
cities and 87 ISPs in China. In each session, a client set up
an HTTP connection with one of the web servers and down-
loaded video chunks that had been encoded at a fixed bitrate
(chosen by the user). Table 2 shows the basic features of the
session and the coverage of our dataset. Within each ses-

3The normalized QoE (n-QoE) is defined as the actual QoE
relative to the theoretical optimal, which could be achieved
with the perfect knowledge of future throughput. Here, we
adopt the same definition of video QoE as that in [47], and
we formally define it in §7.1.
4We explored datasets such as Glasnost [21], MLab NDT [9]
and one from a EU cellular provider [7]. Unfortunately, all
of these have too few hosts and the sessions lasted only a
handful of seconds making it unsuitable for such throughput
stability and predictability analysis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Session Duration (seconds)

(a) Duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

Per-epoch Throughput (Mbps)

(b) Throughput

Figure 3: CDF of session duration and throughput.

Feature Description # of unique
values

ClientIP Unique IP address associated
to a client

3.2M

ISP ISP of client (e.g., AT&T) 87
AS The Autonomous System

that client resides in
161

Province The province where the
client is located

33

City The city where the client is
located

736

Server The server-side identifier 18

Table 2: Summary of statistics from the dataset.
sion, we recorded the average throughput for each 6-second
period.5 We refer to such a period as an “epoch”.

Figure 3a shows the CDF of the session duration and
Figure 3b shows the distribution of the per-epoch aver-
age throughput and suggests that the average throughput
distribution is similar to residential broadband characteris-
tics [43]. The clients represent a wide spatial coverage of
China. Although the number of servers is relatively small,
the setting is very close to what real-world video delivery
service providers face, i.e., the clients are widely distributed
while the servers are relatively fewer.

Next, we use this dataset to characterize the structure of
throughput variability within a given session and across ses-
sions, and also evaluate the predictive power of some seem-
ingly natural strawman solutions.

Observation 1: There is a significant amount of through-
put variability within a video session, and simple predictive
models (e.g., looking at recent epochs) do not work.

We first investigate the throughput variability within a ses-
sion. For instance, if the variability is small, then the adap-
tation logic does not have to switch bitrates often. To do so,
we compute the coefficient of variation, which is defined as
the ratio of the standard deviation (“stddev”) of throughput
across different measurements within the session to the mean
of throughput measurements. The result shows that about
half of the sessions have normalized stddev≥30% and 20%+
of sessions have normalized stddev≥50% (not shown). This
confirms the general perception that the throughput has sig-
nificant variation within a session, and therefore for video
streaming, simple static bitrate selection will not suffice.
5For each 6-second epoch, the client counts the total incom-
ing TCP segments and computes the average throughput.
Then it records and reports the average throughput observed
per epoch, after the session completes.

 2.4

 2.6

 2.8

 3

 0 40 80 120 160 200

Th
ro

ug
hp

ut
 (M

bp
s)

Epoch

(a) An example session (b) Throughput variation at
two consecutive epochs

Figure 4: Stateful behaviors in session throughput.

We tried a range of simple prediction models used in prior
work [24, 30, 47] for predicting the throughput of the next
epoch based on past observations in the session. These in-
clude: (1) Last-Sample (LS, using the observation of the
last epoch), (2) Harmonic-Mean (HM, harmonic mean of
past measurements), and (3) Auto-Regressive (AR, a clas-
sical timeseries modeling technique). We found that in gen-
eral, these did not work satisfactorily with the median and
75%ile normalized prediction error across sessions respec-
tively ≥18% and 40%.

Observation 2: The evolution of the throughput within a
session exhibits stateful/persistent characteristics, which if
captured can lead to improved prediction.

Figure 4a gives a visual example from our dataset. We can
clearly observe some states within the throughput variation.
We can split the timeseries into roughly 11 segments, and
each segment belongs to one of the four states. Within each
state the throughput is largely Gaussian, e.g., timeslots 20–
75, 90–115, 135–175 and 180–210 belong to the same state
with the mean throughput around 2.8Mbps.

We investigate the throughput variation across two con-
secutive epochs for a broader set of sessions and find sim-
ilar stateful behaviors in these sessions. As an illustrative
example, in Figure 4b we plot throughput at epoch t+ 1 (y-
axis) vs. throughput at epoch t (x-axis) of the sessions in our
dataset with a particular IP/16 prefix. (We do not show the
exact value of this prefix for proprietary reasons.) We can
observe a clustered trend in the distribution of these points,
i.e., there are some discrete states and the session throughput
changes across these states (red circles in Figure 4b). In Sec-
tion 5.2, we show that these states can be efficiently captured
by a Hidden-Markov Model (HMM).

Given that we only had end-to-end measurements, we
cannot conclusively pinpoint the root cause for such state-
ful behaviors. We can however intuitively conjecture that
these patterns stem from the TCP fair-sharing model—the
throughput depends on the hidden state, which is the num-
ber of flows currently sharing the bottleneck link, and the
observed throughput changes as the number of concurrent
flows changes during the session’s lifetime.

Observation 3: Sessions with similar features tend to ex-
hibit similar initial throughput conditions and throughput
evolution patterns.

Prior work (CFA [29]) shows that, at the application layer,
video sessions with the same critical features have similar

 0.4

 0.5

...

2.2

2.3

 0 5 10 15 20

Th
ro

ug
hp

ut
 (M

bp
s)

Epoch

Session1
Session2

Session3
Session4

(a) Example of similar ses-
sions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Session Initial Throughput(Mbps)

Cluster A
Cluster B

Cluster C

(b) CDF of initial through-
put at different clusters

Figure 5: Throughput similarity for sessions sharing the
same key feature.

QoE (e.g., rebuffering, startup latency, etc.). Here, we dis-
cover similar trends at the network layer, i.e., sessions shar-
ing the same key set of features exhibit similarity in their
throughput. Figure 5a gives an example from our dataset to
illustrate this intuition. Sessions 1/2 and Sessions 3/4 are two
pairs of “close neighbors”, i.e., sharing a set of key session
features. We can see that there is similarity in the throughput
dynamics between the sessions in each of the pair.

Next, we categorize the sessions into different clusters ac-
cording to Client IP prefix. Figure 5b shows the CDFs of
initial throughput for 3 different clusters, each consisting of
over 500 sessions. We have two key takeaways: (1) Ses-
sions in different clusters have significant differences in ini-
tial throughput; (2) Within each cluster, a large number of
sessions have similar initial throughput, e.g., 65% sessions
in Cluster A have throughput around 2Mbps and 11Mbps,
and over 40% of sessions in Cluster B with throughput
6Mbps. We did the same on midstream average through-
put and found consistent results (not shown). Therefore, if
we can identify the “similar sessions” with the same key fea-
tures, we can use a cross-session prediction methodology to
improve the accuracy. However, as we will show next this is
a non-trivial task.

