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Abstract
Network operators today deploy a wide range of complex,
stateful network functions (NFs). Typically, they only have ac-
cess to the NFs’ binary executables, configuration interfaces,
and manuals from vendors. To ensure correct behavior of NFs,
operators use network testing and verification tools, which
often rely on models of the deployed NFs. The effectiveness
of these tools depends on the fidelity of such models. Today,
models are handwritten, which can be error prone, tedious,
and does not account for implementation-specific artifacts. To
address this gap, our goal is to automatically infer behavioral
models of stateful NFs for a given configuration. The problem
is challenging because NF configurations can contain diverse
rule types and the space of dynamic and stateful NF behaviors
is large. In this work, we present Alembic, which synthesizes
NF models viewed as an ensemble of finite-state machines
(FSMs). Alembic consists of an offline stage that learns sym-
bolic FSM representations for each NF rule type and an online
stage that generates a concrete behavioral model for a given
configuration using these symbolic FSMs. We demonstrate
that Alembic is accurate, scalable, and sheds light on subtle
differences across NF implementations.

1 Introduction

Modern production networks include a large number of propri-
etary network functions (NFs), such as firewalls (FWs), load
balancers (LBs), and intrusion detection systems (IDSs) [21].
To help debug network problems, ensure correct behavior,
and verify security, there are many efforts in network testing
and verification [22, 35, 40, 41] as well as “on-boarding” new
virtual NFs [32].

Such network management tools rely on NF models to
create test cases, generate verification proofs, and run compat-
ibility tests. These models are required because NF implemen-

∗Contributions by Soo-Jin Moon were made in-part during a former in-
ternship at Hewlett Packard Labs. Other contributors from former employees
at Hewlett Packard Labs include Sujata Banerjee, Ying Zhang and Wenfei
Wu.

tations are often proprietary, leaving operators with only con-
figuration interfaces and vendor manuals. Today, NF models
are handcrafted based on manual investigation [22,40], which
is tedious, time-consuming, and error-prone. Further, mod-
els do not capture subtle implementation differences across
vendors [22, 30, 35]. Using low-fidelity models can affect the
correctness and effectiveness of these management tools (§2).

Ideally, we want to automatically synthesize high-fidelity
NF models. Synthesizing such models is challenging because:
(1) NFs have large state spaces; (2) their state may be mutated
by any incoming packet; and (3) in response, the NF may
react with any number of diverse and possibly even nondeter-
ministic actions. In this paper, we present Alembic, a system
that addresses a scoped portion of this open challenge. Specif-
ically, we focus on modeling NFs where their internal states
are mutated by incoming TCP packets and their actions are
restricted to dropping and forwarding packets, possibly with
header modification. Our goal is to synthesize high-fidelity
NF models given only the binary executable, vendor manu-
als, and a specific configuration with which the NF is to be
deployed. We adopt this pragmatic approach as vendors may
not be willing to share their source code, even with customers.
Even this scoped problem presents significant challenges:

• C1) Modeling and representing stateful NF behaviors: The
behavior of an NF often depends on the history of observed
traffic, making it difficult to discover and concisely repre-
sent its internal states.

• C2) Large configuration space: Concrete configurations
(e.g., a FW rule-set) are composed of multiple rules. Fields
within a rule (e.g., source IP) can take large sets of values
or ranges of values (e.g., IP prefix), making it impractical
to infer models for all possible configurations.

• C3) Large traffic space: Given the stateful behavior, the
input space potentially includes all possible sequences of
TCP packets. Naively enumerating this large space would
be prohibitively expensive.

• C4) NF actions: NFs such as NATs can modify packet
headers, making model inference more difficult.
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To tackle these challenges, we leverage the following key
insights (§3):

A) Compositional model: Rather than exhaustively model-
ing an NF under all possible configurations, we consider the
NF’s behavior as the logical composition of its behavior for
individual rules in a configuration.

B) Learning symbolic model: Configurations consist of
different rule types, such as a firewall drop rule, where each
type is associated with a different runtime behavior of the
NF. For a given type, the logical behavior of the NF is the
same across different values of the rule’s parameters. Hence,
we can learn a symbolic model for each rule type rather than
exhaustively infer a new model for each possible value.

C) Ensemble representation: Even with the above insights,
each rule has a large search space as each rule parameter can
take a range of values (e.g., a range of ports). Fortunately, we
observe that NF behavior is logically independent for subsets
of these ranges. For instance, assume a FW contains one rule
and we know it keeps per-connection state. We can then model
this rule using an ensemble of independent models by cloning
the model learned using a single connection. However, we
must then consider how to infer the specific granularity of
state tracked by the NF (e.g., per-connection or per-source).
We show in §5 how we can automatically infer this granularity
and prove the correctness of this approach in §C.

