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ABSTRACT
Video traffic already represents a significant fraction of today’s traf-
fic and is projected to exceed 90% in the next five years. In parallel,
user expectations for a high quality viewing experience (e.g., low
startup delays, low buffering, and high bitrates) are continuously
increasing. Unlike traditional workloads that either require low la-
tency (e.g., short web transfers) or high average throughput (e.g.,
large file transfers), a high quality video viewing experience re-
quires sustained performance over extended periods of time (e.g.,
tens of minutes). This imposes fundamentally different demands
on content delivery infrastructures than those envisioned for tradi-
tional traffic patterns. Our large-scale measurements over 200 mil-
lion video sessions show that today’s delivery infrastructure fails
to meet these requirements: more than 20% of sessions have a re-
buffering ratio≥ 10% and more than 14% of sessions have a video
startup delay ≥ 10s. Using measurement-driven insights, we make
a case for a video control plane that can use a global view of client
and network conditions to dynamically optimize the video delivery
in order to provide a high quality viewing experience despite an
unreliable delivery infrastructure. Our analysis shows that such a
control plane can potentially improve the rebuffering ratio by up to
2× in the average case and by more than one order of magnitude
under stress.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications; C.4 [Performance of Systems]:
[measurement techniques]

General Terms
Design, Performance, Measurement

Keywords
Video, CDNs, Control plane

1. INTRODUCTION
Over the last few years, video traffic has quickly become the

dominant fraction of Internet data traffic. Studies show that Netflix
alone accounts for more than 20% of the US Internet traffic [42]
and projections show that by 2014, video traffic will constitute
more than 90% of the total traffic on Internet [2]. These estimates
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are for streaming traffic (including both live and video-on-demand
services) and does not include offline video downloads (e.g., via
shared upload or P2P services).

User expectations in streaming video workloads impose funda-
mentally different service requirements on the network infrastruc-
ture compared to traditional data traffic. Traditional workloads fo-
cus either on latency (e.g., interactive sessions or short web trans-
fers) or on transfer completion time (e.g., long file transfers). In
contrast, latency is less critical in streaming video because applica-
tion data units are large enough to amortize latency effects. Simi-
larly, overall completion time does not really reflect the actual user
experience as it does not capture rebuffering-induced interruptions;
we know that users are sensitive to buffering as a 1% increase in
buffering can lead to more than a 3 minutes reduction in expected
viewing time [21]. Streaming video not only introduces new qual-
ity metrics at the network- and user-level, but also requires that this
quality (e.g., high bitrates with low rebuffering) be sustained over
extended periods of time as typical videos span multiple minutes.

In addition to the improvements last-mile connectivity, a key
driver for the rapid explosion of streaming video traffic has been the
shift from specialized streaming protocols and infrastructure (e.g.,
Windows Media Services, RealNetworks, RTMP) to HTTP chunk-
based streaming protocols (e.g., [5, 42]). This use of a commodity
service dramatically decreases the cost of dissemination and the
barrier of entry by allowing content providers to leverage existing
HTTP CDN infrastructures to deliver content to a wide audience.
Furthermore, the reliance on HTTP also implies the ability to sup-
port multiple viewing platforms as HTTP support is ubiquitous.

Unfortunately, there is a mismatch between the requirements of
video streaming and the architecture of today’s HTTP-based video
delivery infrastructures, both at the ISP and CDN level. Using
fine-grained client-side measurements from over 200 million client
viewing sessions, we find that 20% of these sessions experience a
rebuffering ratio of ≥ 10%, 14% of users have to wait more than
10 seconds for video to start up, more than 28% of sessions have
an average bitrate less than 500Kbps, and 10% of users fail to see
any video at all.

Analyzing the causes of these performance problems reveals:
• significant spatial diversity in CDN performance and availabil-

ity across different geographical regions and ISPs,
• substantial temporal variability in the CDN performance and

client-side network performance, and
• poor system response to overload scenarios when there are “hotspots”

of client arrivals in particular regions or ISPs.
Our overarching goal is to meet the demands for a high-quality

viewing experience despite an unreliable video delivery infrastruc-
ture. In this context, the design space for optimizing video delivery
quality consists of three high-level dimensions:
1. What parameters can we adapt; e.g., bitrate, CDN?
2. When are these parameters optimized; e.g., at video startup or

midstream?



3. Who chooses these parameters; e.g., client or server?
The above observations regarding CDN variability across space

and time suggest that purely server- or client-driven selection and
adaptation are unlikely to be sufficient. To this end, we envision
a video control plane that can use a global view of network and
CDN performance to dynamically assign clients a suitable choice
of CDN and bitrate that optimizes the video delivery. Beyond
the performance benefits, such a control plane also offers content
providers more flexibility in instrumenting fine-grained policies;
e.g., providing higher quality service to premium customers un-
der load, ensuring that certain types of content is only accessible
with specific geographical regions, or taking into account the cost-
performance tradeoffs that different CDNs have to offer [29].

Realizing such a control plane is challenging, and thus a natural
first question is whether this exercise is worthwhile. To this end, we
use a measurement-driven framework to extrapolate the potential
for improvement in video quality. We observe that there is signif-
icant potential and that even just choosing a CDN more optimally
can reduce the average rebuffering ratio by 2× in the common case
and more than 10× under extreme scenarios.

We would also like to confirm that these gains are not merely
hypothetical. To do so, however, we need to concretely specify
aspects of the control plane such as the allocation algorithms, per-
formance estimators, and policy functions. To this end, we present
one specific realization of such a control plane to illustrate the ben-
efits. Our choices in this respect are far from ideal and have to
necessarily embed several simplifying assumptions. We believe
this exercise is still valuable because our goal is to make a case
for a control plane, rather than present a reference design and im-
plementation. Our simulations confirm that such an approach can
outperform other options in the design space for optimizing video
delivery in both common and extreme load scenarios.
Contributions and Roadmap: To summarize, our key contribu-
tions are:
• Measurements to expose the shortcomings of today’s video de-

livery infrastructure (Section 2) that motivate the need for a
video control plane (Section 3).
• Using an extrapolation approach to establish the potential room

for improvement (Section 4).
• Corroborating these potential gains under a concrete (but sim-

plified) operation model (Section 5 and Section 6).
We discuss outstanding issues in Section 7 and place our work

in the context of related work in Section 8 before concluding in
Section 9.

2. MOTIVATION
Previous research has confirmed the impact of quality on user

experience to show that users are quite sensitive to buffering and
high startup latency, and prefer higher bitrate content [3,21]. Given
this need for high-quality video delivery, we analyze how today’s
infrastructure performs.

In this section, we examine the performance of today’s delivery
infrastructure and highlight potential sources of inefficiencies. We
begin by focusing on the end-user streaming video performance.
Then, we identify three potential sources of performance prob-
lems: variability in client-side, variability within a single ISP or
Autonomous System (AS), and variability in CDN performance.