Observation 4: Simple models (e.g., last-mile charac-
teristics) are not expressive enough to capture session
similarity as there is significant diversity in session char-
acteristics and the relationship between session features
and throughput can be quite complex.

An intuitive starting point to exploit the above observa-
tion of similarity across sessions is to look at the “last mile”
characteristics (e.g., type of broadband connections). Thus,
we tried two seemingly natural strawman solutions that con-
sider last-mile predictors on both client and server side, i.e.,
predicting by sessions with the same client IP prefix or con-
necting to the same server. The results show that half of the
sessions have the normalized prediction error ≥50%, and
over 30% of the sessions with prediction error ≥80% (not
shown).

More generally, we observe that the factors that can af-
fect the throughput can be quite complex along two dimen-
sions. First, combinations of multiple features often have a
much greater impact on throughput than the individual fea-
ture. This can be intuitively explained as the throughput is
often simultaneously affected by multiple factors (e.g., the

 0

 200

 400

 600

 800

 1000

 1200

[X] [Y] [Z] [X,Y] [X,Z] [Y,Z] [X,Y,Z]

Th
ro

ug
hp

ut
(K

bp
s)

Figure 6: The throughput variation of sessions match-
ing all and a subset of three features: X=ISP, Y=City,
Z=Server.

last-mile connection, server load, backbone network con-
gestion, etc.), which means sessions sharing same individual
feature may not have similar throughput. Figure 6 gives an
example of the effect of feature combinations. It shows that
the throughput distribution of sessions with the same values
on three key features (i.e., residing in the same ISP-China
Telecom and the same city-Hangzhou, and fetching from the
same server-Server No.8), and the throughput distribution of
sessions only having same values on one or two of the three
features. As shown in Figure 6, the throughput when all
three features are specified is much more stable than any of
other cases, meaning that for these sessions it is the combina-
tion of all the 3 features (not the subset) that determines their
throughput. In practice, we find that such high-dimensional
effects are the common case, rather than an anomalous cor-
ner case. For instance, 51% of distinct ISP-City-Server val-
ues have inter-session throughput standard deviation that is
at least 10% lower than that of sessions only matching one
of two features (not shown). Therefore, in order to capture
“high dimensionality” effects, the prediction algorithm must
be sufficiently expressive to combine multiple features rather
than treating them individually.

Second, the impact of same feature on different sessions
could be variable. For instance, the “last-mile connection”
usually becomes the bottleneck for satellite communication
links, while for broadband access it is less important to deter-
mine the throughput. We compute the relative information
gain6 of a feature on the throughput of session set to repre-
sent the impact of the feature on predicting their throughput,
and find that the impact of the same feature (i.e., city) signif-
icantly varies for sessions in two different ISPs with the dif-
ference of relative information gain over 65% (not shown).

Key observations: In summary, our analysis of throughput
variability suggests that:

• There is substantial throughput variability within a given
session and a range of simple prediction models using
previous observations in the same session do not provide
high accuracy.
• Many sessions exhibit stateful characteristics in the evo-

lution of the throughput.
• Sessions sharing similar critical characteristics tend to

exhibit similar throughput patterns.

6Relative information gain is often used to quantify how
useful a feature is for prediction, defined as RIG(Y |X) =
1−H(Y |X)/H(Y), where H(Y) and H(Y |X) are the en-
tropy of Y and the average conditional entropy of Y .

• The nature of the relationships between session features
and throughput are quite complex and simple last-mile
predictors are inaccurate.

4 CS2P Approach and Overview
In this section, we provide an overview of CS2P which lever-
ages our earlier observations regarding throughput variation
to improve bitrate selection and adaptation.

Figure 1 shows the basic workflow of CS2P. In the of-
fline training stage, throughput measurements of sessions
are collected by the Prediction Engine. The Prediction En-
gine builds throughput prediction models based on the data
collected. These models can then be plugged into the bi-
trate adaptation algorithms implemented either by the video
servers or by clients.

Seen in a broader context, CS2P can be regarded as a
middle ground between centralized video control platforms
(e.g., C3 [23], CFA [29]) and decentralized player-based bi-
trate adaptation (e.g., BB [27], FESTIVE [30], MPC [47]).
Specifically, CS2P borrows the benefits of the global view
advocated by C3/CFA-like architectures to train the models.
However, “actuation” using these models happens in a de-
centralized manner and without global coordination. As we
will see in §6, these models are compact (<5KB) and can be
easily plugged into the client- and server-side bitrate adapta-
tion algorithms. While CS2P cannot offer all the benefits of
centralized control (e.g., CDN switching), it offers a prag-
matic alternative for video providers and CDNs, who do not
want to relinquish control to third-party optimizers and/or do
not want to incur the complexity of centralized control.

The key challenge is employing suitable prediction mod-
els that can capture the throughput variability observed in
real-world sessions. As we saw in the previous discus-
sion, simple models are not expressive enough to capture
the structure of the throughput variation within an individ-
ual session and the diversity of the factors that can affect the
throughput of a client-server combination.

At a high level, one can characterize how expressive a pre-
diction model is in terms of the spatial and temporal struc-
ture it can capture. For instance, let us consider the initial
bitrate prediction along the spatial dimension. At one end of
the spectrum, we can use the previously observed throughput
of the same client-server pair and at the other end of the spec-
trum we can simply use the global average of all the sessions.
Obviously, neither is desirable; we may not have sufficient
samples in the former case and cannot capture the diversity
across sessions in the latter case. Similarly, let us consider
the midstream bitrate prediction. If we only use the previous
chunk throughput measurement from the same session, then
we run the risk of having a noisy measurement which may
additionally miss key state transitions. Besides, such simple
time-series models miss the impact of critical spatial session
features such as client location and ISP (Observation 4 in
§3).

CS2P adopts a cross-session (i.e., spatial) and stateful
(i.e., temporal) prediction modeling approach that works as
follows. First, based on Observation 3 in §3, CS2P groups
similar sessions sharing the same set of critical feature val-

ues and uses the data from such similar sessions to build
the prediction models. Second, to capture the “state transi-
tions” within a session (Observation 2 in §3), CS2P learns
a Hidden-Markov Model (HMM) for each cluster of sim-
ilar sessions. HMM is an efficient state-based model and
has been widely used to predict path and traffic proper-
ties [42, 44, 46].

Given this basic overview, there are three practical ques-
tions that remain:
1. How to cluster similar sessions?
2. How do we automatically train the models?
3. How to utilize these models for throughput prediction

and bitrate adaptation?
We will address these questions next.

5 CS2P Detailed Design
In this section, we describe the detailed design of CS2P that
addresses the above practical challenges. We begin by de-
scribing our data-driven clustering mechanism (§5.1). Then,
we describe the HMM training and online prediction algo-
rithms (§5.2). We conclude this section by describing how
the initial throughput prediction and the HMM can be inte-
grated into client- and server-side components (§5.3).

