
This paper is included in the Proceedings of the 
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the 
28th USENIX Security Symposium 

is sponsored by USENIX.

CANvas: Fast and Inexpensive Automotive 
Network Mapping

Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar, 
Carnegie Mellon University

https://www.usenix.org/conference/usenixsecurity19/presentation/kulandaivel

https://www.usenix.org/conference/usenixsecurity19/presentation/kulandaivel


CANvas: Fast and Inexpensive
Automotive Network Mapping

Sekar Kulandaivel
Carnegie Mellon University
skulanda@andrew.cmu.edu

Tushar Goyal
Carnegie Mellon University
tgoyal1@alumni.cmu.edu

Arnav Kumar Agrawal
Carnegie Mellon University
akagrawa@alumni.cmu.edu

Vyas Sekar
Carnegie Mellon University

vsekar@andrew.cmu.edu

Abstract
Modern vehicles contain tens of Electronic Control Units
(ECUs), several of which communicate over the Controller
Area Network (CAN) protocol. As such, in-vehicle networks
have become a prime target for automotive network attacks.
To understand the security of these networks, we argue that we
need tools analogous to network mappers for traditional net-
works that provide an in-depth understanding of a network’s
structure. To this end, our goal is to develop an automotive
network mapping tool that assists in identifying a vehicle’s
ECUs and their communication with each other. A significant
challenge in designing this tool is the broadcast nature of the
CAN protocol, as network messages contain no information
about their sender or recipients. To address this challenge, we
design and implement CANvas, an automotive network map-
per that identifies transmitting ECUs with a pairwise clock
offset tracking algorithm and identifies receiving ECUs with
a forced ECU isolation technique. CANvas generates network
maps in under an hour that identify a previously unknown
ECU in a 2009 Toyota Prius and identify lenient message
filters in a 2017 Ford Focus.

1 Introduction
Recent efforts have demonstrated numerous vulnerabilities
in automotive networks, particularly those that employ the
CAN communication protocol. Although CAN is the prevail-
ing standard for intra-vehicular communication due to its low
cost and robustness, its broadcast nature has enabled many
exploits initially exposed by the early work of Koscher et
al. [20]. These exploits target the intra-vehicular CAN bus via
either direct physical access [9, 20] or the remote exploitation
of an ECU with existing direct access [26]. For the purpose of
planning their well-known exploit [26], Miller et al. [25] ana-
lyzed the intra-vehicular networks of several vehicles, which
revealed that the 2014 Jeep Cherokee was the “most hack-
able” based on its layout of ECUs. Once the authors gained
access to the CAN via an exploited ECU, they simply had
to discover which ECUs and real physical functions react to
injected messages.

From these anecdotes, we can see that the set of ECUs
and their inter-ECU communication channels determine the
vulnerability of a vehicle’s ECU network. Consequently, we
argue that the automotive security world needs tools similar to
Nmap [21], which are used to map the structure of modern IP
networks. Such mapping tools prove useful in both attack and
defense scenarios, such as identifying potentially malicious
servers, attesting server configurations, and auditing firewalls
by identifying available network connections. Analogously,
with such a tool for scanning a car’s network, we could (1)
discover potentially malicious ECUs inserted through an at-
tacker, (2) attest to the network configuration of ECUs over
time, and (3) identify potential ECUs that are vulnerable to a
recent type of attack (§2).

To aid in these scenarios, an ideal network mapper would
require three main outputs: (1) the transmitting ECU for each
unique CAN message, (2) the set of receiving ECUs for each
unique CAN message and (3) a list of all active ECUs in the
vehicle. To ensure that our network mapper is practical for our
envisioned use cases, we ideally want our tool to be (a) fast
to permit analysis of multiple vehicles at a time and limit the
time a vehicle must be running and (b) inexpensive to avoid
requiring costly equipment such as an oscilloscope or logic
analyzer.

Unfortunately, extracting the necessary information to
map these communication channels requires an unreason-
able amount of effort. In the work by Koscher et al. [20], the
authors analyzed the security of a vehicle’s components by
manually extracting ECUs to isolate and interact with them.
This type of analysis requires significant time and effort or
access to limited or proprietary information [25]. Second,
obtaining vehicles for extended time and with permission to
disassemble is costly and expensive. Considering new model
years and over-the-air update capabilities, the frequency of
analyzing an intra-vehicular network will quickly increase in
time and cost requirements.

A key challenge we face in realizing this vision in practice
is the lack of source information in CAN messages. CAN
messages are “contents-addressed,” i.e. messages are labeled
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based on their data and provide no indication to the message’s
sender. Another significant challenge in mapping a CAN bus
is the broadcast nature of the CAN protocol; we cannot tell
which ECUs have received a message. A CAN message is not
explicitly addressed to its recipients, but a node can indicate
it has correctly received a message (§3).

In this paper, we present CANvas, a system that demon-
strates a fast and inexpensive automotive network mapper
without resorting to vehicle disassembly (§4). Rather than
require physically isolating each ECU, our key insight is to
extract message information by re-purposing two observa-
tions from prior work:

• Identifying message source (§5): Prior work by Cho et
al. [11] state that clock skew is a unique characteristic to
a given ECU and thus build an intrusion detection system
(IDS) that measures this skew from the timestamps of
periodic CAN messages. Using this insight, we envision
a mapper that computes clock skew per unique message
and uses skew to group messages from the same sender.
Unfortunately, due to shortcomings of their approach in
our mapping context, we instead track the clock offset
of two messages over time to determine their source.

• Identifying message destination(s) (§6): In another
prior work [10], the authors propose a denial-of-service
(DoS) attack that exploits CAN’s error-handling protocol
to disable a target ECU. Using this insight, the mapper
could disable all but one ECU via this DoS attack and
observe what messages are correctly received by the
isolated ECU. However, due to shortcomings in their
method w.r.t. our context, we develop a method to force-
fully isolate each ECU and detect which messages the
ECU receives despite the broadcast nature of CAN.

We implement the CANvas mapper on the open-source
Arduino Due microcontroller with a clock speed of 84 MHz
and an on-board CAN controller. We evaluate our mapper
on five real vehicles (2009 Toyota Prius, 2017 Ford Focus,
2008 Ford Escape, 2010 Toyota Prius, and 2013 Ford Fiesta)
and on extracted ECUs from three Ford vehicles. We show
that CANvas accurately identifies ECUs in the network and
the source and destinations of each unique CAN message in
under an hour (§7).

Contributions and roadmap: In summary, this paper
makes the following contributions:
• Designing an accurate message source identification algo-

rithm that tracks a message’s relative clock offset (§5);
• Engineering a reliable message destination identification

method by isolating ECUs with a forced shutdown tech-
nique (§6);

• A real implementation that maps five real vehicles and
extracted ECUs (§7) along with two real examples of mo-
tivating use cases for mapping (§2).
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Figure 1: A network mapper could discover potentially
malicious ECUs from an untrusted party.

After defining the automotive network mapping problem
and describing typical CAN bus setups (§3), we highlight the
challenges of identifying message information via the CAN
protocol and provide an overview of our approach (§4). Fi-
nally, we discuss open issues and limitations (§8) and related
work (§9) before concluding the paper (§10).

2 Motivation
In this section, we discuss motivating scenarios for mapping
in the context of intra-vehicular networks and describe charac-
teristics of an ideal version of this security tool. To guide our
design, we draw an analogy to Nmap [21], a popular network
scanning tool that discovers hosts, services, and their inter-
connections in traditional computer networks. We identify
a number of automotive-specific scenarios to illustrate the
potential benefits of mapping, although this is not meant to
be a comprehensive list.