2.1 Dataset
The dataset used in this paper is based on one week of client-side

measurements from over 200 million viewing sessions or views
(both successful and failed) from over 50 million viewers across

91 popular video content providers around the world. The chosen
week includes a single large live event lasting two hours, but other-
wise has normal traffic. Table 1 summarizes the data set. The con-
tent served by these providers includes both live (e.g., sports broad-
casts) and video-on-demand (e.g., TV episodes and movies). Since
we observe similar results from both live and video-on-demand
traffic, we show results only on aggregate data from both types of
traffic. The data was generated via client-side player instrumenta-
tion that collects statistics regarding the current network conditions
(e.g., estimated bandwidth to the chosen CDN server) and the ob-
served video quality (e.g., rebuffering ratio, chosen bitrate). Many
of the content providers have the option to deliver content to their
customers from multiple CDNs; the specifics of how they choose
CDNs is proprietary. Due to business and anonymity considera-
tions, we anonymize the providers, CDNs, ISPs, and cities in the
following results. Our goal here is to highlight the overall prob-
lems in video delivery in general rather than pinpoint inefficiencies
of specific ISPs or CDNs.

Time 2011.12.10 - 2011.12.17

Views 281M

Viewers 54M

View hours 30M

Content providers 91

Videos 2M

Countries / Regions 231

Table 1: Dataset Summary

Metrics: We focus on the following industry-standard video qual-
ity metrics [6, 42]:
• Average bitrate: The average bitrate experienced by a view over

its lifetime.
• Rebuffering ratio: This is computed the buffering time divided

by buffering plus playing time, excluding paused or stopped
time and buffering time before video start. (We use the term
rebuffering ratio and buffering ratio interchangeably.)
• Startup time: This is the wait or buffering time before a video

starts to play.
• Failure rate: This is the percentage of views that failed to start

playing and experienced a fatal error during the process. In our
experience, these fatal errors usually indicate CDN issues. One
example is missing content that the CDN failed to populate to
edge servers, and thus users cannot access the video. Another
possibility is the CDN server rejecting new connections (e.g.,
due to overload).
• Exits before video start: This is the percentage of views that

failed to play the video without experiencing a fatal error. There
are generally two causes: (1) users are not interested in the con-
tent, and (2) users waited too long for the video to load and lose
patience.

We choose these metrics because earlier work showed that they
have a significant impact on user engagement [21]. Our goal is
not to design an aggregate quality metric that can combine these
factors (e.g., [8]). Rather, we want to show the inefficiencies of
today’s infrastructure and provide directions to improve the video
quality. Thus, we consider each metric in isolation in this study.

2.2 Video quality today
We begin by analyzing the video quality that today’s delivery

infrastructure provides before looking at more in-depth analysis to
understand reasons for this inefficiency.
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Figure 1: Distribution of three standard video quality metrics computed over > 200 million user views across 91 providers. The
result shows that a non-trivial fraction of views suffer quality issues.
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Figure 2: There is significant variability in client-side band-
width both within and across sessions confirming the need for
bitrate adaptation.

Figure 1 shows the distribution of rebuffering ratio, video start
up time, and average bitrate from views that have started the video
playing. Note that these are the observed performances in the wild
with the default video players that the providers use. For rebuffer-
ing ratio and average bitrate, we remove sessions less than one
minute, because they usually come from users that are not inter-
ested in the video.

The result shows that
• 40% of the views experience at least 1% rebuffering ratio, and

20% experience at least 10% rebuffering ratio.
• 23% of the views wait more than 5 seconds before video starts,

and 14% wait more than 10 seconds.1

• 28% of the views have average bitrate less than 500Kbps, and
74.1% have average bitrate less than 1Mbps.

We also observe that 2.84% views failed to start due to fatal er-
rors, and 14.43% without errors (not shown). Furthermore, we see
that more than 9% of the views have actually waited at least 20
seconds before they lose patience in waiting for the video to start.

Implications: To put these results in perspective, previous work
shows that a 1% increase in rebuffering ratio can reduce the to-
tal play time by more than 3 minutes, viewers who have low join

1These are the views that have in fact started playing the video.

times are more likely to return to the content providers, and view-
ers who receive higher bitrate videos are likely to watch the video
longer [21]. Our analysis indicates that today’s end user experi-
ence is far from perfect, and highlights the need for performance
optimization.

2.3 Sources of quality issues
Next we identify and analyze three potential issues that could

result in poor video quality.

Client-side variability: Figure 2 shows the distribution of the
standard deviation of the client-side intra- and inter-session esti-
mated bandwidth, which shows significant variability in client-side
conditions. In this result, we rely on the client player’s bandwidth
estimation logic which effectively measures the observed band-
width for the data transferred from the selected CDN server, and
the data is collected every 10 seconds. For intra-session band-
width, we compute the standard deviation of all the bandwidth
samples across the entire lifetime of a view. Then we plot the
CDF for all views, excluding views that have only one sample. For
inter-session bandwidth, for each viewer, we compute the average
bandwidth of each session and then compute the standard devia-
tion across the different sessions initiated by that viewer. In both
cases, we bin the different views (for intra-session) or viewers (for
inter-session) based on their average bandwidth and show the distri-
bution for the five bins from 0-1Mbps to 4-5Mbps. For views with
bandwidth less than 1Mbps, more than 20% have a intra-session de-
viation of 400Kbps. The deviation is 2Mbps for views with band-
width between 4-5Mbps. Furthermore, there is a fair amount of
variability in the inter-session case as well. For example, more
than 20% of the viewers with bandwidth less than 1Mbps have a
deviation of 250Kbps. We also confirmed that such variability is a
general phenomenon that occurs across all ISPs (not shown).

Implications: Given today’s bitrate levels (e.g., 400, 800, 1000,
3000 Kbps), this naturally implies the need for intelligent bitrate
selection and switching to ensure a smooth viewing experience.
Specifically, we see that it is necessary to choose a suitable bitrate
at the start of each session to account for inter-session variability
and also dynamically adapt the bitrate midstream to account for
intra-session variability.

CDN variability across space and time: The performance of
CDN infrastructure for delivering video can vary significantly both
spatially (e.g., across ISPs or across geographical regions) and tem-
porally. Such variation can be caused by load, misconfiguration
(e.g., content not reaching a CDN’s edge servers), or other network
conditions. Our goal is not to diagnose the root causes of these
problems (e.g., [32]), but to show that they occur in the wild.