5.1 Identifying clusters
For both the initial and midstream throughput prediction,
CS2P relies on clustering similar sessions with a cross-
session prediction methodology. At a high level, CS2P finds
for any session s a key feature set and time range, which is
used to aggregate previous sessions that match the specific
features with s and happened in the specific time range.

The workflow of session clustering algorithm in CS2P to
find the session features yielding the best prediction is as
follows:
1. Pick a given set of features Ms from all possible feature

combinations (i.e., 2n subsets of n features, the candi-
date session features are shown in Table 2) and time win-
dows. Specifically, the possible time windows include
time windows of certain history length (i.e., last 5, 10,
30 minutes to 10 hours) and those of same time of day
(i.e., same hour of day in the last 1-7 days).

2. Once the set of features Ms is picked for s , CS2P aggre-
gates previous sessions based on Ms . For instance, given
Ms = 〈ISP , 1hr〉, CS2P will aggregate all previous ses-
sions who are in the same ISP as s and happened in the
last 1 hour. Let this set of previous sessions be denoted
by Agg(Ms , s).

3. CS2P predicts the throughput of s by Pred(s) =
F (Agg(Ms , s)), where F (S) is the predicted through-
put by using the sessions in S. The prediction algorithm
F will be shown in §5.2.

The goal is to minimize the absolute normalized predic-
tion error,

Err(Pred(s), sw) =
|Pred(s)− sw |

sw
, (1)

where sw is the actual throughput of s .

Throughput

Hidden State ……

State Transition Emission

… …

Figure 7: Overview of HMM model.

The key component of algorithm is how to map each ses-
sion s to a set of features M ∗s , that yields the lowest predic-
tion error. That is

M ∗s = argmin
M

Err(F (Agg(M , s)), sw) (2)

We take a data-driven approach and find the best set of
features for prediction over a set of previous sessions Est(s)
(defined shortly). Formally, the process can be written as
following:

M ∗s = argmin
M

1

|Est(s)|
∑

s′∈Est(s)

Err(F (Agg(M , s ′)), s ′w)

(3)
Est(s) should include sessions that are likely to share the

best prediction model with s . In our dataset, Est(s) con-
sists of sessions that match features in Table 2 with s and
happened within 2 hours before s occurred.

To make the prediction Pred(s) reliable, CS2P ensures
that Pred(s) is based on a substantial number of sessions
in Agg(Ms , s). Therefore, if Ms yields Agg(Ms , s) with
less than a threshold number of sessions (e.g., 100), it will
remove that session cluster from consideration. Note that the
model can regress to the “global” model (i.e., model trained
with all the previous sessions), if no suitable clustering could
be achieved.7

Note that this session clustering step is similar to that in
CFA [29], but the goal and criteria of clustering in the two
schemes are different. CFA determines the critical feature
set according to the QoE similarity, whereas in CS2P the op-
timal session clusters are chosen based on throughput pre-
diction accuracy.

5.2 HMM training and online prediction
Next we present a simple but effective HMM-based predic-
tor capturing the state-transition behaviour (Observation 2
in §3)) in each cluster Agg(M ∗s , s).

Modeling: The throughput predictor in CS2P is based on
a Hidden Markov Model (HMM). Figure 7 provides a high-
level overview of the HMM. The intuition behind the use of
HMM in our context is that the throughput depends on the
hidden state; e.g., the number of flows sharing the bottleneck
link and link capacity. By carefully analyzing the behaviors
of previous sessions with the same value of features in M ∗s ,
we try to capture the state transitions and the dependency
between the throughput vs. the hidden state, and propose a
robust and efficient throughput predictor.
7The probability of sessions using global model in our
dataset is ≤4%.

State 1
N(0.43,0.052)

Mbps

State 2
N(2.41,1.492)

Mbps

State 3
N(1.20,0.102)

Mbps

0.972

0.876 0.970

0.055

0.012

0.016

0.020

0.069

0.010

Figure 8: Example of hidden-markov model of session
clusters.

We start by formally defining the HMM. Let Wt be
the random variable representing the network throughput at
epoch t, wt be the actual throughput measured from the net-
work, Ŵt be the predicted value of Wt.

We assume the throughput Wt evolves according to some
hidden state variables Xt ∈ X , where X = {x1, · · · , xN}
denotes the set of possible discrete states and N = |X | the
number of states. Intuitively, the states reflect some discrete
changes in the structure of the network or users, e.g., number
of users at a bottleneck link. Given that state Xt is a random
variable, we denote its probability distribution as a vector
πt = (P(Xt = x1), · · · ,P(Xt = xN)).

The key assumption in HMM is that the state evolves as
a Markov process where the probability distribution of the
current state only depends on the state of the previous epoch,
i.e., P(Xt|Xt−1, · · · , X1) = P(Xt|Xt−1). We denote the
transition probability matrix by P = {Pij}, where Pij =
P(Xt = xi|Xt−1 = xj). According to Markov property,

πt+τ = πtP
τ (4)

Given the hidden state Xt, we assume the pdf of throughput
Wt (namely, the emission pdf) is Gaussian:

Wt|Xt = x ∼ N(µx, σ
2
x) (5)

Note that HMM is a general model which could work with
any emission pdf other than Gaussian. However, here we use
Gaussian emission as it proves to provide high prediction
accuracy in our dataset and its computational simplicity.

Figure 8 gives an example of a 3-state HMM of one ses-
sion cluster in our dataset. Each state follows a Gaussian
distribution of throughput denoted by the mean of the distri-
bution and its standard deviation N(µ, σ2). The transition
probability is computed between every pair of states. For in-
stance, suppose session throughput is currently at State 1 in
Figure 8, then for the next epoch it will stay at the same state
with probability of 97.2% and switch to State 2 and 3 respec-
tively with probabilities of 1.2% and 1.6%. Note in Figure 8,
the probability of inter-state transition and the standard de-
viation of throughput within each state are small, suggesting
clear stateful behaviors for the throughput evolution.

We introduce notations before proceeding to training and
prediction: For simplicity, we use W1:t = {W1, · · · ,Wt} to
denote throughput from epoch 1 to epoch t. Let πt1|1:t0 =
(P(Xt1 = x1|W1:t0), · · · ,P(Xt1 = xN |W1:t0)) be the pdf
vector of the hidden state Xt1 , given throughput from epoch

1 to t0. For example, πt|1:t−1 is the pdf of state Xt given the
throughput up to epoch t− 1.
Offline training: Given the number of statesN , we can use
training data in Agg(M ∗s , s) to learn the parameters of HMM
for this particular cluster, θHMM = {π0, P, {(µx, σ2

x), x ∈
X}} via the expectation-maximization (EM) algorithm [18].
Note that the number of states N needs to be specified.
There is a tradeoff here in choosing suitable N . Smaller N
yields simpler models, but may be inadequate to represent
the space of possible behaviors. On the other hand, a large
N leads to more complex model with more parameters, but
may in turn lead to overfitting issues. As described in §7.1,
we use cross-validation to learn this critical parameter.