Malicious ECU discovery: One main feature of Nmap is its
ability to discover hosts, i.e. enumerate devices on the net-
work. In the context of automotive networks, these “devices”
are equivalent to a vehicle’s ECUs. One major automotive
cybersecurity concern (depicted in Figure 1) is the potential
for an attacker to gain access to a physical network and add a
new device [26], which could be a malicious ECU installed by
an untrusted party or even by a vehicle owner who installs a
CAN-enabled device purchased from an untrusted source. For
an attacker that aims to insert this ECU into the network un-
der the guise of a new equipment installation, the ECU could
connect to the existing CAN bus and gain unfettered access
to the CAN. If a defender performs a mapping through the
vehicle’s lifetime, they could verify changes to the network’s
ECUs. We provide an example of this scenario in §7 where
we discover a previously unknown ECU that was installed in
a modified 2009 Toyota Prius.

Continuous network attestation: Another popular use for
Nmap is performing security audits to identify changes to a
network [21]. Where such audits would identify new servers
or a modification in a server’s open ports, an audit in an auto-
motive context could identify changes to the ECUs and their
communication channels. With future over-the-air update ca-
pabilities, automakers will install new firmware or activate
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Figure 3: Assume that only the instrument cluster
should receive messages from the engine. If the exploited
telematics ECU is able to receive engine messages, then
an attacker [10] could shutdown the engine ECU via the

exploited telematics ECU.

different features in an existing vehicle. As the configuration
of the network can change over time, it is necessary for vehi-
cle owners to attest to the vehicle’s expected configuration. If
a user does not own the vehicle over its lifetime as in the mali-
cious ECU discovery scenario, we could implement an online
database where vehicle owners could upload the outputs of
their network maps for comparison against maps generated
from brand-new vehicles. Any differences from the expected
maps could indicate malicious or accidental network changes.

Lenient filter identification: Nmap is often used to perform
port scanning to identify open ports [21], which are potential
vulnerabilities. These “open ports” are analogous to the set
of CAN messages that an ECU is able to correctly receive,
which we refer to as the ECU’s message-receive filter. Now
consider an attacker who aims to target a safety-critical ECU
(e.g. engine ECU) as depicted in Figure 3. If gaining direct
access to the engine ECU proves infeasible, the attacker could
access an ECU that is less critical and potentially has access
to remote networks (e.g. telematics ECU). Using the ECU
shutdown attack as discussed in recent work [10], our attacker
can shutdown the engine ECU by gaining control of the telem-
atics ECU and reprogramming it; the attacker simply needs to
receive a message from the victim ECU to target it. To combat
this, a defender could perform a similar analysis via network

mapping and implement filters that prevent the message from
being received to limit the damage from a potential shutdown
attack. We provide an example of this scenario in §7 where
we discover lenient message-receive filters in a 2017 Ford
Focus.

Goals: In designing a useful automotive network mapper, we
must consider a few requirements that we impose to ensure
practicality in the context of our motivating scenarios:

Fast: First, we want to limit the amount of time a vehicle
(and its ECUs) are turned on. Also, a fast mapping process
will make it more practical for a user to verify the state of their
vehicle’s network after a repair. Considering these reasons,
we aim to achieve a mapping time of under one hour.

Inexpensive: To permit greater access to the mapper, the
mapper should consist of relatively inexpensive components
and should avoid expensive tools, such as oscilloscopes and
logic analyzers. We aim to limit costs to under $100; a low-
cost approach to network mapping will permit more users for
our system.

Vehicle-agnostic: Every vehicle has a different setup of
ECUs on the CAN bus and can employ additional features
of the CAN protocol. For our mapper to be practical, it must
work on many makes and models of vehicles as well as rely
on only standard CAN features.

Minimally-intrusive and non-destructive: One extreme ap-
proach for mapping a vehicle requires physical disassembly,
which is a very intrusive process and requires a great deal of
access to the target vehicle. We should limit this access to
simply connecting to a diagnostics port on the vehicle. If a
CAN bus is not exposed on this port, we describe a method
of getting access to these buses with minimal disassembly in
§8. Additionally, the mapper must not cause any permanent
damage to the vehicle or its network. Any of our methods
can put the network into a non-ideal state (warning lights on,
gear shift disabled, etc.), but as long as restarting the vehicle
undoes any imposed errors, we satisfy this constraint.

3 Problem Overview
In this section, we give a concrete problem formulation for the
network mapper and discuss technical challenges. We preface
with some necessary background on CAN to understand the
overall problem and mapping challenges.

3.1 CAN basics
To better understand the message information we hope to
gain using a network mapper and the associated challenges in
acquiring that information, we first discuss some necessary
background on how the CAN protocol works.

CAN in modern vehicles: All vehicles produced for the
U.S. market in 2008 and after are required to implement the
CAN protocol for diagnostics purposes [4]. Many vehicles
will often employ either one, two or three CAN buses. In the
event of three CAN buses, it is likely that the vehicle has one
bus for powertrain components (engine, transmission, etc.),

USENIX Association 28th USENIX Security Symposium    391



S
O
F

Arbitration ID
R
T
R

I
D
E

r
0

D
L
C

DATA
C
R
C

ACK
E
O
F

I
F
S

As ECUs lose arbitration,
a single transmitter will win

Single arbitration winner transmits its data

ECUs that correctly receive this 
message will set the ACK bit

Figure 4: Each CAN frame is transmitted on the bus
bit-by-bit. A single transmitter wins arbitration and will

listen to receiving ECUs during the ACK slot.

one bus for infotainment components (radio, etc.) and another
for body components (door controller, headlights, etc.). These
CAN buses are usually exposed through a vehicle’s On-Board
Diagnostics (OBD-II) port as detailed in §8.

Message broadcast bus: The CAN protocol [13–15, 32,
33] is defined as a message broadcast bus, which means that
ECUs in the network communicate with each other via mes-
sages. These ECUs are connected to a shared network where
all ECUs can receive all transmissions. Due to the nature of
this broadcast bus, it is not possible to send a message to a spe-
cific ECU. In the CAN protocol, after a message is broadcast
to the network, devices that correctly receive this message
will acknowledge their reception.

Typical CAN setup: A typical CAN setup for a vehicle
will grant each ECU with a unique set of IDs and each mes-
sage will be labeled with an ID, which is then transmitted
onto the bus. An ECU will be responsible for a subset of
the message IDs seen in the network, and each message ID
will only be sent by a single ECU. Each message is queued
by a software task, process or interrupt handler on the ECU,
and each ECU will queue a message when the message’s
associated event occurs.

CAN frame format: Each CAN message from an ECU
uses its assigned message ID (interchangeably referred to
as the ID or the arbitration ID), which determines its prior-
ity on the CAN bus and may serve as an identifier for the
message’s contents. These messages are transmitted and re-
ceived at the physical layer by an ECU’s CAN controller as
CAN data frames in the format depicted in Figure 4. The key
fields in the CAN data frame, as relevant to our work, are: the
start-of-frame (SOF) bit, the arbitration/message ID field, the
acknowledgement (ACK) slot and the end-of-frame (EOF)
bits.

All ECUs in the network with a queued message simultane-
ously start to transmit their message at the same time. During
the arbitration ID field, all but one ECU will eventually stop
transmitting based on CAN’s arbitration resolution. Once an
ECU has won arbitration on the bus, it will be the only sender
and transmit the remainder of the CAN data frame until the
ACK slot. During the ACK slot, the transmitter now becomes

Scenario Enum. Src. map Dest. map
Malicious ECU discovery X X

Continuous network attestation X X X
Lenient filter identification X X

Table 1: Mapping requirements for motivating scenarios

a receiver on the bus and all other ECUs in the network that
correctly receive a message will simultaneously send a domi-
nant bit on the network. This slot is then followed by the EOF
and the inter-frame space (IFS).

Message arbitration: To understand how ECUs commu-
nicate on the CAN bus, it is necessary to discuss the CAN
message arbitration process [13–15, 33]. CAN is designed to
support collision detection and bit-wise arbitration on mes-
sage priority to allow higher-priority messages to dominate
the network. The arbitration of these messages is performed
on the message ID field of a data frame, where a lower ID
indicates a higher priority. This priority-based arbitration pro-
cess sets a 0-bit as dominant and a 1-bit as recessive. Since a
0-bit is dominant, a message with a lower ID will get priority
on the CAN bus and will be sent before a message with a
higher ID that is queued at the same time.