Figure 3 shows the average rebuffering ratio, video startup time,
and video start failure rate experienced by clients with three ma-
jor CDNs across different geographical regions during the busiest
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Figure 3: CDN performance can vary substantially across different geographical regions
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Figure 4: CDN performance within a given geographical region can vary significantly over time as well

CDN Rebuffering Ratio Startup Time Failure Rate

1 34.25% 79.08% 53.85%

2 25.22% 12.55% 37.50%

3 40.53% 8.37% 8.65%

Table 2: Percentage of scenarios where one of the CDNs per-
forms the best in terms of each of the quality metrics.

hour on a weekday. Here, we choose the geographical regions cor-
responding to the top six cities by user population. Since there is
a potential tradeoff between a session’s bitrate and its performance
under these quality metrics (higher bitrates will typically result in
higher rebuffering ratios), we focus only on sessions having the
same bitrate by choosing the most commonly used bitrate within
that geographical region. We also remove sessions that cannot sus-
tain the lowest bitrate (300Kbps) to rule out client-side effects in
this analysis.

In summary, the results in Figure 3 show that:
• The performance of different CDNs can vary within a given

city. For example, in City1, the rebuffering ratio of CDN1 is
almost 2× that of users with CDN2.
• For each metric, no single CDN is optimal across all cities. For

example, in the case of rebuffering ratio, CDN1 is optimal for
City4 and City6, CDN2 for City1 and City5, and CDN3 for
City2 and City3.
• CDNs may differ in their performance across metrics. For ex-

ample, when we consider video startup time, CDN3 performs
the best in all cases except City4. In contrast, when it comes to
failure rate, CDN3 performs the worst.

Figure 4 shows the same metrics for one of these top cities over
three days. (Each point is the average over several thousand ses-
sions.) Here, we see that:

• For all three metrics, no CDN has the best performance all the
time. Every CDN experiences some performance issues during

the 3-day period. Table 2 shows how often each CDN is the
best choice in a city-hour pair over the course of one weekday.2

• The rebuffering ratio and failure rate of a CDN may experience
high fluctuations over time. For example, for roughly half of the
time CDN3 has the lowest rebuffering ratio, and for the other
half it has the highest rebuffering ratio.
• Most of the performance degradation is not correlated across

CDNs, suggesting that these variations are not merely due to
time-of-day effects but other factors.

One possible reason for such variability in the quality observed
with CDNs is the load on the CDN. Figure 5(a) shows the rebuffer-
ing ratio vs. normalized CDN load for one CDN in one city over a
week. Here, we measure the load as the number of unique sessions
that we observe over each 5-minute interval. Since our clients rep-
resent only a fraction of the total load on the CDN, we normalize
the observed load for each CDN by the maximum observed over
the entire week for that CDN. Figure 5(a) shows that the rebuffer-
ing ratio generally increases with the normalized load.

Implications: This result highlights the need for providers to have
multiple CDNs to optimize delivery across different geographical
regions and over time. It also suggests that dynamically choosing a
CDN can potentially improve the overall video quality.

AS under stress: Finally, ISPs and ASes can also experience qual-
ity issues under heavy load. Figure 5(b) shows the rebuffering ratio
of one AS from all three CDNs during a 4-hour flash crowd pe-
riod.3 Each point shows the average buffering ratio across clients
at a given time. We report the normalized load on the x-axis by
dividing the current number of users by the maximum number of
clients observed over time. During this flash crowd, the rebuffering
ratio becomes quite high when the number of views increase.

Implications: These results suggest that heavy load can lead to ISP
congestion. Ideally, we want the video delivery infrastructure to be

2Here we consider only city-hours where all three CDNs serve a
reasonable number of views.
3This data comes from a known event which is not included in the
data set presented before.



aware of these network hotspots to optimize video quality. In this
case, the load increases on all CDNs and thus switching to a dif-
ferent CDN would not help. As a content provider, one reasonable
policy is to reduce the bitrate for all views during these overload
scenarios or provide higher quality only to “premium” customers.
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Figure 5: Rebuffering ratio under stress

2.4 Summary of key observations
The goal of this section was to analyze the current state of video

delivery quality and analyze potential sources of performance prob-
lems. We see that:
• A significant fraction of sessions suffer quality issues, with more

than 20% sessions having 10% rebuffering, and more than 14%
sessions with 10 seconds of startup delay.
• There is significant variability in client-side bandwidth both

within and across sessions, suggesting the need for intelligent
bitrate adaptation.
• CDN quality varies considerably both across time and across

space, which indicates the need for providers to dynamically
choose different CDNs for different clients.
• When the streaming demand exceeds the capacity of CDNs

or/and ISPs, content providers may need to enforce a global
policy across clients to ensure a good viewing experience.

3. FRAMEWORK FOR OPTIMIZING
VIDEO DELIVERY

The previous section highlighted that many video sessions today
observe serious quality issues that arise as a consequence of client-
side variability, spatio-temporal variability in CDN performance,
and occasionally due to overload. The natural question then is how
can we design an optimized video delivery mechanism that is ro-
bust to such conditions. In this section, we begin with an overview
of the design space of optimizing video delivery and then sketch a
high-level vision for a video control plane.

3.1 Design Space
The design space for optimizing video delivery quality has three

natural dimensions:

1. What parameters can we control?
There are two main parameters here: choice of bitrate and choice

What parameter? Who chooses? When to choose?
CDN, Bitrate Client Startup

CDN Client Startup
Bitrate Client Midstream

CDN, Bitrate Control Plane Startup
CDN Control Plane Startup

Bitrate Client Midstream
CDN Control Plane Midstream

Bitrate Client Midstream
CDN, Bitrate Control Plane Midstream

Table 3: Some examples from the overall design space for op-
timizing video delivery quality. We do not consider the cases
where the client chooses the CDN and the control plane chooses
the bitrate.

of CDN/server to serve the content. Because the specific video
server is controlled by the CDN (e.g., based on load and la-
tency), we only consider server selection at a CDN granularity.

2. When can we choose these parameters?
There are two natural options here. We can select the parame-
ters (i.e., CDN, bitrate) at startup time when the video player is
launched or dynamically adapt these midstream in response to
changing network conditions.

3. Who decides the values for these parameters?
There are three high-level options we envision here: purely
client-side mechanisms (the de-facto approach today), server-
driven mechanisms (e.g., [28]), and an alternative control plane
that selects these parameters based on global state.4

Note that this assumes the viability of two mechanisms—bitrate
adaptation and CDN switching—which are already widely used.
(The specific algorithms to implement these mechanisms are or-
thogonal to the focus of this paper.) Bitrate adaptation is already
widely adopted in industry (e.g., [1, 4]). Similarly, CDN switch-
ing is already adopted in many industry players and with HTTP
chunking, chunks can be requested from different CDNs without
affecting user experience.