Algorithm 1 Online prediction in CS2P

1: Let t be epoch id
2: for t = 1 to T do
3: if t = 1 (initial epoch) then
4: Initialize π1
5: Ŵ1 = Median(Agg(M ∗s , s))
6: else
7: πt|1:t−1 = πt−1|1:t−1P

8: Ŵt = µx, where x = argmaxx∈X πt|1:t−1(x)
9: end if

10: Bitrate selection based on prediction Ŵt

11: Obtain throughput measurement wt
12: Update πt|1:t =

πt|1:t−1◦e(wt)

(πt|1:t−1◦e(wt))·1
13: end for

Online prediction: In the offline training stage, we find
the 1) set of critical features and 2) corresponding prediction
model for each session in the training dataset. In the online
prediction stage, a new session is mapped to the most similar
session in the training dataset, which matches all (or most of)
the features with the session under prediction. We then use
the corresponding HMM of that session to make predictions.
The online prediction algorithm using HMM is shown in Al-
gorithm 1. At a high level, it involves predicting throughput
for the next epoch using HMM, as well as updating HMM
state once the actual throughput is measured.

Next, we discuss the key steps in our prediction approach:
• Prediction (initial epoch): HMM relies on the throughput

measurement of the “current” epoch to predict through-
put of the “next” epoch, however for the initial epoch
there is no historical information in this session. As such,
CS2P predicts the initial throughput of session s simply
by the median throughput of sessions in Agg(M ∗s , s) that
match s on the best set of features of M ∗s and are in the
time range of M ∗s , i.e.,

Ŵ1 = Median(Agg(M ∗s , s)) (6)

Note that the throughput prediction of the initial epoch is
computed in the Prediction Engine and sent to the video
servers (for server-side bitrate adaptation) or clients (for
client-side bitrate adaptation) together with the trained
prediction models.

• Prediction (midstream epoch): At epoch t, given updated
pdf of HMM state πt−1|1:t−1, we can compute the state
pdf at current epoch according to Markov property:

πt|1:t−1 = πt−1|1:t−1P (7)

The throughput prediction Ŵt is given by the maximum
likelihood estimate (MLE):

Ŵt = µx, x = argmax
x∈X

P(Xt = x|W1:t−1) (8)

• Update HMM: Once we observe the actual throughput
wt, we use this information to update the state of HMM
πt, so that it reflects the most up-to-date information of
the network. Namely, given actual throughput Wt = wt,
and πt|1:t−1, we want to compute πt|1:t using the follow-
ing equations:

πt|1:t =
πt|1:t−1 ◦ e(wt)

(πt|1:t−1 ◦ e(wt)) · 1
(9)

where e(wt) = (f(wt|Xt = x1), · · · , f(wt|Xt = xM))
is the emission probability vector, f(·) is the Gaussian
pdf, ◦ denotes entry-wise multiplication, or Hadamard
product [6] of the two vectors.

5.3 Player integration
CS2P can be used both with server-side [14, 20] and client-
side adaptation solutions [30, 47].

In the server-side solution, video content servers inter-
act with the Prediction Engine for the models and initial
throughput predictions for each cluster, and are responsible
of choosing the bitrate for all the sessions. The advantage of
this server-based solution is that it requires little updates or
modifications on the clients. However, the centralized server
needs to collect throughput measurements from all clients
and compute bitrates for each video session, making it a po-
tential bottleneck. Fortunately, we find that the online pre-
diction in CS2P is very light-weight and our deployed server
(Intel i7-2.2GHz, 16GB RAM, Mac OS X 10.11) can pro-
cess about 150 predictions per second.

Bitrate adaptation can also be done by each video client.
Here, each video client downloads its own HMM and initial
throughput prediction from Prediction Engine and runs the
model for real-time throughput prediction and bitrate adap-
tation by itself. The advantage of this decentralized method
is that the client is often in the best position to quickly detect
performance issues and respond to dynamics. The disadvan-
tage is that it requires client to maintain its own HMM. For-
tunately, the computation complexity and storage require-
ment of HMM in CS2P are low, and it is feasible to do
that on the client. On our test client (Intel i7-2.8GHz, 8GB
RAM, Mac OS X 10.9), each prediction requires <10 mil-
liseconds (only needs two matrix multiplication operations),
and <5KB memory is used to keep the HMM.

For midstream bitrate selection, we use the Model Pre-
dictive Control (MPC) strategy formulated by recent ef-
forts [47],8 that takes throughput prediction, current bitrate
8Specifically, we refer to FastMPC [47].

and buffer occupancy as inputs and solves an exact integer
programming problem to decide the bitrate for the next few
epochs. For brevity, we do not provide more details of MPC
and its advantages over pure Rate-based (RB) or Buffer-
based (BB) schemes, and refer readers to prior work [47].
However, MPC cannot be utilized for the initial bitrate se-
lection of the session due to the lack of the current bitrate
setting and buffer occupancy measurement. Thus, to select
bitrate for the first chunk, we simply select the highest sus-
tainable bitrate below the predicted initial throughput.

6 Implementation
In this section, we describe our implementation. Our imple-
mentation follows the server-side solution of CS2P, i.e., the
server makes throughput prediction for each session. We in-
tegrate the functionalities of Prediction Engine into the video
server, which is responsible of training the HMMs for each
session clusters and then using the trained models to make
throughput predictions for the video players. On receiving
the throughput prediction from the server, video player runs
the bitrate selection algorithms to achieve bitrate adaptation.

• Video Player: Our implementation of video player is
based on Dash.js, an open-source implementation of
MPEG-DASH standard using client-side JavaScript to
present a flexible and potentially browser independent
DASH player [3]. The key components of Dash.js con-
trolling bitrate selection are BufferController and Abr-
Controller. We make several minor modifications to
these two components. First, in BufferController, bitrate
decision is made before the request of each video chunk
(including the initial chunk). Whenever the client wants
to make bitrate decision, it sends a POST request (con-
taining the actually throughput of the last epoch) to the
server and fetches the result of throughput prediction in
approximate 500 milliseconds. Second, we implement
different bitrate algorithms (e.g., MPC, RB, BB, fixed)
in AbrController, replacing the default rule-based deci-
sions. When the video is completely loaded, log informa-
tion including QoE, bitrates, rebuffer time, startup delay,
predicted/actual throughput and bitrate adaptation strat-
egy is sent to a log server.
• Server: On the server side, we choose the Node.js as

the basis of HTTP server implementation. Node.js is an
event-driven, non-blocking I/O, lightweight and efficient
network framework [11]. We implement the key func-
tions such as session clustering, HMM model building,
online initial/midstream throughput prediction, on the
server. The learning of the HMM model is implemented
using the Probabilistic Modeling Toolkit (PMTK) [35]
in Octave. As model training is a time-consuming pro-
cess, we do it on a per-day basis with the log collected
on each day.9 The server responds to the POST requests
from video clients and returns the throughput prediction
results.