3.2 Mapping requirements
Unlike most traditional packet-switched networks, CAN mes-
sages do not have fields that identify the message’s source and
destination(s), which makes the mapping problem difficult.
To develop a mapper that will aid in the motivating scenarios
of §2, we formulate three required outputs for CANvas:

ECU enumeration: The importance of enumerating ECUs
is evident in all of our provided scenarios as seen in Table 1;
enumeration highlights new or absent ECUs. Note that in
all of these scenarios, it is not necessary to know an ECU’s
type (engine, transmission, etc.) or its functionality (fan speed
control, tire pressure sensing, etc.).

Formally, let Ei denote ECU i in a given vehicle that con-
tains n total ECUs that are CAN-enabled. For each Ei in a
vehicle’s set of ECUs, E1:n, the ECU is responsible for sending
a specific set of m messages labeled with a unique arbitration
ID from the set, IEi,1:m. This set of IDs is unique to Ei and no
other ECU in the network should send the same ID. Given
a CAN traffic dump from a vehicle, CANvas’ enumerator
should determine the number of ECUs, n, and differentiate
between them to determine the set of ECUs E1:n for that par-
ticular vehicle.

Message source identification (§5): In the malicious
ECU discovery and continuous network attestation scenarios,
changes to the set of transmitted messages for each ECU can
pinpoint a potentially malicious reconfiguration. This means
that a goal for our mapper is to map each message ID to its
source ECU.

Formally, given a CAN traffic dump from which we extract
the set of uniquely-ID’d messages where l is the number
of total unique message/arbitration IDs and I1:l is the set of
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unique IDs, we should be able to determine which ECU Ei
sent each unique message. This step is very closely related
to ECU enumeration; once we know which ECU Ei that an
arbitrary ID I j originates from, we can produce a mapping of
the ID to its source ECU, I j ∈ Ei. Using this mapping, we can
group the IDs with a common source ECU and complete our
enumeration.

Message destination identification (§6): For the continu-
ous network attestation scenario, we want to look for changes
in what messages an ECU correctly receives as this could also
indicate a potentially malicious reconfiguration. This compo-
nent plays an important role in the lenient filter identification
scenario, where an attacker could shutdown an ECU from an
unintended message recipient.

We assume that at least one ECU in the network will cor-
rectly receive each message in the network. Formally, given
the set of l unique IDs, I1:l , from a traffic dump, we should
be able to determine the set of ECUs, E1:k, that correctly re-
ceive a message labeled with an arbitrary I j. The expected
output of this component should be a mapping of an ID to its
destination ECUs, I j,E1:k .

3.3 Challenges in an automotive context

However, to achieve these mapping goals, we encounter two
major challenges to determining the source and destination
ECUs for CAN messages: (a) CAN lacks identifying source
information and (b) CAN implements a broadcast protocol,
which naturally implies that all nodes receive all messages.
We discuss how we approach and solve these challenges in
§5 and §6.

Lack of source information: If a message sent from ECU
Ei has no identifying information, then it is non-trivial to de-
termine that Ei sent the message. Since CAN messages are
considered to be “contents-addressed” [13–15, 33], the value
of the message ID is only related to the message’s data and
priority. In practice, the source ECU has no weight in deter-
mining the chosen arbitration ID for a particular message.

Broadcast protocol: We define destination as an ECU
that correctly receives a message at the CAN controller level.
Unfortunately, determining which ECUs correctly receive a
message is non-trivial as an ECU connected to the CAN bus
cannot detect which of its messages are received by certain
ECUs. The ACK bit itself only indicates that some ECU
has received the message, not which particular ECU(s) have
received it. As multiple ECUs will set the ACK bit when a
message is received, we cannot simply use this ACK bit to
determine the set of ECUs E1:k that receive an arbitrary I j.

4 System Overview

In this section, we provide a high-level overview of the CAN-
vas network mapper.

Record 
CAN traffic

Select some 
message IDs

Update source 
mapping results

Run CANvas 
source 

algorithm
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enumeration

Identify a
target ECU

Shut down 
other ECUs
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Figure 5: CANvas obtains source mapping results by
step 4. Then, it will enumerate the ECUs in step 5.
CANvas then performs destination mapping and

generates the full map at step 10.

4.1 High-level idea
CANvas mapping overview: We split CANvas into two main
components: (1) a source mapper and (2) a destination mapper.
As detailed in §3, we satisfy our ECU enumeration require-
ment by simply using the output of source mapping. For (1),
we passively collect several minutes of CAN traffic. After
an offline data collection, the source mapper uses the data to
produce a mapping of each unique CAN ID to its source ECU
and subsequently, by grouping IDs with a shared source, a
list of all active source ECUs on the bus. For (2), we interact
with the network directly and perform an online analysis to
determine message destination. CANvas systematically iso-
lates each ECU, which will most likely cause the vehicle to
enter a temporary error state that the user can reset.

User capabilities: We assume that the user has access to
the OBD-II port of the vehicle and can connect the CANvas
mapper directly to the CAN bus with the ability to read and
write to the bus. We also assume that the vehicle even has a
CAN bus and that the standard CAN protocol is implemented,
which most vehicles will reflect [11]. The user should also
be able to transition the vehicle’s ignition switch between the
LOCK, ACC and ON positions as the user will have to reset
the vehicle after each iteration to exit the error state.

Scope and evasion: We assume that the vehicle does not
implement countermeasures that will alter timing of message
transmissions, potentially to prevent intruders from identi-
fying transmitting ECUs. We also assume that the vehicle
cannot identify a maliciously-triggered error and prevent in-
truders from abusing CAN’s error-handling protocol to shut-
down an ECU. The vehicle should not employ an intrusion
detection system capable of preventing an ECU suspension.
We further discuss adversarial evasion and other scenarios for
bus configurations in §8.

4.2 CANvas workflow
The workflow of CANvas involves four major steps seen in
Figure 5:
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1. Data collection: The CAN pins of the OBD-II port provide
access to the frame-level signals and the message-level
data. CANvas will read this traffic for several minutes and
timestamp each received message. From this traffic, we
will obtain the set of unique message IDs observed in the
network and a set of timestamped data for each ID.

2. Source mapping: With the list of all unique message IDs,
the source mapper will extract the timestamped CAN traffic
for each ID and determine which IDs share the same source
as detailed in §5. To do this, we select two message IDs and
run their CAN traffic through our comparison algorithm,
which will determine if the two IDs originate from the
same ECU.

3. ECU enumeration: Using the set of matching ID pairs from
source mapping, the enumerator will simply group pairs
that originate from the same ECU. The output of this step
will be a list of ECUs and associated source IDs.

4. Destination mapping: Using the ECU enumeration output,
the destination mapper will identify the ECUs that correctly
receive a given message ID. CANvas will isolate a target
ECU by performing a shutdown on all other ECUs, which
we discuss in §6. Once an ECU is isolated, we inject all
unique observed message IDs and determine which ECUs
receive the message.

5 ID Source Mapping
In this section, we describe an approach to map each CAN
message to its source.

Intuition: Due to the absence of source information in a
CAN message, we must rely on some uniquely identifying
characteristic that can be tied to a particular ECU. Following
observations from prior work [11, 29] and CAN documen-
tation [2, 14], we consider clock skew as a candidate finger-
printing mechanism. In particular, time instants for in-vehicle
ECUs rely on a quartz crystal clock [14], and we can use the
relationship between these clocks to identify a transmitting
ECU. We first define the following terms considering two
clocks, C1 and C2:
• Clock frequency: The number of cycles per true second,

e.g. if C1 operates at 16kHz, then C1 cycles 16,000 times
every one true second.

• Relative clock offset: The difference in time reported by
C1 and C2, e.g. if C1 reports time t1 of 4.1ms and C2
reports t2 of 4.2ms, their offset OC1,C2 is 0.1 ms. Where
only one clock is denoted for relative offset, the other clock
is the clock of the receiving node.