Table 3 looks at some example points in this design space by
combining different options of these three variables. At the sim-
plest end of the spectrum (row 1), we can think of a static selection
of both CDN and bitrate by the client when the player is launched.
This approach is not robust as both changes in CDN performance
and client access bandwidth can impact the user experience. The
de-facto approach today, shown in the second row in the table, is
client-side bitrate adaptation but with the CDN/server fixed at start
time [1, 4, 7]. There are two advantages of client-side adaptation:
(1) clients are in the best position to observe local network effects
and (2) the response time to react to network dynamics will be low.
As we saw earlier, there is significant temporal and spatial variabil-
ity in CDN performance that is difficult to detect and alleviate with
purely client-side strategies.

To this end, we believe it will be helpful to have a control plane
deployed either by a content provider or a third party on the behalf
of the content providers that is aware of such temporal and spatial
variations. (We discuss what such a control plane may look like in
the next subsection.) Beyond these performance insights, a control
plane also offers content providers more flexibility in instrument-
ing fine-grained policies; e.g., providing higher quality service to
premium customers under load. In the ideal case (last row), we en-
vision this control plane can dynamically adapt both the CDN and
bitrate midstream based on global knowledge of network, distribu-
tion of active clients, and CDN performance.

4We do not consider server-driven mechanisms because these can
be equivalently realized by via client- or control-plane mechanisms.
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Of course, it may be unnecessary and impractical for this control
plane to be continuously involved in adapting the CDN and bitrate.
Thus, we can consider intermediate points in this design space as
well. For example, CDN selection can be driven by the control
plane because it has a global view of CDN performance, but bitrate
adaptation may run purely at the client (rows 4 and 5).

3.2 Vision for a Video Control Plane
The notion of a centralized control plane to optimize content de-

livery is not new and has been used within CDNs and ISPs for
server selection and content placement [12, 13, 36]. There are two
key differences in the context of video optimization. First, we intro-
duce a new dimension of cross CDN optimization and combining
this with bitrate selection/adaptation. Second, we focus on the pos-
sibility of midstream switching of both parameters, whereas most
CDN optimizations focus only on start-time selection. As a sim-
ple starting point, our current work assumes that this control plane
operates per content provider. That is, a video content provider
such as YouTube or Hulu runs such a control plane to monitor and
improve the video experience for its customers. We discuss issues
involving the interaction between multiple such providers and con-
trollers in Section 7.

Figure 6 shows a high-level overview of the three key compo-
nents in the video control plane: (1) a measurement component
responsible for actively monitoring the video quality of clients, (2)
a performance oracle that uses historical and current measurements
to predict the potential performance a user will receive for a partic-
ular combination of CDN and bitrate at the current time, and (3)
the global optimization engine that uses the measurement and per-
formance oracle to assign the CDN and bitrate for each user. Next,
we briefly highlight the main factors and challenges involved in the
design of each component.

Measurement Engine: The measurement engine periodically col-
lects quality statistics for currently active users. Because the client-
side player is in the best position to measure the observed video
quality, we envision the client player periodically (every few sec-
onds) reporting such statistics. In addition to reporting the video
quality metrics (e.g., buffering, join time, average bitrate), the mea-
surement engine also collects user and session attributes such as the
ISP, location, current CDN being used, and player version that will
aid in the performance prediction. The challenge here is to choose
a suitable granularity of attributes and quality metrics to measure,
and to decide an appropriate frequency at which these reports are
sent to the control plane.

Performance Oracle: The performance oracle plays a key role in
answering what-if style questions at the control plane to predict the

performance (e.g., rebuffering ratio, startup delay, failure rate) that
a given user may observe at the current time if it chose a different
combination of CDN and bitrate. By design, the oracle will have
to extrapolate the performance based on past and current measure-
ments. For example, it may cluster users based on a set of attributes
(e.g., ISP, location) and use the empirical mean within this cluster
as its prediction. The challenge here is that the extrapolation must
be robust to noise and missing data; e.g., are there enough points
within this cluster for this extrapolation to be statistically sound?
Global Optimization: At a high-level, we are solving a resource
allocation problem, where the resources are the CDNs. Each CDN
is characterized by a given network capacity (i.e., how many clients
can it serve) and distribution costs. We want to assign each user a
suitable CDN and bitrate that maximizes some notion of global
utility for the content providers and consumers, while operating
within the provider’s cost constraints and the CDN capacities. There
are three main challenges here. First, we want to choose a suit-
able utility and policy objective. For example, this utility can be
a function of the bitrate, quality metrics such as buffering, and the
providers’ policy goals (e.g., premium customers get higher prior-
ity over non-paying users). Designing a good video utility metric
that can combine different notions of quality (e.g., bitrate, rebuffer-
ing, startup delay) is an open challenge that is outside the scope of
this paper [21, 35, 40]. The provider can also specify other policy
constraints; e.g., should it admit new clients when all CDNs are
overloaded. Our focus is to make a case for such a framework and
present initial steps toward a practical realization rather than pre-
scribe specific utility or policy functions. Second, this optimization
must fast enough in order to periodically re-optimize the assign-
ments in response to network dynamics. Third, we need to ensure
that the optimization is stable and does not itself introduce biases
or instability (see Section 5.1).

4. POTENTIAL FOR IMPROVEMENT
Before attempting to design a specific control plane, we want to

first establish the improvement in video quality that we can achieve.
To this end, in this section we analyze the potential improvement
that clients could achieve by choosing a better CDN. As we will
see later, the techniques described here can be extended to realize
the performance oracle described in the previous section.

4.1 Approach
Our goal is to determine the potential performance improvement

assuming each session makes the best possible choice. Ideally, each
client will try all possible choices and pick the one with the best
performance (e.g., rebuffering rate). Moreover, a client will con-
stantly re-evaluate the performance and switch, if needed, to im-
prove its performance. For example, a client can start with the con-
figuration (CDN 1, bitrate1), and later switch to (CDN 2, bitrate2),
if the new choice provides better performance. Of course, in prac-
tice we cannot have each client continuously probe all possible
combinations. To get around this limitation, we extrapolate the
performance a client could have achieved based on our observed
performance of other clients that share similar attributes, such as
ISP, location, device, and time-of-day. We follow previous work
on non-parametric prediction [24, 33] with some simplifying mod-
ifications.

We make two simplifying assumptions. First, we do not con-
sider bitrate selection in this section. Second, we assume that ses-
sion outcomes are independent and that CDN performance does not
degrade with load. We relax these assumptions in Section 5.2.

Our approach has two logical stages: estimation and extrapola-
tion that we describe next.



Estimation: In the estimation step, we compute the empirical per-
formance of each combination of attribute and parameter values.

Let a denote a set of values of a client’s attributes, e.g., ISP =
AT&T, City=Chicago, Device=XBox. Further, let Sa denote the
set of clients sharing same attribute values a , and let Sa,p denote
the set of clients with attribute values a that have made the same
choice or parameter p (i.e., CDN). An example of such set would
be, XBox devices of Comcast’s subscribers located in Chicago that
stream content from Akamai.