9Since the model learning for different clusters are indepen-
dent, this process can be easily parallelized.

We believe that our implementation can be easily trans-
lated to the client-side solution (i.e., each client makes
throughput prediction by itself), as we only require less than
600 additional lines of JavaScript over open-source play-
ers [3, 47].

7 Evaluation
In this section, we show that:
• CS2P reduces median prediction error by 40% for ini-

tial throughput and 50% for midstream throughput com-
paring to state-of-art predictors, achieving 6% 1-epoch-
ahead and < 10% 10-epoch-ahead median prediction er-
ror (§7.2);
• When combined with MPC [47], CS2P can drive me-

dian overall QoE to 93% of offline optimal for initial
chunk and 95% for midstream chunks, outperforming
other state-of-art predictors (§7.3);
• In pilot deployments, CS2P combined with MPC-based

bitrate adaptation algorithms, outperforms the state-of-
art HM + MPC strategy, achieving 3.2% improvement
on overall QoE and 10.9% higher average bitrate and can
accurately predict the total rebuffering time at the begin-
ning of the session (§7.5).

We also evaluate the sensitivity of CS2P performance to var-
ious configuration parameters (§7.4).

7.1 Evaluation Setup
Evaluation Framework: We use a combination of real
player experiments and trace-driven simulations for evalua-
tion. We use the real video player to conduct a pilot deploy-
ment (§7.5). For improvement on accuracy and QoE (§7.2,
§7.3) and sensitivity analysis (§7.4), we employ a custom
Matlab-based simulator simulating the video download and
playback process and the buffer dynamics. In the simulation
framework, the throughput changes according to the previ-
ously recorded traces. The simulated player measures the
throughput, and different algorithms (e.g., HMM) are used
to predict future throughput accordingly.
Baseline solutions: While it is impossible to enumerate
all possible prediction algorithms, we consider several rep-
resentative history-based and machine-learning models used
in recent proposals [24, 47]:
1. History-based predictors: LS (Last Sample), HM (Har-

monic Mean [30, 47]) and AR (Auto Regression [24]).
2. Machine-learning predictors: SVR (Support Vector Re-

gression [34]) and GBR (Gradient Boosting Regression
trees [41]).

Model configuration: To learn the parameters of pre-
diction models, we divide the dataset into temporally non-
overlapping training and testing datasets. We learn parame-
ters using training dataset with data in the first day and re-
port prediction results on the testing dataset for sessions in
the next day.

To choose key design parameters (number of HMM states,
group size, etc.), we adopt 4-fold cross validation. Specifi-
cally, we equally divide the training dataset on the first day
into 4 subsets, and iteratively use 3 of the subsets for model

learning with candidate parameters and choose the param-
eter with best testing result on the remaining subset. Note
that the dataset on the first day is only used in the training
process and is not used in evaluations.

For AR and HM, we utilize all the available previous mea-
surements to predict next value. For SVR and GBR, we use
the implementations in [39]. The training of GBR and SVR
are using all the sessions10 in our dataset with the same ses-
sion feature set as we list in Table 2. We use a 6-state HMM
with group size 100 based on cross validation.

One limitation we acknowledge is that the training and
testing throughput data is from fixed bitrate video chunk
downloading instead of ABR chunk downloading. However,
based on our conversation with iQIYI engineers we confirm
that the downloading behaviors (especially the throughput)
are quite similar for video chunks in different bitrate levels.
Therefore, we believe that the conclusions we make in the
evaluation still hold for ABR scenarios.
Metrics: We use the following performance metrics for pre-
diction accuracy and QoE:
1. Absolute normalized prediction error (Eq1): We can

summarize the error within and across sessions in dif-
ferent ways, e.g., median of per-session median, 90-
percentile of per-session median, or median of 90-
percentile per-session.

2. QoE: We adopt the model in prior work [47], where QoE
is a linear combination of average video quality, average
quality variation, total rebuffer time, and startup delay.
We set λ = 1, µ = µs = 3000.11

3. Normalized QoE (n-QoE): Computed by dividing actual
QoE by the offline optimal QoE, which is achieved given
perfect throughput information in the entire future and
can be calculated by solving a MILP problem.

4. QoE components: Finally, we adopt two basic QoE
metrics–(a) AvgBitrate: average value of selected bi-
trates, and (b) GoodRatio: percentage of chunks with no
re-buffering.

Video parameters: We use the same video as in
prior work [47], i.e., the “Envivio” video from DASH-
264 JavaScript reference client test page [2]. The video
length is 260s, and the chuck size is equal to the epoch
length. The video is encoded in H.264/MPEG-4 AVC
codec in the following bitrate levels: 350kbps, 600kbps,
1000kbps, 2000kbps, 3000kbps, matching the bitrate levels
for YouTube [13]. The buffer size is 30s.

7.2 Improvement in Prediction Accuracy
First, we present the improvement in prediction accuracy of
CS2P compared with the baseline approaches.

10We also tried training only on the clustered sessions, but
found the results were worse than training with all sessions.

11The exact QoE equation is as follows [47]

QoEK
1 =

K∑
k=1

Rk − λ
K−1∑
k=1

|Rk+1 −Rk|

− µ
K∑

k=1

(
dk(Rk)

Ck
−Bk

)
+

− µsTs

Midstream epoch: Figure 9b shows the CDF of absolute
normalized prediction error for midstream epochs. CS2P re-
duces the median prediction error by ∼50% comparing to
other baseline solutions, achieving ∼7% median error and
∼20% 75-percentile error. CS2P also reduces the tail of
the prediction error; e.g., at the 75th percentile, CS2P’s er-
ror is less than 20%, compared with more than 30% for all
other methods. In addition, we compared CS2P with Global
Hidden-Markov-Model (GHM), a global HMM trained by
data of all previous sessions without clustering. The re-
sult shows that the prediction accuracy of CS2P outperforms
GHM, which confirms the necessity of training a separate
HMM for each cluster of similar sessions rather than having
a global HMM for all sessions.

Initial epoch: Figure 9a depicts the CDF of prediction er-
ror for the first (initial) epoch of the session.12 We see that
CS2P performs much better in predicting the initial through-
put with ≤20% median error vs. 35%+ for other predictors.
We also observe that the prediction error for initial epoch
(Figure 9a) is in general higher than midstream epochs (Fig-
ure 9b). This is due to the lack of throughput measurements
in previous epochs of the session, therefore we can only uti-
lize cross-session information (i.e., similar sessions in his-
tory) for prediction.