• Relative clock skew: The difference in clock frequencies
of two clocks, or the first derivative of offset w.r.t. true time,
e.g. if C1 operates at 16kHz and C1 operates at 16.1kHz,
their skew SC1,C2 is 100Hz. Where only one clock is de-
noted for relative skew, the other clock is the clock of the
receiving node.
Two clocks with a relative clock offset of 0 are consid-
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Figure 6: CANvas aims to cluster message IDs with a
similar relative skew or offset.

ered to be synchronized, and two clocks with a nonzero rela-
tive clock skew are said to “skew apart,” or have an increas-
ing relative offset over time [2]. Since the CAN protocol
does not implement a global clock, it is considered to be
unsynchronized as each ECU relies on its own local clock.

Observation 1: The clock offset and skew of an ECU
relative to any other ECU is distinct, thus providing us with
a uniquely identifying characteristic for source mapping.

High-level idea: To map each unique ID to its transmitting
ECU, we break the module into two steps as Figure 6 il-
lustrates: (1) computing either the skew skewf (Ii) or offset
offsetf (Ii) of each ID Ii and (2) then clustering IDs with the
same skew or offset where each cluster denotes a distinct
source ECU, Esrc. This module outputs a mapping of source
ECUs to their set of source IDs. The main input to this module
is a passively-logged CAN traffic dump, which contains en-
tries in the form of (Ii, tIi,n) where Ii is the ID of the message
and tIi,n is the timestamp of the nth occurrence of Ii.

5.1 Prior work and limitations
Cho et al. [11] use clock skew as a means of building an intru-
sion detection mechanism to identify an attack by a malicious
ECU. Specifically, this work uses timestamps of periodically-
received message IDs and posit that IDs with the same skew
originate from the same ECU.

To compute the clock skew of an ID Ii over time, Cho et
al. [11] perform the following steps: (1) compute Ii’s expected
period, µTi , (2) compute the offset, Oi, by subtracting the ex-
pected timestamp (using µTi from the actual timestamp), (3)
take the average of Oi over a batch of N messages, (4) add
Oiavg to an accumulated offset, Oacc, and (5) then compute the
skew, SIi , by taking the slope of Oacc versus time. This work
uses the Recursive Least Squares algorithm to minimize the
errors. After every batch of N messages, Oacc increases by Oi,
where k is the kth batch. From this plot, since Oi should be
constant, their formula for skew w.r.t. batch size sets SIi to:

skewf Cho
i (N) =

kOi

kN
=

Oi

N
(1)

As an extension to this work, Sagong et al. [29] note that the
skew of Equation 1 varies significantly based on N and use
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Figure 7: EA transmits IDs 0x570, 0x571 and 0x572 at
the same period and EB transmits IDs 0x262, 0x4C8 and

0x521 at different periods. Above are plots of
accumulated clock offset vs. samples for EA and EB using

the algorithm by Cho et al. [11].

an updated formula for SIi w.r.t. batch size:

skewf Sagong
i (N) = N · kOi

kN
= Oi (2)

Using data from a real vehicle, we now highlight a key
limitation of Equations 1 and 2. Consider Figure 7: (1) EA is
the source of IDs 0x570, 0x571 and 0x572, which share the
same period and (2) EB is the source of IDs 0x262, 0x4C8
and 0x521, which each have different periods. In Figure 7,
we use skewf Cho

i with N = 20 to plot the skew of all six IDs;
skewf Sagong

i produces similar results. We can correctly con-
clude from Figure 7 that the IDs of EA originate from a single
ECU. However, from Figure 7, we will incorrectly conclude
that IDs 0x262, 0x4C8 and 0x521 originate from three sepa-
rate ECUs. Our analysis and experiments shed light on why
these approaches fail–the skew value they compute is period-
dependent.

As such, we update Equations 1 and 2 w.r.t. period T and
batch size N:

skewf Cho
i (N,T ) =

kOi

kT N
=

Oi

T N
(3)

skewf Sagong
i (N,T ) = N · kOi

kT N
=

Oi

T
(4)

To potentially fix this issue, we can attempt a strawman that
is not dependent on period or batch size.

skewf Straw
i (N,T ) = T N · kOi

kT N
= Oi (5)

Ideally, accounting for both batch-size and message-period
(essentially batch-period, NT ) using Equation 5 should give
us a unique value that is common only among IDs from the
same ECU. We apply Equation 5 for all Ii of a vehicle, and
we attempt to establish distinct groupings of the computed
skew for each ID, SIi , which would identify which Ii share the
same Esrc.

Unfortunately, this is a difficult task as Ii from the same Esrc
still do not have similar skews. This issue is further demon-
strated as SIi varies across different data dumps or even seg-
ments of a given dump. Upon further inspection, we find that
the measured SIi is affected by the deviation in an ID’s pe-
riod. This deviation in the period, σpi , is attributed to sources
of “noise”, i.e. the period of a given message varies due to
scheduling, queuing and arbitration delay. We also find that
some Ii produce SIi with more deviation than others and pro-
duce widely-varying skew values, thus making our straw-man
solution an unlikely candidate for source mapping.

Observation 2: We need a method of extracting the clock
skew invariant that is: (a) independent of the period of Ii
and (b) robust to noise in the period.

5.2 Pairwise offset tracking

Issue with straw-man: In Equation 5, it is clear that, relative
to the receiver, this “skew” function computes offset rather
than true skew. Following our definitions in §5, a plot of
relative offset over time should either be linearly increasing
or decreasing if there is a nonzero skew between two clocks.
In other words, if the relative skew between an Esrc and the
receiver is non-zero, then we should observe a gradual change
in the offset. However, previous work [11, 29] fails to capture
this change in offset over time.

Relative offset as a unique identifier: As mentioned in §5,
clock offset and skew of an ECU relative to another ECU is
distinct. We must note that the clock offset measured from
one ID, I1, of an Esrc may not be the same as the offset of
another ID, I2, from Esrc. If the initial transmission time of I1
differs from that of I2, the OI1 could not equal OI2 . Rather, the
invariant here is the change in relative offset, ∆OIi ; as the skew
of Esrc relative to the receiver is a constant nonzero value, the
∆OIi will be a constant nonzero as well (the derivative of
offset is skew).

By measuring this change in offset, we can uniquely iden-
tify an Esrc, but we must ensure our method of extracting
this change in offset is (a) robust to a noisy period and (b)
period-independent. To address the issue of noise in the pe-
riod of Ii, pIi , we compute the relative offset between a pair
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Figure 8: Timeline of two message IDs, I1 and I2, that
have periods, p1 = 7ms and p2 = 9ms. Their

hyper-period occurs every 63ms.

of two different IDs denoted by OI1,I2 . By performing this
computation pair-wise, we expect OI1,I2 to have a deviation of
approximately 0 if I1, I2 ∈ Esrc as the sources of noise for I1, I2
should mostly be shared. In reality, this deviation is very close
but not exactly equal to 0; we define a practical threshold for
this deviation in §7.

With a pairwise approach to computing OI1,I2 and the
requirement for a period-independent approach, we face a
new challenge: determining at what point in time to ob-
serve this relative offset regardless of the period of I1 or I2.

Observation 3: Compute offset at the hyper-period of I1
and I2, or the least common multiple of their periods.

Measuring offset at the hyper-period: To guide our algo-
rithm design for computing ∆OI1,I2 over time, we first model
two periodically-transmitted IDs observed on the CAN bus.
Consider two IDs, I1 and I2, from the same Esrc which trans-
mit at a period of p1 and p2, respectively. For example, let p1
be 7ms and p2 be 9ms. For now, we assume that the relative
offset between I1 and I2 is 0. This offset should not change
over time as they originate from the same Esrc. To accurately
compute the relative offset of these two IDs, OI1,I2 , we must
select a time instant when the expected offset should also be
0: the hyper-period of I1 and I2, or the least common multiple
of p1 and p2. As seen in Figure 8, this time instant occurs at
63ms, or the lcm(7,9). Therefore, by computing the differ-
ence between the times reported from I1 and I2 every 63ms,
or the hyper-period of I1 and I2, we can track the value of
relative offset over time. If this relative offset is a nonzero
constant, then the two IDs originate from the same ECU.