For each set Sa,p , we compute the empirical distribution for the
metric of interest, e.g., rebuffering ratio. Let PerfDista,p denote
this empirical distribution. Given two such performance distri-
butions, we say that PerfDista,p1 is better than PerfDista,p2 , if
MEAN(PerfDista,p1) < MEAN(PerfDista,p2).

5

Extrapolation: We use p∗
a = argminp{MEAN(PerfDista,p)}

to denote the parameter with the best performance distribution for
this specific value of the attribute a . Using this definition, we can
extrapolate the best possible performance that can be achieved by
a session with attribute values a by selecting parameter p∗

a , and
assuming that the performance experienced by the session is ran-
domly drawn from the distribution PerfDista,p∗

a
as shown in Fig-

ure 7(a).
Now, for such extrapolations to be statistically meaningful, the

number of observations for each a, p setting |Sa,p | should be rea-
sonably large. Unfortunately, we run into the classic curse of di-
mensionality; that is, as the attribute space becomes more fine-
grained, the available data becomes sparse [14]. This is particularly
problematic because we will be picking the CDN with the highest
extrapolated value using this methodology. If we pick the highest
among several noisy predictions, we may show improvements even
where there are none.

Hierarchical estimation and extrapolation: To address the prob-
lem of data sparsity at finer granularity, we use a hierarchical ap-
proach [25, 33]. We begin with an exhaustive enumeration of all
possible combinations of attributes. That is, if A = {a1 . . . an}
is the set of client attributes, we construct the powerset 2A of all
attribute combinations. Let attrset ∈ 2A denote one such com-
bination of attribute elements such as {isp, location, timestamp},
{isp, location} or {isp}; let as denote the values of the attributeset
attrset for session s .

Note that a given video session’s performance measurement will
contribute to multiple attribute partitions corresponding to different
granularities. That is, a session with ISP = AT&T, City=Chicago
gets added to the partitions (ISP = AT&T, City=Chicago), (ISP
= AT&T), and (City=Chicago). Then, for the partitions Sa,p that
have a sufficient number of data points (we use a threshold of 1000
sessions), we estimate the expected performance using the empiri-
cal mean.

The extrapolation step becomes slightly more involved. As dis-
cussed earlier, we want to use the most fine-grained attribute in-
formation available, but we may not have sufficient statistical con-
fidence in predictions from very fine-grained groups. In such cases,
we want to identify a coarser attribute combination (see Figure 7(b))
at which we have sufficient data. To get a suitable coarsened gran-
ularity, we consider a logical ordering on the powerset of all at-
tribute combinations 2A such that finer-granularity combinations
come earlier. That is, if we had three attributes ISP, city, and times-
tamp, then {ISP,city,timestamp} < {ISP, city} < {ISP}.6 Given

5Other possible metrics to compare two distributions can be me-
dian, or, more generally, the q-quantile of the distribution.
6Strictly speaking this is a partial order. In practice, we break the
ties arbitrarily noting that it does not affect the results significantly.

C
ity

 

ISP 

C
ity

 

ISP 

CDN1 peformance 

CDN2 performance 

Extrapolated  
Ideal performance 

Poor à Good 

(a) Basic extrapolation

?	  
ISP 

C
ity

 

?	  

?	  

Partition with 
Insufficient data 

Extrapolate  
using coarser 
granularity 

(b) Insufficient data
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Figure 8: Potential improvement in three quality metrics (re-
buffering ratio, failure rate, and join time) for two providers.

this ordering, we proceed up the hierarchy from the finer to coarser
partitions, until we have sufficient data to make a prediction.

Let a∗
s denote the value of session attributes at this point in the

hierarchy. Based on the chosen level in the hierarchy and the pa-
rameter setting (a∗

s , p∗
a∗
s

), we extrapolate the performance by draw-
ing a value from the empirical distribution PerfDista∗

s ,p∗
a∗s

. In

other words, by replacing one performance distribution with an-
other we are simulating the effect of choosing a better parameter
setting. As a further refinement, we can also imagine mapping each
session into an appropriate percentile bin in the new distribution.
That is, if the current session was within the 90-95th percentile of
clients in Sa,p , then we draw from the same bin of 90-95th per-
centile of the performance of Sa,p∗

a
. Intuitively, this emulates a

policy of not switching unless the quality is likely to improve. For
brevity, we do not show the percentile-based extrapolation, noting
that this refinement will magnify the potential for improvement.

4.2 Improvement Analysis
For this analysis, we choose two popular providers that use mul-

tiple CDNs for video delivery but do not explicitly optimize the
CDN based on observed quality or assign clients preferentially to
CDNs based on their quality. This ensures that the potential im-
provement we extrapolate by choosing a better CDN is unbiased.
Validation: We acknowledge that any such extrapolation anal-
ysis is challenging and necessarily involves simplifying assump-



tions. That said, we tried to do a careful job in leveraging our large
dataset. One specific type of validation we perform is to ensure that
we do not spuriously predict improvements when there are none.
To this end, we create an artificial dataset by replacing the actual
CDN in each session with a different CDN chosen uniformly at ran-
dom. The idea here is that this synthetic dataset should in theory
have no scope for improvement (modulo small stochastic effects).
We run our algorithm over this synthetic dataset and confirm that
our extrapolation predicts negligible (0.05%) improvement.
Average improvement: We begin by computing the average im-
provement in video quality over a one week period for the two
providers using the above extrapolation approach. Figure 8 shows
the average improvement for three video quality metrics: buffer-
ing ratio, join time, and failure rate. The result shows that for
Provider1, we see a significant (more than 2×) decrease in the
buffering ratio from 3.0 to 1.4. Provider1 also shows significant
potential for improvement in the failure rate (10% to 4.5%) and
the join time (5.8s to 3.6s). In contrast, the delivery quality for
Provider2 is already very good, and thus the scope for improve-
ment there is comparatively lower in the average case. However, as
we see next, even Provider2 shows significant improvement under
more extreme scenarios.
Improvement under stress: We expect the room for improve-
ment to be significantly higher under more extreme scenarios; e.g.,
a particular CDN performs poorly in a particular region or has a lot
of failures. To this end, we pick specific time segments where we
observe large incidents where Provider1 and Provider2 see marked
degradation in performance. Then, we analyze the potential for im-
provement in the video quality under these more extreme scenarios
in Table 4 and Table 5 respectively. The results show a dramatic
improvement in the potential performance over fairly long dura-
tions: 10× for buffering ratio and 32× reduction in failure rate
for Provider1 and up to 100× improvement in the failure rate for
Provider2.
Main observations: To summarize, our analysis shows that better
CDN selection can show marked improvement in video delivery
quality. Specifically, we find
• More than 2× improvement in mean buffering ratio and startup

time, and 1.6× reduction in failure rate in the average case.
• 10-32× improvement in the buffering ratio and failure rate over

extended time periods under stress.