As such, the prediction accuracy depends on how many
features are available and what they are. We carry out
the same experiment on another dataset from FCC MBA
project [4], where more features are available for each ses-
sion (e.g., connection technology, downlink/uplink speed).
We found that the accuracy in FCC dataset is significantly
better as the median error for initial epoch is ≤10% (not
shown).13

Impact of look-ahead horizon: We also study the accuracy
of prediction for longer horizons into the future (instead of
just the next epoch). This can be critical in many scenarios:
e.g., some bitrate adaptation algorithms (e.g., MPC) require
prediction into a fixed look-ahead horizon. Similarly, CDN
server scheduling also benefits greatly from predicting the
overall video downloading time early in the process. Fig-
ure 9c shows the median of the per-session median predic-
tion error vs. the number of lookahead epochs. We see that
CS2P clearly outperforms other predictors, achieving∼50%
improvement over the second best (GBR). When predicting
10 epochs ahead, CS2P can still achieve as low as 9% pre-
diction error while all other solutions have the error ≥17%.
We also considered other performance metrics (e.g., aver-
age of per-session average error) and found consistent results

12Since AR, HM and LS can not be used for the initial
throughput prediction, here we only compare the perfor-
mance of CS2P with GBR, SVR, LM-client (Last Mile-
client, predicting by the performance of clients sharing the
same IP prefix/16), and LM-server (Last Mile-server, pre-
dicting by the performance of clients connecting to the same
server).

13Unfortunately, this dataset cannot be used to test intra-
session midstream throughput variation, since the fixed short
duration (30 seconds) of each session does not provide
enough measurement samples.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Absolute Normalized Error

CS2P
SVR
GBR

LM-Client
LM-Server

(a) Initial epoch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Absolute Normalized Error

AR
LS

HM

GHM
SVR
GBR

CS2P

(b) Midstream epoch

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9 10

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r

Number of Lookahead Steps

AR
LS

HM

GHM
SVR
GBR

CS2P

(c) 10-epoch lookahead

Figure 9: Analyzing throughput prediction accuracy of different solutions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7 0.8 0.9

C
D

F

Normalized QoE

SVR
GBR
CFA

CS2P

(a) Initial chunk

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.85 0.9 0.95

C
D

F

Normalized QoE

AR
LS

HM
GHM
SVR
GBR

CS2P

(b) Midstream chunk

Figure 10: Video QoE improvement using different
throughput predictors.

that CS2P significantly outperforms the baseline models (not
shown).

7.3 Improvement in Video QoE
Next, we evaluate the QoE improvement using CS2P.

Overall QoE: Figure 10 shows the CDF of normalized
QoE of different predictors + MPC adaptation algorithm-
fig:hmmstatefig:hmmstate [47] for both initial and mid-
stream chunks. As can be seen, CS2P achieves better QoE
for both initial and midsteam epochs. For CS2P 61% and
81% of the sessions achieve >90% of the offline-optimal
QoE respectively for initial and midstream chunks, while
these numbers for the next best solutions are only 42% and
73%. This result confirms that the improved prediction ac-
curacy of CS2P leads to concrete QoE gain when combined
with prediction-based bitrate adaptation algorithms.

In Figure 10a we also compare CS2P against CFA [29],
which selects the initial video bitrate based on the QoE pre-
diction via cross-session methodology. We see that CS2P
significantly outperforms CFA. The reason is that CFA re-
lies on QoE prediction, and QoE heavily depends on video-
specific features (e.g., videos with different bitrate levels
have different QoE). In our dataset we do not record these
video-specific features, making it difficult to predict QoE ac-
curately. However, CS2P relies on throughput prediction us-
ing only network-specific features, and our dataset enables it
to have good enough predictions.

Detailed QoE: Next, we zoom in and focus on two key QoE
factors, AvgBitrate and GoodRatio. As shown in Table 3,
CS2P leads to both higher AvgBitrate and GoodRatio for
initial and midstream chunks.

Figure 11 shows the Pareto frontier of QoE factors for
midstream chunks achieved by MPC + different predictors,

Initial Midstream
AvgBitrate GoodRatio AvgBitrate GoodRatio

AR NULL NULL 3.31Mbps 96.6%
LS NULL NULL 4.08Mbps 93.2%
HM NULL NULL 3.80Mbps 97.2%
CFA 1.93Mbps 87.9% NULL NULL
SVR 1.52Mbps 81.4% 4.64Mbps 92.6%
GBR 2.09Mbps 93.8% 4.28Mbps 98.0%
CS2P 4.27Mbps 98.5% 4.97Mbps 99.1%

Table 3: Comparing AvgBitrate vs. GoodRatio among
different predictors.

 0

 1

 2

 3

 4

 5

 6

 0.8 0.9 1

Av
g.

 B
itr

at
e

(M
bp

s)

Good Ratio

CS2P
GBR

AR
SVR

LS
HM

Figure 11: Tradeoff between AvgBitrate and GoodRatio.

i.e., the set of achievable AvgBitrate and GoodRatio by ad-
justing weight on QoE factors. The more to the top right,
the better QoE is achieved. We observe that CS2P-based
bitrate selection strikes a better tradeoff of higher AvgBi-
trate and higher GoodRatio. Overall, CS2P + MPC achieves
better QoE than other predictors, once again confirming the
claim that higher prediction accuracy leads to QoE improve-
ment [48].

7.4 Sensitivity Analysis
We also conduct sensitivity analysis of the performance of
CS2P w.r.t. key design parameters.

HMM states: While a sufficient number of states is nec-
essary to fully capture the behavior of the network, having
too many states leads to increased model complexity and
potential overfitting. Figure 12a shows the prediction error
vs. number of HMM states. We see that while the error de-
creases with more states, there is a natural diminishing return
property as the performance gain after 6 states is much less.
This confirms our choice of 6-state HMM based on cross
validation.

Group size: As discussed in §5.1, if the number of training
sessions in a cluster is too small, the data will be insufficient

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 20

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r

States
(a) Error vs. HMM states

 0

 0.2

 0.4

 0.6

 0.8

 1

50 75 100 200 400

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r

Sample (# of sessions)

(b) Error vs. Group size

 0

 0.2

 0.4

 0.6

 0.8

 1

6 18 30 42

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r

Epoch Length (seconds)

(c) Error vs. Measurement frequency

Figure 12: Sensitivity analysis of CS2P parameters.

to yield reliable prediction results. Figure 12b shows the
error vs. the threshold of group size in the training dataset.
We observe that while the error decreases with more training
sessions, the prediction error converges after the group size
grows to 100. Again, this confirms our choice of group size
100 using cross validation.

Measurement granularity: We also investigate how per-
formance of CS2P changes w.r.t. throughput measurement
granularity. We merge the original per-6-second traces to
more coarse-grained traces (18s, 30s, 42s) by taking the av-
erage of multiple consecutive epochs. Figure 12c shows that
the prediction error is generally independent of measurement
granularity.