With an input of several minutes of timestamped CAN data
to Algorithm 1, we can track relative offset over the timeline
of two message IDs. Note that each timestamp has a noise
component that stems from scheduling, queuing and arbitra-
tion delay. To compare whether two message IDs originate
from the same ECU, we first assume that they are sent by
separate ECUs. The two message IDs, I1 and I2, have periods,
p1 and p2, and they have relative offsets, OI1 and OI2 . We
draw the following relationships between these variables:

Algorithm 1 Pairwise offset tracking

1: function PAIRWISECOMPARE(I1, I2, logI1 , logI2 )
2: p1 = bComputeAveragePeriod(logI1 )c
3: p2 = bComputeAveragePeriod(logI2 )c
4: n = lcm(p1, p2)/p1
5: m = lcm(p1, p2)/p2
6: posI1 = 0, posI2 = 0
7: ∆I1,I2 = [ ]
8: while posI1 < len(logI1) and posI2 < len(logI2) do
9: ∆I1,I2 .append(logI1 [posI1 ]− logI2 [posI2 ])

10: posI1+= n
11: posI2+= m
12: return true if σ(∆I1,I2 ) < threshold else f alse
13: end function

• p2 = l p1, where l is the ratio of the periods.
• OI2 = jOI1 , where if j=1, then both IDs sent by same ECU;

otherwise, they were sent by different ECUs.
• n = ml, where LCM(n,m) = l as depicted in Figure 8.

By computing the difference between every n occurrences
of I1 and every m occurrences of I2, which occurs at the hyper-
period of I1 and I2, we produce the following equation:

OI1,I2 = (mp2 +OI2 + i2)− (np1 +OI1 + i1)

We find that when we average the result of the above equation
across the entire data log, the expected value is 0 if I1 and I2
originate from the same ECU. In reality, this value is close to 0
due to the deviation of a message’s period. From experimental
data, we define a threshold of 1ms for the change in relative
offset, where a value under the threshold will classify the two
IDs with the same source ECU. Using this approach to revisit
the setup described in Figure 7, we correctly conclude that
IDs 0x262, 0x4C8 and 0x521 originate from the same ECU.

Practical challenges: While the above approach is correct,
there are a number of other practical challenges we need to
address to ensure accurate mapping:

1. Large hyper-period: Consider a hyper-period that is
“large”, or on the scale of several minutes, e.g. the hyper-
period of p1 = 980ms and p2 = 5008ms is over 20 minutes.
Since we only extract one relative offset value per hyper-
period, we would need hours of CAN traffic to produce a
valid result. To ensure that our mapper is fast, this length
of traffic log is unreasonable; we want to produce a full
network map in under an hour. Fortunately, with a pair-
wise approach, we can choose to not attempt a comparison
when the hyper-period is large; for example, if we assume
that the Esrc of I1 also transmits another ID, I3, where the
hyper-period of I1 and I3 is small, we can still determine
that I1, I3 ∈ Esrc.

2. Large period deviation, σpi : In early experiments, we dis-
covered messages that had a large measured σpi (we define
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large as σpi ≥ 0.1pi) and, at first, assumed that these mes-
sages were either aperiodic or sporadic (aperiodic with a
hard deadline). However, upon closer inspection, we no-
ticed that these messages appeared to be periodic in na-
ture. We observed three different patterns that altered the
measured σpi : (1) the period simply had a large σpi , (2)
periodic messages would occasionally stop transmitting for
some time, and (3) periodic messages were missing their
deadlines. With a large enough σpi , the deviation would
conceal an inconstant ∆OIi and make it difficult to detect a
mismatch. We experimentally find that a σpi greater than
8% of pi results in incorrect outputs. Therefore, CANvas
will choose to test Ii on the following cases when its σpi

is under a defined threshold, which we set to σpi ≤ 0.08pi
from our experiments.

3. Periodic messages that occasionally stop: We find that
some Ii are periodic and will stop transmitting for some
time, causing a measured σpi to be large. To combat this
issue, we only perform pairwise offset tracking when the
given message was actively transmitting. In the event we
compare two Ii that both occasionally stop and there is
no overlap of active transmissions, we then rely on our
pairwise approach to match the Ii to another ID from the
same Esrc.

4. Messages that miss deadlines: For some Ii with a large σpi ,
we observe two different inter-arrival times: pi and 2pi.
When a task on one of the ECUs misses its deadline and
cannot produce a message on time, it will skip that cycle
and transmit during the next cycle [2]. Thus, when a dead-
line is missed, we will observe an inter-arrival time of 2pi.
In this situation, there are two options: (1) perform relative
offset tracking on portions of the log when deadlines are
not missed or (2) interpolate the missed inter-arrival times.
If a message frequently misses its deadline, the first option
is not viable. To interpolate a missed arrival time, we insert
a psuedo-entry in the traffic log with a timestamp equal to
the average of the preceding and the following timestamp.

Factors for mapping time: For source mapping, we experi-
mentally find that 30 minutes of data provides enough samples
for larger hyper-periods to map accurately. While this stage
has static run-time, the variation in time requirements will
be dependent on the number of observed messages IDs. The
more message IDs that exist in the network, the longer the
mapping time takes; vehicles with more message IDs take
longer to complete mapping due to an increase in message-
pairs. However, to further reduce mapping time, mapping
messages with small periods requires much less traffic data.
To save additional time if necessary, it is recommended to
reduce the traffic log length for high-frequency messages.
Also, if there are few large periodic messages or if those mes-
sages are not relevant for whatever reason, the length of the
initial traffic log can be reduced as necessary instead of the
recommended 30 minutes.
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Figure 9: Observing ACK bit with single ECU in
network.

6 ID Destination Mapping
The goal of the destination mapping module is to accurately
associate each ID with its set of receiving ECUs. The key con-
sideration here is to maximize the accuracy of our mappings
within our defined time constraint. In this section, we describe
an approach to map each CAN message to one or more desti-
nation ECUs as defined in §4 and then present a systematic
procedure that reliably determines which messages an ECU
correctly receives.

6.1 Problem formulation
Intuition: As defined in §4, the destination(s) of a particular
CAN message are those ECUs who correctly receive a given
message. Despite the broadcast nature of CAN, if an ECU
does not correctly receive a message, it will not set the ACK
bit; however, if other ECUs receive this message, they will
set the dominant ACK bit. Unfortunately, an ACK observed
by the transmitting ECU only means that some active ECU
correctly received the message. Therefore, with multiple ac-
tive ECUs in the network, we cannot identify which ECUs
were the destination for a given message.

Consider the scenario in Figure 9 where there was only
one active destination ECU, Edst , in the network other than
the transmitting source ECU, Esrc. For each message sent by
Esrc, a set ACK bit (performed only by Edst) would indicate
that only one ECU received the message: Edst . Thus, in this
scenario, Esrc could simply inject all possible Ii and detect
which messages have a set ACK bit. The major challenge here
is identifying a method of isolating an Edst and “removing” all
other ECUs from the network. We define the bare minimum
of “removal” as preventing an ECU from participating in the
acknowledgement process.

Observation 4: Our idea for performing this removal is to
transition an ECU into an error-state that prevents it from
setting the ACK bit for any message.
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Figure 10: CAN transitions between three error states:
error-active, error-passive and bus-off.

We now introduce the error-handling mechanism for CAN
[2, 10], which follows the state diagram in Figure 10. Each
ECU has two error counters: one for errors detected as a
receiver (the Receive Error Counter, or REC), and another for
errors detected as a transmitter (the Transmit Error Counter, or
TEC). The TEC increments much faster than the REC as the
transmitter is more likely to be at fault; the TEC increments
by 8 while the REC increments by 1. If a message is received
correctly, the error counter will decrease by 1. We describe
the three CAN error-states and, under what conditions, the
ECU will transition:

• Error-active: When an error is detected by an ECU in
error-active, it will transmit an active error flag, or 6 domi-
nant bits, that destroy the bus traffic. When either the TEC
or REC increments past 127, the ECU transitions to error-
passive.