5. TOWARD A PRACTICAL DESIGN
The previous section establishes that there is a non-trivial poten-

tial for improvement. In practice, a control plane has to also take
into account the impact of bitrate on performance, effect of CDN
load, and also rely on past estimates to predict what the future per-
formance will be. Furthermore, we had also ignored the tractability
of global optimization and the specific utility functions or policy
objectives.

In this section, we present a preliminary effort at addressing
these issues. Our goal is not to realize an “ideal” control plane;
rather, we want to establish a feasible but concrete control plane
design that we can use to analyze if the benefits promised from the
previous section can be translated into reality.

5.1 Optimization
To make our discussion concrete, we focus on a specific policy

objective and utility function. Our policy goal is to achieve both
fairness (i.e., do not deny clients if there is sufficient capacity) and
efficiency (i.e., maximize aggregate utility). There is a rich litera-
ture on balancing efficiency-fairness tradeoffs that we can build on

Metric Duration (hrs) Current Projected
Buffering ratio (%) 3 10.41 0.795

Start time (s) 2 6.41 1.997
Failure ratio (%) 1 16.57 0.213

Table 4: Potential improvement in the mean performance un-
der extreme scenario for Provider1

Metric Duration (hrs) Current Projected
Buffering ratio (%) 1 2.24 0.29

Start time (s) 7 1.56 0.39
Failure ratio (%) 3 35.6 0.3

Table 5: Potential improvement in the mean performance un-
der extreme scenario for Provider2

here; as a starting point we choose a simple goal of first ensuring
fairness and then optimizing for efficiency.

We fix the utility function to be a simple linear combination of
the different performance metrics that captures the expected view-
ing time for a given session. We choose the function

Utility = −3.7× BuffRatio +
Bitrate

20

where BuffRatio is in percentage and Bitrate is in Kbps. This
utility function is based on prior observations on linear relationship
between the expected play time and the different quality metrics
reported in a previous measurement study; e.g., a 1% increase in
buffering ratio caused a 3.7 minute drop in viewing time [21].

Having fixed the utility function and policy objective, we use
a simple two-phase algorithm. First, we assign the clients a fair
share of the CDN resources by computing the average sustainable
bitrate. This allocation ensures that each client has been assigned
to some feasible combination of bitrate and CDN and there is no
unfairness in the allocation in terms of bitrates. Also, each client is
assigned a CDN at random so that each CDN gets assigned a share
of clients proportional to its capacity. Next, we use this allocation
as a starting point and try to incrementally improve the total utility.
This proceeds as a greedy algorithm where at each iteration, it picks
the combination of client and CDN/bitrate setting that provides the
largest incremental contribution to the global utility function.

The intuition behind this two-phase approach is as follows. A
pure greedy approach optimizes efficiency (i.e., total utility) but
may leave some clients unassigned; e.g., it might initially assign
clients with a higher bitrate but may end up saturating the capac-
ity and drop some clients. A pure fair-sharing approach on the
other hand guarantees that all clients will be assigned if there is
sufficient capacity, but it is agnostic to the performance variabil-
ity across CDN-client-bitrate combinations. Our approach strikes a
balance between these two extremes by ensuring all clients are as-
signed, and improves the efficiency from this starting point. We do
not claim that this optimal in a theoretical sense but we do observe
that it works well across a range of realistic workloads.

One subtle issue is that the optimization may itself introduce un-
desirable temporal biases. For example, if we discover that CDN1
is performing poorly and shift all clients to CDN2, then it im-
pacts our ability to predict the performance of both CDN1 (we do
not have any samples) and CDN2 (we have increased its load) in
the future. This is a classical “exploration-exploitation” tradeoff
(e.g., [20]). We face a particularly difficult form of this problem;
our rewards are not independent (due to CDN load), and the char-
acteristics of CDNs change over time even if we do not use them.
However, we do have access to a large amount of data. A simple
solution in this case is to use some form of randomization. Here,
we choose a random subset of sessions that will not receive any
explicit optimization so that we can observe their performance in



the wild. With a large enough population even a small fraction (say
2-5%) of unoptimized clients would suffice to build a robust pre-
diction model. There are other more sophisticated approaches to
solve this problem, such as knowledge gradient algorithms [38],
that will further reduce such biases. We currently use the simple
randomization approach due to its ease of implementation.

5.2 Performance estimation
A key issue with performance extrapolation we already observed

in Section 4 is the need for a prediction mechanism that is robust to
data sparsity and noise at such finer granularities. We address this
by building on the hierarchical extrapolation techniques described
in Section 4. There are three additional practical challenges that
need to be addressed here.

First, in Section 4, our goal was to estimate the potential for im-
provement. Hence, we assumed access to a performance oracle that
has a current view of the performance. In practice, a real control
plane will not have such an oracle and will have to rely on his-
torical measurements. We extend the hierarchical approach from
the previous section to make predictions based on recent historical
measurements of the performance for specific CDN-client-bitrate
combinations. Since CDN performance also shows significant tem-
poral variability, we simply use the most recent information (e.g.,
last hour). In Section 6.3, we show that even this simple use of
historical measurements works very well in practice.

Second, the extrapolation in the previous section ignores the ef-
fect of CDN load and how the performance degrades as a function
of load. To this end, we augment the performance estimation step
to also model the CDN load. Specifically, we observe that the CDN
performance shows a roughly thresholded behavior where the per-
formance is largely independent of the load up to some threshold
T1, after which the performance degrades roughly linearly, and at a
higher load threshold T2, the performance would drop significantly.
We select these thresholds based on observed measurements (not
shown for brevity).

Third, we did not consider bitrates in the previous section. Here,
we simply treat bitrate as an additional attribute to our decision
process. That is, in addition to characteristics such as ISP and city,
we also partition clients based on their current bitrate when building
the performance estimators and prediction models. We extend the
measurements from the previous section to reflect bitrates in our
prediction model.

6. TRACE-DRIVEN SIMULATIONS
In this section, we use trace-driven simulations to evaluate the

qualitative benefits of the global control plane approach we instan-
tiated in Section 5 over other choices in the design space from Ta-
ble 3 under different scenarios.

6.1 Setup
We built a custom simulation framework that takes the following

configurations as input: (1) client arrival and viewing time patterns
obtained from measurements from the same dataset described in
Section 2, and (2) empirically observed CDN performance distri-
bution in different geographical regions at different (normalized)
loads. In each epoch, a number of clients join the system and
choose a viewing time drawn from empirical distribution. The
client either stays until the end of viewing time, or leaves when
its utility becomes 0, i.e., the performance becomes unbearable. In
this simulation, we implement three strategies:

1. Baseline: Each client chooses a CDN and bitrate at random.
This can be viewed as a strawman point of comparison.

2. Global coordination: The control plane algorithm proposed in
Section 5.

3. Hybrid: Each client is assigned to a CDN with lowest load and
a bitrate by the global optimization when it first arrives, but
the subsequent adaptation is only limited to client-driven bi-
trate adaptation, i.e., no midstream CDN switching. This can
be viewed as a simplified version of what many providers de-
ploy today: start time CDN selection and client-side mid-stream
bitrate adaptation.