7.5 Pilot Deployment
Finally, we conduct two deployment studies to evaluate the
performance of CS2P in the wild.

Custom multi-city deployment: First, we took two rounds
of 4-day experiments to respectively compare the perfor-
mance of CS2P + MPC vs. BB [27] (during January 11 to 14,
2016) and CS2P + MPC vs. HM14 + MPC [47] (during May
16 to 19, 2016). In each round, 200+ client video players
were involved from 5 university campuses across 4 different
cities in China,15 connecting to a centralized server deployed
in our lab. We use the data collected on the previous day to
train our model, and apply the model for throughput predic-
tion and bitrate adaptation for the current day. When a new
client session starts, it randomly selects one of the two bi-
trate adaptation strategies (CS2P +MPC and HM+MPC/BB)
with equal probability. The video clients are Google Chrome
web browsers for Linux, Mac OS X and Windows with V8
JavaScript engine while the video server is a simple HTTP
server based on Node.js (version 0.10.32).

Table 4 shows that our CS2P + MPC significantly outper-
forms BB in a variety of QoE metrics except startup delay,
i.e., increasing the average bitrate by 9.3%, reducing mid-
stream bitrate switches by 5.6% and improving GoodRatio
by 17.6%. The overall QoE improvement is 14% relative to
BB. In addition, we find that CS2P + MPC outperforms HM

14Since Harmonic Mean (HM) can not be used to predict the
initial throughput, for fair comparison we use the same pre-
dicted throughput at initial epoch in HM as that in CS2P.

15Due to the limited number of volunteer clients involved, we
cannot test the three strategies simultaneously.

Metrics vs. HM+MPC vs. BB
AvgBitrate 10.9% 9.3%
GoodRatio 2.5% 17.6%

Bitrate Variability -2.3% 5.6%
Startup Delay 0.4% -3.0%
Overall QoE 3.2% 14.0%

Table 4: QoE improvement by CS2P +MPC compared
with HM+MPC and BB in a real-world experiment in 4
cities of China.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Absolute Normalized Error

Figure 13: Prediction error on total rebuffering time.

+ MPC in terms of all QoE metrics except for bitrate vari-
ability, i.e., improving the average bitrate, GoodRatio and
startup delay respectively by 10.9%, 2.5% and 0.4%, result-
ing an overall QoE improvement by 3.2%. Note that due to
the limited number of clients in our experiment, the accu-
racy of the cross-session prediction in CS2P is lower than
the trace-driven simulations. We believe that this is a con-
servative estimate of the QoE gain, and the improvement of
CS2P vs. HM is likely more significant in large scale scenar-
ios with more client-side measurements.

Deployment in a large commercial VoD service: We also
deployed CS2P in the VoD system of iQIYI, where CS2P is
used to estimate the total rebuffering time at the beginning
of fixed-bitrate streaming sessions. Specifically, at the be-
ginning of the session, we use CS2P to predict throughput
Ti for all future epochs i, and calculate the total download-
ing time of the video DTp, given size of each chunk. The
predicted rebuffering time is RTp = max{0, DTp − X},
where X is the video length. We compare the RTp with
the actual measured rebuffering time RTm. We then focus
on the sessions with rebuffering events (RTm > 0). Fig-
ure 13 shows that the predicted rebuffering time is close to
the actual value, with 70%+ sessions achieving prediction

error ≤20%. Our discussions with the iQIYI engineers sug-
gest that these preliminary results are very promising as a
means of informing their bitrate and CDN server selection
logic and there are ongoing plans for a more comprehensive
evaluation of CS2P in their production system.

8 Related Work
Path properties measurement: Studies on path prop-
erties have shown prevalence and persistence of network
bottlenecks (e.g., [25]), constancy of various network met-
rics (e.g., [49], longitudinal patterns of cellular performance
(e.g., [36]), intra-session RTT variation (e.g., [37]), and spa-
tial similarity of network performance (e.g., [17]). In con-
trast, our focus is on throughput stability and predictability.
Bandwidth measurement: Unlike prior path mapping ef-
forts (e.g., [19,33,40]), CS2P uses a data-driven model based
on available session features and does not require any infer-
ence of path information (e.g., traceroute). Other approaches
use packet-level probing to estimate the available bandwidth
and the capacity of Internet paths (e.g., [12, 26]). Unlike
CS2P, these active probes need full client/server-side con-
trol which is often infeasible in the wild.
Throughput prediction: Prior work either developed
approximate analytical models of TCP throughput as a
function of packet loss and delay [24, 38] or leveraged
Time-series models (e.g., Holt-Winters [32] and Auto-
Regressive [24]) and machine-learning models (e.g., Sup-
port Vector Regression [34], Gradient Boosting Regression
Trees [41]) to predict session’s throughput based on previ-
ous measurements. However, these approaches do not pro-
vide satisfactory prediction accuracy to feed into the video
adaptation algorithms.
Video QoE prediction: Jiang et al., observe that video
quality is typically determined by a subset of critical fea-
tures, and thus propose CFA [29] to predict video QoE of
a new session based on the QoE measurements of similar
sessions in history. CS2P is inspired by similar insight that
end-to-end performance is predictable because it is deter-
mined by only a few critical features. While CFA and CS2P
are complementary, there are some important differences be-
tween them: 1) CFA only predicts application-layer qual-
ity using both video-specific and network-specific features,
whereas CS2P predicts network-layer throughput using only
network-specific features; 2) CFA only considers initial bi-
trates and does not do midstream throughput model; 3) CFA
envisions a deployment model of centralized control while
CS2P is amenable of a decentralized execution.
Adaptive video streaming: Our work is in the context of
Dynamic Adaptive Streaming over HTTP (DASH), where it
is known that choosing high and sustainable bitrate is criti-
cal to video quality of experience [16]. Prior work implic-
itly assumes that throughput is unstable and unpredictable,
and eschews this in favor of using the player buffer occu-
pancy for controlling bitrates [27]. Recent work [47, 50] ar-
gues that adaptive video streaming can significantly benefit
from accurate throughput prediction. However, these do not
provide a concrete prediction algorithm. Our contribution is

in developing an effective throughput predictor and demon-
strating its utility for DASH.

9 Conclusions
Designing good bitrate selection and adaptation algorithms
is critical to deliver good video quality of experience (QoE).
Prior work argues that accurate throughput prediction could
help improve initial bitrate selection and the midstream
adaptation [45, 47, 50], but fails to provide a concrete
roadmap to achieve these benefits. Our work bridges this gap
by providing a large-scale measurement analysis of through-
put variability and builds on these data-driven insights to de-
velop the CS2P framework. CS2P uses cross-session stateful
prediction models. These models can be easily plugged into
the bitrate selection logic of client- and server-side adapta-
tion algorithms. Thus, CS2P offers an immediately deploy-
able middle ground between complex centralized control ar-
chitectures [23] and purely decentralized adaptation algo-
rithms [27, 47]. We demonstrate the benefits of CS2P us-
ing both trace-driven simulations and pilot deployments and
find that CS2P outperforms prior work on both throughput
prediction accuracy and video QoE.

Acknowledgments
The authors would like to thank Menggang Tan, Jia Wang,
Ling Cai, Yongqiang Dong and Jing Liu for helping us de-
ploy the multi-city experiments and all the volunteers joining
the experiment. We also thank Keith Winstein for shepherd-
ing our paper and SIGCOMM reviewers for their feedback.
This work is supported in part by the National Basic Re-
search Program (2012CB315802) and the Natural Science
Foundation of China (61379133, 61133015). This work is
also funded in part by NSF (CNS-1345305) and a Juniper
Networks Fellowship.