• Error-passive: When an error is detected in error-passive,
the ECU transmits a passive error flag, or 6 recessive bits,
that do not destroy the bus traffic. Once the TEC or REC
increases above 255, the ECU goes to bus-off.

• Bus-off: In this state, the ECU effectively removes itself
from the network; it will not transmit anything onto the
bus, including setting the ACK bit.

Thus, it is evident that we can isolate an ECU by transitioning
all other ECUs to the bus-off state.

6.2 Limitations of prior work
Imposing bus-off state: The challenge in transitioning an
ECU to bus-off is to determine what kind of error to produce
and how to produce it. We look to previous work [10] that
aims to shutdown an ECU for the purpose of an attack. The
authors aim to shutdown an ECU by causing an error in
the target ECU. By exploiting the error-handling protocol in
CAN, where bus-off effectively removes an ECU from the
network, they choose to increment the error counter of a target
by causing a bit error. This error occurs when a transmitting

Figure 11: Injecting a fabricated message to impose a
bus-off [10].

ECU reads back each bit it writes; when the actual bit is
different, the ECU invokes an error.

Since only one ECU is expected to win the bus arbitration
as detailed in §2, the authors point out that two winners would
potentially cause a bit error. For example, suppose that the
victim ECU transmits a message with ID 0x262. If the attacker
ECU also transmits ID 0x262 at the exact same time as the
victim, both ECUs will win arbitration. However, to ensure
that the victim has a bit error, the attacker’s message will set
its DLC, or data length count, to 0 (most practical messages
contain at least some data). After a sufficient number of these
attack messages, the victim ECU will transition into the bus-
off state.

The main challenge here is synchronizing the attack mes-
sage with the victim message so they both enter arbitration
simultaneously. Their insight as depicted in Figure 11 is to
inject a message of higher priority around the time when the
victim should transmit. The higher priority message will block
the victim until the bus is idle, where it will then transmit. The
attacker will load its attack message immediately after the
higher priority message is transmitted, thus allowing both the
victim and attack message to arbitrate simultaneously. Since
there is noise in the true transmission time of the victim’s
first attempt at transmitting, there is a chance that the attacker
will need to make multiple attempts to cause an error. The
number of injection attempts needed to cause a single bit error,
κ, is defined as the following where I is a confidence attack
parameter (high parameter value means higher confidence in
attack), σpv is the jitter deviation of the victim’s period, and
Sbus is the speed of the bus in Kbps:

κ =

⌈
2
√

2IσpvSbus

124

⌉
(6)

The authors state that only one of these injections is needed to
cause a bit error if setting I= 3 and at most 2 if setting I= 4,
given that the period deviation is 0.025ms.

Straw-man limitations: Suppose we used the above ap-
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Figure 12: CANvas identifies target message by end of
ID field and injects dominant bits during the DATA field.

proach to cause a bus-off in a real vehicle. Unfortunately,
in sample traffic dumps from two real vehicles, the smallest
deviation that we observed was approximately 0.15ms. Using
the equation given by Cho et al. [10], the number of preceded
message injections per error is 8 when the period deviates by
at least 0.205ms; if 8 injections are required, any successful bit
error would be undone by successful message transmissions.
We look at available traffic logs used in the works by Miller et
al. [24]. For this traffic log, the majority of the messages have
a period deviation over 0.205ms. In other words, assuming
the best case scenario of 0.15ms, we would need to inject at
least 6 higher-priority messages, or preceded messages, for
a bus speed of 500Kbps. Considering that each successful
transmission by the victim ECU decrements the TEC by 1,
we would effectively only increase the TEC by 2 with each
successful attack (instead of the expected 8). Since the major-
ity of messages have a period deviation greater than 0.205ms,
it is highly unlikely to use this method for isolating an ECU.

Observation 5: We need a method of transitioning an ECU
into the bus-off state that is reliable and robust even when
the period deviates by more than 0.025ms.

6.3 Forced ECU isolation
High-level idea: To map each unique ID to its set of destina-
tion ECUs, we break the module into two steps. We repeat
these two steps for all n ECUs in the network. The first step is
to isolate the target ECU and shut off all others by transition-
ing the non-target ECUs to the bus-off state. As there are n
ECUs in the network, we will need to “bus-off” n−1 ECUs
for each ECU, i.e. we will need to perform the bus-off at least
n(n−1) times. Once we isolate an ECU, we then inject the
set of all Ii and observe which messages have a set ACK bit,
thus identifying the set of Ii where the target ECU is an Edst .

Inducing a direct bit-error: Isolating an ECU via the bus-
off method requires a quick and effective approach. Since
we are not limited to operating through the interface of a
CAN controller, we can directly view the CAN frames in
real-time via digital I/O pins. However, since we are using

a microcontroller that operates at the same voltage of the
CAN controller, we do not operate at the true CAN voltage.
Instead, we tap directly between the interface of the Arduino’s
CAN controller and the CAN transceiver, where we can safely
access the bus data. At this junction, we observe that the data
on the line is within the Arduino’s voltage and contains the
full data frame, including SOF, ACK and EOF bits. With this
access to the full data frame rather than just the components
of the CAN message, we can directly induce an error on the
bus and thus achieve the bus-off attack as seen in Figure 12.

Observation 6: By reading the ID of the message in
real-time, we can choose to attack any ID by simply driving
a dominant bit to the CAN transceiver.

Note that the bus-off method requires attacking a message
ID every time it occurs until the ECU enters the bus-off state.
However, in the event that a message has a very long period,
the time to perform the bus-off will not satisfy our speed
requirement. As such, we can employ the result of CANvas’
source mapping component by identifying the ID with the
smallest period per ECU and attacking just that ID. In practice,
we have found that every real ECU we have encountered has
at least one ID that operates under 100ms. Thus, this approach
makes the destination mapping component of CANvas fast.

Determining message receive filter: Now that we can iso-
late a single ECU in the network, we can simply inject all
messages in the observed ID space and determine which mes-
sages are correctly received by the ECU. However, to view
the ACK bit at the network level, which is not visible to the
user, the obvious option is to use a logic analyzer. As this
does not satisfy our requirement for low-cost mapping, we
seek an alternative. We observed that if a message is sent to
a single ECU and it does not correctly receive the message,
the transmitter will re-attempt to send the message until it is
received correctly. As such, if we transmit a message and see
a continuous stream of the same ID from our transmitter, then
we may conclude that the message ID is not received by the
isolated ECU.

Practical challenges of mapping a real vehicle: Since
our approach to destination mapping involves shutting off
multiple ECUs at a time, we encounter a couple of challenges
in a real vehicle setting: (1) ECUs that auto-recover and (2)
ECUs that are persistently active. We now define these sce-
narios and provide a detailed approach to addressing these
practical challenges:

1. ECUs that auto-recover: In our earlier experiments, we
performed a simple experiment to verify the potential of
an isolation method. We attempted to transition all ECUs
in the network to the bus-off state by shorting the CAN bus
pins, which would effectively cause a transmit error for all
ECUs and force them into bus-off. However, after remov-
ing the short, we saw that some CAN messages were still
transmitted onto the network, clearly indicating that some
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ECUs left the bus-off state. We find that these ECUs would
wait a predefined amount of time before re-transmitting
again as these ECUs were critical to the vehicle’s power-
train (engine, hybrid, etc.) [14]. In this situation, we would
transmit a portion of the injected messages onto the bus
and then re-isolate our target ECU when a non-target starts
to transmit again. This approach is only reasonable for
recovery times on the scale of seconds.

2. ECUs that are persistently active: Out of the set of ECUs
that did auto-recover, we also noticed that one ECU seemed
to be persistently active. In other words, there appeared
to be no delay between a transition into the bus-off state
and the next transmission from the ECU. Upon closer
inspection, we found that this ECU would auto-recover
only after 128 occurrences of 11 recessive bits [27]. In
this situation, we must “hold” the bus open by constantly
transmitting false messages from our device to trick the
recovering ECU into thinking that the bus is still active.