The primary goal of these simulations is to analyze the qualita-
tive benefits of a global control plane. These alternative points do
not necessarily reflect exact strategies in operation today; we pick
these as sample points from our design space in Table 3.

In each epoch, after the decisions are made, the simulator com-
putes the resulting load on each CDN (by summing up bitrates from
all clients), and then computes the expected performance of each
client based on empirical measurements and the resulting load, as
described in the previous section. In this simulation, we use three
CDNs. The performance metrics of each CDN under normal load
are obtained by taking its mean performance over a week, so that
any overload effect is averaged out. Then the load thresholds for
modeling the impact of CDN load on performance (see Section 5.2)
are extrapolated from visually correlating the relationship between
the load and quality metrics for each CDN. In order to scale our
simulation framework, we normalize the CDN capacity and the
number of clients proportionally compared to the actual capacity
and number of clients. The normalization ensures that 1) the re-
quired capacity to serve the highest bitrate for all clients will ex-
ceed the combined capacity of all three CDNs, and 2) the required
capacity to serve the lowest bitrate for all clients does not exceed
that of any two CDN combined.

We simulate three scenarios: average case, CDN performance
degradation, and flash crowd. In the average case scenario, arrival
patterns and playback duration mimic the typical client arrival pat-
terns observed in the dataset. In the CDN performance degradation
scenario, we retain the same client arrival pattern, but emulate a
sudden degradation in one of the CDNs. Finally, in the flash crowd
scenario, a large number of clients arrive simultaneously.

6.2 Results
We focus on two metrics in our evaluation: average utility and

failure ratio. Average utility is computed by the total utility di-
vided by all clients in the system (including clients that failed to
play video and thus has zero utility). Since the arrival pattern is
the same for all three strategies, they all have the same denomi-
nator in all epochs. Failure ratio is the ratio of clients that could
not receive any video due to either CDN exceeding capacity or un-
bearably high rebuffering ratio. Figure 9 shows the simulated time
series of these two metrics for the three scenarios across different
adaptation strategies.
Average case: In Figure 9(a), we observe that global coordination
significantly outperforms the baseline strategy in terms of the aver-
age utility. One interesting observation is that in the common case,
a hybrid strategy provides similar performance to global coordina-
tion. This is because in this strategy, a client chooses an ideal CDN-
bitrate combination when it arrives, and under regular conditions,
this strategy can maintain good performance. Unsurprisingly, the
baseline approach performs poorly even in the common case and
has both a high failure rate and low overall utility. The primary
reason is that this approach is agnostic to CDN performance.

With regard to failure rates, we see that the baseline approach is
consistently high. The capacity-aware global coordinator is able to
assign clients to suitable CDNs and bitrates and keep a zero failure
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Figure 9: Simulation results of three scenarios. For each scenario, we show the performance of baseline, hybrid and global coordi-
nation in terms of failure ratio and average utility value. (The utility metric is in units of expected minutes of playing time.)
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Figure 10: Performance gap between a history-based and an
oracle performance estimator. We also show the performance
of the individual CDNs to visually confirm why history-based
estimates work in most cases and highlight the specific epochs
where it does not.

rate. The hybrid strategy has a small but non-zero failure rate; the
reason is that some clients may use high bitrates so that a small
number of clients are rejected.

CDN variability: In this scenario, in epochs 20–60, the pre-
viously best CDN experiences a huge degradation with the aver-
age rebuffering ratio going to 13%, before eventually recovering at
epoch 60. Figure 9(b) shows how different strategies respond to
CDN variability. In this case, global coordination still maintains
zero failure rate (which is possible because of our normalization)

and has a significantly higher average utility than both other ap-
proaches. However, it too suffers a mild drop in utility compared
to the normal scenario during the degradation. We also see that
the hybrid approach does almost as poorly as the baseline in both
metrics. This is because in this strategy, the server is not aware
of CDN performance degradation, and even when the clients can
identify this degradation, it is unable to switch CDN midstream.

Flash crowd: Last, we emulate a sudden flash crowd in Fig-
ure 9(c), where a large number of clients try to join the system
between epochs 20–60. In this case, the global control algorithm
lowers the bitrate for many users in order to accommodate more
new users. Recall that this is one of the policy decisions we im-
posed in our design to balance fairness in allocating users vs. ef-
ficiency. During the flash crowd, we see that the failure rate for
global coordination remains at zero, whereas the baseline and hy-
brid have exceedingly high failure rates. The hybrid approach does
not degrade as much as in previous case because the it is aware of
the load on each CDN, but without midstream CDN switching, the
performance is worse than global coordination.

6.3 History vs. Oracle prediction
As discussed earlier, a practical control plane will need to rely on

historical estimates of the performance to choose the best CDN. A
natural question is how far away from the optimal performance is
such history-based prediction. To analyze this gap, we use the same
dataset for Provider1 from Section 4 and compare a history-based
vs. oracle prediction in Figure 10(a) over one week. We consider
two options for using the historical estimates: using either the pre-
vious hour or using the previous day. That is, for each partition,
we identify the best performing CDN using the previous hour or
day measurements and use that as the prediction for the current
epoch. The oracle uses predictions based on the current hour. The
result shows that using the previous hour’s predictions, the gap be-
tween the history and oracle predictor is small for many instances.
However, we also see some cases where there is a non-trivial dif-
ference between the historical and optimal. Figure 10(b) visualizes
how the individual CDNs’ performance varies during this period
to provide some intuition on why such large gaps occur. We do
see that the CDNs’ performance is largely predictable using the re-
cent history but does occasionally spike. These performance spikes
cause causes our estimate using the previous hour to become inac-
curate. Our preliminary results (not shown) suggest that some of
these gaps can be alleviated this using more fine-grained historical
information (e.g., previous five minute epochs).



6.4 Summary of results
• Global control plane works well in all scenarios, including CDN

performance variation and flash crowd.
• A hybrid approach of using the coordinator only at startup time

and relying on pure client-side adaptation may work quite well
in common scenarios.
• However, such a hybrid approach could suffer performance degra-

dation under CDN variability and flash crowds. In such cases, a
control plane can implement more flexible policies. For exam-
ple, under flash crowd it maintains a zero failure rate by reduc-
ing all client bitrates.
• The benefits of a control plane can be realized with simple ex-

trapolation by using predictions from previous epochs.

7. DISCUSSION
Next, we present preliminary insights on how we can address

issues such as scalability, the interactions between such a control
plane and CDNs, and interactions across multiple such controllers.