10 References

[1] Cisco Visual Networking Index.
http://www.cisco.com/c/en/us/solutions/service-provider/
visual-networking-index-vni/index.html.

[2] DASH-264 JavaScript reference client landing page 1.4.0.
http://dashif.org/reference/players/javascript/1.4.0/samples/
dash-if-reference-player/index.html.

[3] Dash.js.
https://github.com/Dash-Industry-Forum/dash.js/wiki.

[4] FCC Measuring Broadband America .
http://www.fcc.gov/measuring-broadband-america.

[5] Final Report on the Validation of Objective Models of Video
Quality Assessment.
http://videoclarity.com/PDF/COM-80E_final_report.pdf.

[6] Hadamard Product.
https://en.wikipedia.org/wiki/Hadamard_product_(matrices).

[7] HSDPA. http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/.
[8] iQIYI. http://www.iqiyi.com.
[9] MLab NDT. https:

//console.cloud.google.com/storage/browser/m-lab/ndt/.
[10] Netflix. http://www.netflix.com.
[11] Node.js. https://nodejs.org/en/.
[12] Pathchar.

http://www.caida.org/tools/utilities/others/pathchar/.

[13] YouTube live encoder settings, bitrates and resolutions.
https://support.google.com/youtube/answer/2853702?hl=en.

[14] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.
Begen. Server-Based Traffic Shaping for Stabilizing
Oscillating Adaptive Streaming Players. In Proc. ACM
NOSSDAV, 2013.

[15] A. Balachandran, V. Sekar, A. Akella, and S. Seshan.
Analyzing the Potential Benefits of CDN Augmentation
Strategies for Internet Video Workloads. In Proc. ACM IMC,
2013.

[16] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. Developing a Predictive Model of Quality of
Experience for Internet Video. In Proc. ACM SIGCOMM,
2013.

[17] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz.
Analyzing Stability in Wide-area Network Performance.
ACM SIGMETRICS Performance Evaluation Review,
25(1):2–12, 1997.

[18] C. M. Bishop. Pattern Recognition and Machine Learning.
springer, 2006.

[19] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In Proc. ACM
SIGCOMM, 2004.

[20] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback
Control for Adaptive Live Video Streaming. In Proc. ACM
MMSys, 2011.

[21] M. Dischinger, M. Marcon, S. Guha, P. K. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling End Users to
Detect Traffic Differentiation. In Proc. USENIX NSDI, 2010.

[22] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph,
A. Ganjam, J. Zhan, and H. Zhang. Understanding the
Impact of Video Quality on User Engagement. In Proc. ACM
SIGCOMM, 2011.

[23] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang,
V. Sekar, and H. Zhang. C3: Internet-Scale Control Plane for
Video Quality Optimization. In Proc. USENIX NSDI, 2015.

[24] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of
Large Transfer TCP Throughput. In Proc. ACM SIGCOMM,
2005.

[25] N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang. A
Measurement Study of Internet Bottlenecks. In Proc. IEEE
INFOCOM, 2005.

[26] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang.
Locating Internet Bottlenecks: Algorithms, Measurements,
and Implications. In Proc. ACM SIGCOMM, 2004.

[27] T. Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service. In Proc.
ACM SIGCOMM, 2014.

[28] M. Jain and C. Dovrolis. End-to-end Estimation of the
Available Bandwidth Variation Range. ACM SIGMETRICS
Performance Evaluation Review, 33(1):265–276, 2005.

[29] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and
H. Zhang. CFA: A Practical Prediction System for Video
QoE Optimization. In Proc. USENIX NSDI, 2016.

[30] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Video
Streaming with Festive. IEEE/ACM Transactions on
Networking, 22(1):326–340, 2014.

[31] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality
Impacts Viewer Behavior: Inferring Causality Using
Quasi-experimental Designs. In Proc. ACM IMC, 2012.

[32] Y. S. Lim, Y. C. Chen, E. M. Nahum, D. Towsley, and R. J.
Gibbens. How Green is Multipath TCP for Mobile Devices?
In Proc. ACM SIGCOMM AllThingsCellular, 2014.

[33] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iPlane: An Information Plane for Distributed Services. In
Proc. USENIX OSDI, 2006.

[34] M. Mirza, J. Sommers, P. Barford, and X. Zhu. A Machine
Learning Approach to TCP Throughput Prediction. In Proc.
ACM SIGMETRICS, 2007.

[35] K. Murphy and M. Dunham. PMTK: Probabilistic Modeling
Toolkit. In Proc. NIPS, 2008.

[36] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao,
and M. Welsh. Mobile Network Performance from User
Devices: A Longitudinal, Multidimensional Analysis. In
Proc. PAM, 2014.

[37] B. A. A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and
K. Obraczka. A Machine Learning Framework for TCP
Round-trip Time Estimation. EURASIP Journal on Wireless
Communications and Networking, 2014(1):1–22, 2014.

[38] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical
Validation. In Proc. ACM SIGCOMM, 1998.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, and J. Vanderplas. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[40] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan,
A. Gupta, and A. Akella. On the Treeness of Internet Latency
and Bandwidth. ACM SIGMETRICS Performance
Evaluation Review, 37(1):61–72, 2009.

[41] G. Ridgeway. Generalized Boosted Models: A Guide to the
GBM Package. Update, 1(1):1–12, 2007.

[42] K. Salamatian and S. Vaton. Hidden Markov Modeling for
Network Communication Channels. In Proc. ACM
SIGMETRICS, 2001.

[43] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescape. Broadband Internet
Performance: A View From the Gateway. In Proc. ACM
SIGCOMM, 2011.

[44] S. Tao and R. Guerin. Application-specific Path Switching: a
Case Study for Streaming Video. In Proc. ACM Multimedia,
2004.

[45] G. Tian and Y. Liu. Towards Agile and Smooth Video
Adaptation in Dynamic HTTP Streaming. In Proc. ACM
CoNEXT, 2012.

[46] W. Wei, B. Wang, and D. Towsley. Continuous-time Hidden
Markov Models for Network Performance Evaluation.
Performance Evaluation, 49(14):129–146, 2002.

[47] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
Control-Theoretic Approach for Dynamic Adaptive Video
Streaming over HTTP. In Proc. ACM SIGCOMM, 2015.

[48] X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled
Framework to Design Dynamic Adaptive Streaming
Algorithms over HTTP. In Proc. ACM SIGCOMM HotNets,
2014.

[49] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
Constancy of Internet Path Properties. In Proc. ACM IMW,
2001.

[50] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic,
R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can Accurate
Predictions Improve Video Streaming in Cellular Networks?
In Proc. ACM HotMobile, 2015.