Factors for mapping time: For destination mapping, the
run-time is dependent on the number of ECUs and increases
with more ECUs. We acknowledge the potential of long run-
times for vehicles with 70+ ECUs if all were CAN-enabled.
To combat this, we suggest performing the bus-off on the ID
with the smallest period per ECU to reduce the time attributed
to achieving ECU isolation. Also, for our two vehicles, all
observed IDs were active when the vehicle was simply in
ACC rather than ON so there may be no need to crank the
engine per ECU.

7 Evaluation
In this section, we show that CANvas:
1. identifies an unexpected ECU in a ’09 Toyota Prius,
2. identifies lenient message-receive filters in a ’17 Ford Fo-

cus,
3. produces a sound source mapping of two real vehicles and

accurately identifies the source of approximately 95% of
all Ii in the network and a complete destination mapping
with an isolation technique that is 100% reliable,

4. successfully demonstrate our forced ECU isolation on three
extracted ECUs,

5. and produces source mapping of three additional vehicles.
Setup and methodology: Our experimental setup includes
five real vehicles and several synthetic networks to demon-
strate the above benefits. Below is a brief description of the
CANvas hardware implementation, five real vehicles and our
synthetic network of real ECUs:
• Mapping device: To interface with a CAN bus, our map-

ping device consists of three components: an Arduino Due
microcontroller with an 84 MHz clock and an on-board
CAN controller, a TI VP232 CAN transceiver, and a 120Ω

resistor. To gain direct write access to the bus for destina-
tion mapping, we connect a digital I/O pin to the driver
input pin of the transceiver.

• ‘09 Toyota Prius and ‘17 Ford Focus: The Prius contains
eight original ECUs that transmit on a single CAN bus at
500 kbps. The Focus contains eleven original ECUs that
transmit on three CAN buses at varying speeds; as our
model of the Focus is the standard edition, only the high-
speed 500 kbps bus has more than one active ECU. We
obtain ground truth for our experiments by physically tak-
ing apart the car and gaining direct access to the ECUs by
splicing directly into the CAN wires as seen in Figure 13.
We use a paid subscription to both Toyota and Ford’s me-
chanics’ manuals [3, 6] for guidance on disassembly of
vehicle components. Due to the non-destructive design of
CANvas, our interaction does not impose any permanent
errors to the vehicle.

• ’08 Ford Escape, ’10 Toyota Prius and ’15 Ford Fiesta
We obtain CAN traffic from three additional vehicles for
testing only our source mapper, as we did not have per-
mission to inject data. We use data from the ‘09 Prius and
‘17 Focus to partially confirm our source mapping output
without disassembling these vehicles.
• Synthetic networks: To further validate the capability of

our mapper, we perform additional experiments on three
real engine ECUs extracted from a ‘12 Ford Focus, ‘13
Ford Escape and ‘14 Ford Escape.

7.1 Discovering an unexpected ECU
We now describe a real scenario where, in the process of
designing CANvas, we discovered an unexpected ECU in our
Prius. Using the results of our source mapping on the ‘09 Prius
as seen in Table 2, we noticed that there were a total of nine
ECUs when only eight were expected. Even after manually
disconnecting all eight known ECUs, we still observed CAN
traffic, specifically IDs I570−572, coming from a single ECU.
By looking at the history of the vehicle and systematically
disconnecting various systems, we discovered that this ECU
was installed as part of a modification from several years
ago. The Prius had an additional battery installed to grant
it all-electric capabilities, and with the use of the network
mapper, we now know that a new CAN-enabled device was
added. If we took a network map of the vehicle when first
purchased or used an online database as mentioned in §2, we
could easily compare our results with published results and
identify the unexpected ECU. We confirm that these IDs are
new by comparing our IDs to a same-generation Prius [23].

7.2 Identifying lenient filters
As detailed in §2, a real concern for network security is the
ability to shut-down an ECU by simply receiving the target’s
CAN messages. Using the results of CANvas’ destination
mapping, we can identify several instances where an ECU
is expected to only receive messages from a subset of other
ECUs but still receives all other messages. We have found that
all ECUs in the Focus and Prius do not employ any filter on the
receipt of incoming messages. In Ford’s Motorcraft TechInfo
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Figure 13: Images of the vehicles we used for ground truth: the 2009 Toyota Prius and the 2017 Ford Focus.

ECU # Source message IDs Actual ECU
A 020, 030, 0B1, 0B3, 0B4, 230, 4C3, 591 Skid control ECU
B 022, 023 Yaw rate sensor
C 025, 4C6 Steering sensor
D 038, 03A, 03E, 120, 244, 348, 527, 528, 529, 540, 5B2, 5C8, 5EC, 602 Hybrid vehicle control ECU
E 039, 3C8, 3CF, 526, 52C, 5CC, 5D4, 5F8 Engine control module
F 262, 4C8, 521 Power steering ECU
G 3C9, 3CB, 3CD Battery ECU
H 553, 554, 57F, 5B6 Gateway ECU
I 570, 571, 572 Unknown ECU

Table 2: 2009 Toyota Prius source mapping output

Service [3], we can see simple diagrams of how the ECUs
communicate as part of the vehicle’s systems. For example,
the Focus’ braking system involves communication between
the instrument panel cluster, the transmission ECU, the body
control ECU and the engine ECU. Now suppose an attacker
takes over the infotainment unit of the Focus, has complete
access to rewrite the ECU’s code and gains the ability to inject
CAN messages as described in §2. The attacker can launch a
bus-off attack and shut-down the transmission ECU simply
because the infotainment ECU receives its messages. It is
evident that these devices need filters on what messages are
received by their CAN controllers.

7.3 Mapping our test vehicles
We now present results and observations from mapping both
the Prius and Focus.

Source mapping results: Using a threshold of 1ms and 30
minutes of traffic collection, we get a false positive rate of
0% for both vehicles, permitting us to get a sound source
mapping output. Out of a total of 59 unique message IDs, our
pairwise timing comparison resulted in 102 matching pairs
for the Prius. By performing a simple grouping of these pairs
as detailed in §5, we get the output as seen in Table 2. While
the majority of the IDs observed on the Prius have a strong
periodic characteristic, we discuss some special cases we
encountered. Most of the messages were under five seconds
except for I57F with a period of 5 seconds and I602 with a

period of 60 seconds. The majority of our messages matched
with multiple IDs from the same ECUs but due to the large
period of I57F and I602, they only had a single match. However,
due to our pairwise approach, we can still map these two
IDs using a shared matching pair as discussed in §5. We
also encounter a few examples of messages that miss their
deadline and wait until the next cycle to re-transmit. For the
Focus, we observe messages that miss their deadlines and
either transmit two messages on the next cycle or drop the
missed message and wait for the next cycle. In these cases,
we simply remove the inter-arrival times that exceed two
standard deviations from the average period and interpolate
for the removed timestamps as discussed in §5.

Destination mapping results: With a CAN bus running
at 500 kbps, we discover that all of the ECUs in the Prius
do not implement any filtering between the network and the
CAN controller. When each ECU is isolated, we see that
all IDs are properly acknowledged by the receiving ECU.
We do observe two ECUs that recover quickly from the bus-
off method, specifically the engine control module and the
skid control ECU. With the other ECUs in the vehicle, it was
sufficient to perform our bus-off once and the ECU would stop
transmitting. For these two ECUs, we selected the smallest
period ID and held the bus open by injecting false messages
to keep the two ECUs from auto-recovering. Additionally,
we discovered that the Focus also do not implement any sort
of filtering for the IDs we observe on the CAN. From these
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findings, we can conclude that attacking via the reception of a
message for these vehicles could prove trivial due to the lack
of filtering between the network and the controller. In general,
the maximum number of manual transitions of the ignition
switch is equal to the number of detected CAN-enabled ECUs
in the vehicle. For the keyless ignition of the 2009 Prius, we
transition the ignition 7 times as two ECUs recover on their
own (the Prius has 9 total CAN-enabled ECUs). For the keyed
ignition of the 2017 Focus, we transition the ignition 7 times
as two ECUs recover on their own (the Focus has 9 total
CAN-enabled ECUs).