Scalability: A concern with global optimization is scalability vs.
number of clients and the time to respond to network events. Our
unoptimized implementation in Java takes ≈ 30s to run the global
optimization for 10, 000 clients, 4 CDNs, and 5 bitrates. We specu-
late that typical video utility functions will possess a natural dimin-
ishing property [23]. Intuitively, this means that the incremental
utility in going from a 10% buffering ratio to a 5% buffering ra-
tio will be higher than the increment going from 6% to 1%. In
this case, there are known techniques to speed up the greedy step
via “lazy evaluation” [30]. Beyond such algorithm optimizations,
we also envision scaling the control plane by logically partitioning
different geographical regions and running one instance per region.

Switching tolerance: A natural question is how much bitrate
switching can users tolerate? Controlled studies suggest users are
sensitive both to frequent switches (e.g., [18]) and also to sudden
changes in bitrate (e.g., [35]). We do not, however, have a good
quantitative understanding on the tradeoff between switching vs.
the desire to maintain high bitrate and low buffering. As this trade-
off becomes clearer with future measurement studies, this can be
incorporated into the control plane optimization function as well.

Interaction with CDNs: One question is whether CDNs can do
(are doing) such optimizations themselves today. While we cannot
speculate about their internal policies, measurement studies sug-
gest that CDNs are largely optimizing for latency [27]. Further-
more, content providers increasingly use multiple CDNs and thus
no single CDN can provide the required cross-CDN optimization.
We do note, however, that the techniques we develop apply equally
well in the context of individual CDNs.

Another concern is whether there can be undesirable interactions
between such higher-level optimization and CDNs’ optimizations.
Of particular concern are possible oscillations caused by such in-
teractions. Unfortunately, it is hard to answer this question due
to the limited visibility we have into CDN policies. Nonetheless,
we hope that this potential problem will be alleviated in the future,
as we envision new generation architectures where CDNs expose
APIs to content providers and such controllers. For example, more
fine-grained information on the available capacity of the CDNs or
current load for different geographical regions can inform better
control plane optimization strategies.

Finally, an emerging direction is the concept of federated CDNs [19,
37]. A federated CDN incorporates a technology integration and
business partnership between carriers and CDNs to provide a uni-
fied CDN offering that has a global presence and benefits to both

CDNs and content providers. For example, a federated CDN elim-
inates the need for the content provider to publish to each CDN.
The global coordinator proposed in this paper is complementary to
a federated CDN and can be used to enable high quality video dis-
tribution across a federated CDN. In fact, we believe a coordinator
is essential to delivering high quality in a federated CDN.
Multiple controllers: So far, we implicitly assumed a simple
model, in which the different controllers are independent, and that
one controller’s decisions will have limited impact on others. In
the future, we expect such controllers to expose APIs to exchange
performance data and policy constraints/preferences, similar to the
way ISPs use BGP to coordinate.

8. RELATED WORK
Client side measurements: The variability in client-side throughput–
across ISPs, within a given viewing session and across multiple
sessions–have been well documented in past measurement studies
(e.g., [26,42]). The natural solution in a video streaming context is
to adapt the video bitrate in response to changing bandwidth con-
ditions to ensure an uninterrupted viewing experience.
Client-side adaptation: Several commercial products today per-
form some form of client-side adaptation to adapt to changing band-
width conditions (e.g., [1,4]) and there are ongoing standardization
efforts in this respect [7]. The key difference here is that these focus
purely on bitrate adaptation. Recent analysis of commercial play-
ers suggest that there is room for improvement in client-adaptation
strategies [17, 39]. As we saw in earlier sections, there is signif-
icant variability in network and CDN performance [31]. Further-
more, there is an inherent need for coordination under overload
which means that even near-ideal client-side mechanisms will not
be sufficient. A global control plane can alleviate these concerns
by coordinating actions across multiple viewers.
Video Coding: Layered coding and multiple description coding
offer alternatives for graceful degradation of video quality (e.g.,
[15, 34]). While these are attractive in theory, they impose sig-
nificantly higher complexity on the provider, delivery, and player
infrastructure. We do note that if these solutions do get deployed,
a video control plane is well-positioned to leverage the additional
flexibility that these offer as it can more smoothly degrade perfor-
mance instead of having to choose from a discrete set of bitrates.
CDN and server selection: Server selection strategies within a
CDN are based on proprietary algorithms, but measurement stud-
ies suggest that these are largely based on proximity and latency
(e.g., [27]). Similarly, in the context of video delivery, the details of
how particular providers choose CDNs or direct clients to different
CDNs are proprietary. Preliminary measurements, however, sug-
gest that the strategies are largely statically configured (e.g., [41])
and that there appears to be no concerted effort to choose CDNs
either at startup (e.g., [10]) or midstream (e.g., [11]). In making a
case for a global video control plane, our goal is not to pinpoint the
inefficiency of particular providers’ selection strategies. Rather, we
want to design a general framework for high-quality video delivery.
Other video measurements: Given the growing dominance of
video traffic, there have been many measurement studies of de-
ployed systems that focus on: content popularity and access pat-
terns (e.g., [16]), the user’s desire for high quality and how it im-
pacts play time (e.g., [21]), user viewing patterns (e.g., [9,22]), and
extreme scenarios such as flash crowds (e.g., [43]). These works
have been instrumental in exposing performance bottlenecks and
implications of user behavior on system design. However, these do
not directly focus on optimizing video quality by intelligent choice
of CDNs and bitrates, which is the focus of our work.



9. CONCLUSIONS
User expectations of high quality video delivery—low buffer-

ing, low startup delays, and high bitrates— are continuously rising.
While HTTP-based adaptive streaming technologies have dramat-
ically decreased the barrier for content providers to reach a wide
audience, the network and delivery infrastructure these rely on is
fundamentally unreliable. Our measurements from over 200 mil-
lion sessions confirm that this is indeed the case: more than 20% of
sessions suffer quality issues such as more than 10% buffering or
more than 5 seconds startup delay.

Our motivating question was whether it is possible to deliver
high-quality video in such a dynamic environment. Given the sig-
nificant variability in ISP and CDN performance, we argued the
case for a video control plane that uses measurement-driven per-
formance feedback to dynamically adapt video parameters such as
the CDN and bitrate to improve the video quality. We established
the potential for improvement using measurement-driven extrapo-
lation and find that optimal CDN selection can improve the buffer-
ing ratio by up to 2× in normal scenarios and more than 10× under
more extreme scenarios. We further augmented these results using
trace-driven simulations and confirm the potential benefits of such
a control plane.

In making a case for a video control plane, our work follows in
the spirit of approaches for CDN and ISP management that show
the benefit of network-wide views. There are several challenges
that need to be addressed before these benefits can be realized in
practice: scalability, interaction with CDNs, issues surrounding
multiple providers and controllers among others.
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