7.4 Mapping additional vehicles

Mapping real extracted Ford ECUs: We also obtained
three Ford engine ECUs from a ‘12 Focus, ‘13 Escape and
‘14 Escape. By collecting data from these three ECUs, we
found that they shared the many of the same message IDs and
conclude that they are based off of the same engine controller
configuration. As they all auto-recover, they were prime can-
didates for testing our forced ECU isolation technique.

We use CANvas on three other vehicles to look for data that
seems logical to our findings from the test cars. For the Ford
vehicles, we look for similarities with our extracted engine
ECUs. For the ‘08 Escape, we found a set of IDs that we
believe is the engine ECU and only has a subset of those
found on our extracted ECU. For the ‘15 Fiesta, we also found
a likely candidate for an engine ECU that has more IDs than
our extracted ECUs. Since these vehicles range over three
different Ford generations, it seems logical that the newer
engine ECUs transmit more IDs. Additionally, we find a few
similarities between the ‘09 and ‘10 Prius. We found an ECU
on the ‘10 that is likely to be the skid control ECU, which
has similar IDs to the ’09 Prius. These findings potentially
demonstrate CANvas’ source mapping capabilities.

8 Discussion

Adversarial evasion: For CANvas’ source mapping, an ad-
versary could attempt to modify the timestamps to trick CAN-
vas into thinking that a pair of IDs originate from the same
ECU when in fact the opposite is true, and vice versa. We
acknowledge that an attacker who aims to spoof IDs from an
implanted or compromised ECU breaks the assumption for
message-source analysis. If the attacker performs an active at-
tack (i.e. attack occurs during data capture) or simultaneously
transmits with the spoofed ECU, then IDSes from several pre-
vious works could detect such an attack and thus we did not
perform such experiments. CANvas instead could discover
ECUs that do not actively inject messages but rather change
the ID-ECU source mapping (a new ECU or existing ECU
that sends different IDs). We also make the assumption that
ECUs do not intentionally alter their timing due to the chal-
lenges that arise from scheduling real-time embedded systems.
There are numerous challenges that automakers already face
in achieving reliable and robust scheduling for their vehicles

and any modification to the timing of CAN messages would
add a great amount of complexity to the already complex chal-
lenge of scheduling. Additionally, as our destination mapping
approach deals with the error-handling mechanism, it would
also not be practical to change these basics of CAN.

Avoiding permanent damage: We take care to avoid any
damage to our test vehicles. Even with our active interaction
with the bus in destination mapping, most dash lights that turn
on are simply reset by power cycling the car; it may some-
times be necessary to drive the car for a few minutes so the
ECUs can identify the absence of a real error. After mapping,
all of our vehicles operate with no error codes once the above
steps have been followed. Sometimes, a persistent Diagnos-
tic Trouble Code may exist in the network as indicated by
the Malfunction Indicator Light (MIL, commonly known as
a “check engine light”). To remedy this, a simple OBD-II
scan tool can be used to reset these lights with no harm to
the vehicle. In the event of network communication failure
(e.g. bus-off), manufacturers implement a "limp-home" mode
where ECUs will default to secondary programming and al-
low the vehicle to operate with limited capabilities [7]. It is
possible for the CAN bus to be shorted (effectively causing a
bus-off on all ECUs) during faults, repairs, etc. so this mode
protects the vehicle from our methods. In our experiments,
the engine did not need to be running as all ECUs became
active with the ignition at ACC. However, this may not apply
to all vehicles so it is possible that the ignition will need to
be ON.

Multiple CAN buses: For the typical OBD-II port, the CAN
bus uses pins 6 and 14 on the connector. While many vehicles
only have one CAN bus using these pins, it is possible for
additional CANs to exist. These CAN buses may not be con-
nected and they may employ different bus speeds. Sometimes,
vehicles may also employ a gateway which handles how and
which messages are passed between the various buses for rea-
sons of fault confinement and network security. These CAN
buses are often accessible at the OBD-II port but on different
pins that are vendor optional: pins 3 and 11 and pins 1 and
8/9. In the case that a CAN bus is not exposed to the OBD-II,
it is possible to access this bus by simply removing the door
panel of a car and accessing the connector between the door
assembly and the car body. This connector will likely contain
the unexposed bus, which can be discovered as suggested by
others [30].

Message acceptance filtering: CAN controllers have the
option to employ a programmable acceptance filter where a
message that is received by the controller can either be sent to
the application layer or dropped after the message is received.
It is possible to define message destination as a message that
is “accepted” by an ECU rather than correctly received. This
definition provides finer granularity on message destination
and can prove useful for many other security scenarios; how-
ever, to identify what messages are accepted by an ECU, this
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may require vendor-specific methods. For example, in our
experimental setup, we enable a CAN protocol feature called
the overload frame [32]. If a vendor chooses to enable this
feature, an accepted message can be determined by flooding
the bus as fast as possible with a given message ID. When
the receiving ECU gets behind on processing these messages,
it will transmit an overload frame, indicating its acceptance
filter allows the injected message ID; if the ID is dropped,
then no overload frame will be present.

Non-transmitting ECUs: CANvas expects ECUs to transmit
their messages periodically, but it is possible for ECUs to
only activate under certain conditions or simply read from
the network. As all ECUs that receive messages but have the
ability to write to the network must participate in the ACK
process, CANvas’ forced ECU isolation technique can be used
to identify the presence of a non-transmitting ECU. CANvas
should detect these ECUs prior to starting to ensure that the
detected ECUs do not interfere with destination mapping.

9 Related Work
We already discussed several of the key related work with
respect to source and destination mapping. We discuss other
related efforts here.

Automotive attacks: There have been a number of efforts
at demonstrating vulnerabilities of automotive networks, in-
cluding work on injecting messages [20], attacking keyless
entry systems [8, 16, 28], and specific components such as
TPMS [17, 18]. Our work can better inform such attack ef-
forts and defenses by proactively identifying possible attack
channels.

Intrusion detection for automotive: Given the growing
security concerns, related work has also developed intrusion
detection and firewall capabilities akin to traditional networks
(e.g., [11, 19, 22, 29, 31]). Some of these may interfere with
mapping efforts. More generally, however, these may have
blind spots that a network mapper can highlight.

Alternative source identification: We acknowledge previ-
ous efforts that aim to identify message sources [12, 27].
While these efforts may prove valid, they either require many
hours of data or require physical access to the bus for just
source mapping. CANvas permits source mapping using a
passively-recorded timestamped traffic log.

Authentication in CAN: We acknowledge that authentica-
tion for CAN devices may implicitly solve the source map-
ping problem. However, proposed authentication methods are
rarely employed in real vehicles due to either the permanent
addition of new devices or changes to the existing CAN pro-
tocol. Prior work, such as the TCAN system [5], requires the
addition of a new device, access to two locations on the bus
and a static authentication table. CANvas, however, acknowl-
edges that timing characteristics can and will change due to
clock drift. By comparing clock offsets, CANvas does not
rely on static timing characteristics. CANvas does not even

need physical access to the bus for source mapping as we only
require a hardware-timestamped traffic log, and we operate
solely from the OBD-II port without an additional permanent
device.
Other work on ECU fingerprinting: Following initial ef-
forts on fingerprinting [14, 27], other work has improved on
their basic approach by identifying potential pitfalls [11, 12,
29]. As we show in our work, all of these still suffer from
the same limitations in our context as they still assume either
active access to the bus or very long traffic dumps.

10 Conclusions
In this work, we develop CANvas, a fast and inexpensive auto-
motive network mapper. We have released our code and data
under open-source licenses to enable further work in this area.
A natural direction of future work is to add richer functionality,
e.g. identifying the function of an ECU (transmission ECU,
engine ECU, etc.), identifying gateway ECUs that potentially
bridge multiple CAN buses and identifying vendor-specific
message acceptance filters. Future work should also inves-
tigate network mapping on other automotive protocols, e.g.
automotive Ethernet.
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