D) Finite-state machine (FSM) learning: FSMs are a nat-
ural abstraction to represent stateful NFs [22, 35], and using
them allows us to potentially leverage classical algorithms for
FSM inference (e.g., L* [12]). But there are practical chal-
lenges in directly applying L* here: First, we need to create
suitable mappings between logical inputs (i.e., an input alpha-
bet) that L* uses and the real network packets/configurations
that NFs take as inputs (§4). Second, header modifications
by NFs make it incompatible with L*, so we need domain-
specific ideas to handle such cases (§6).

Having described the high-level insights, we discuss how
they specifically address the challenges: Compositional mod-
eling (Insight A) addresses the large configuration space (C2).
Both symbolic and ensemble representations (Insights B and
C) address the large traffic space (C3) by learning a symbolic
model for each rule type and then appropriately cloning it
to create an ensemble representation (say for large IP/port
ranges). Lastly, extending L* (Insight D) enables us to repre-
sent stateful NF behavior (C1 and C4).

Building on these insights, we design and implement Alem-
bic.1 In the offline stage, we infer symbolic FSMs for differ-
ent rule types as defined by an NF’s manual. To concisely
represent the internal states of an NF, we extend the L* algo-
rithm [12]. We also leverage our L*-based workflow to infer
the state granularity tracked by the NF (e.g., per-connection).
Since model synthesis need only be done once per NF, we can

1Alembic is a reference to the tool used in the alchemical process of
distillation or extraction, as our system extracts models from NFs.

Stateful Firewall
Internal
Network

Intended Policy: Only allow TCP traffic from external hosts on already ESTABLISHED 
connections

Host A1
(10.1.1.1)

Host B1
(156.4.0.1)

External
Network

Rule 1: <srcip=10.1.1.0/24, srcport=*, dstip=156.4.0.0/24, dstport=*, action=1> 

Figure 1: Network set-up
afford several tens of hours for this stage. Given a concrete
configuration (i.e., a set of rules), the online stage uses these
symbolic models to construct a concrete model within a few
seconds. Specifically, the online stage maps each rule in a con-
figuration to a corresponding symbolic FSM which, coupled
with the inferred granularity, is used to create an ensemble
of FSMs. The ensemble is logically composed together for
each rule to construct the final concrete model for the given
configuration. The resulting concrete model can then be used
as an input to network testing and verification tools.

We evaluate Alembic with a combination of synthetic, open-
source, and proprietary NFs: PfSense [5], Untangle [7], Propri-
etaryNF, Click-based NFs [31], and HAProxy [2]. We show
that Alembic generates a concrete model for a new config-
uration in less than 5 seconds, excluding the offline stage.
Alembic finds implementation-specific behaviors of NFs that
would not be easily discovered otherwise, including some
that depart significantly from typical high-level handwritten
models (§8.4). For instance, we discover: (1) in contrast to
a common view of a three-way TCP handshake, for some
NFs, the SYN packet from an internal host is sufficient for an
external host to send any TCP packets; and (2) the FIN-ACK
packet does not cause internal NF state transitions leading
to the changes in the NF’s behavior. Finally, we show that
using Alembic-generated models can improve the accuracy of
network testing and verification tools (§8.5).

2 Motivation

In this section, we highlight some examples of how inaccu-
racies in handwritten NF models may affect the correctness
of network verification and testing tools. Figure 1 shows an
example network, where the operator uses a stateful FW to
ensure that external hosts (e.g., B1) cannot initiate TCP traf-
fic to internal hosts (e.g., A1). This intent translates to three
concrete policies:
• Policy 1: To prevent unwanted traffic from entering the

network, A1 must establish a connection with B1 before
the FW forwards B1’s TCP packets to A1.

• Policy 2: When A1 sends a RST or RA (RST-ACK) packet
to terminate the connection, the FW should drop all subse-
quent packets from B1.

• Policy 3: To protect against an attacker sending out-of-
window packets to de-synchronize the FW state [44], the
FW should drop or send a RST when it receives packets
with out-of-window sequence (seq) or acknowledgment
(ack) numbers.
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Figure 2: A handwritten model of a stateful firewall (FW)
which incorrectly reports a policy violation

To implement these policies, the FW is configured with
the rule shown in Figure 1. Since many FWs implement a
default-drop policy, there is no explicit drop rule for packets
originating externally. Note we do not need explicit rules for
Policy 2 and 3 as they should be performed by the FW when
following the TCP protocol.

To check if the network correctly implements the intended
policies, operators use testing and verification tools [22, 35,
40]. These tools use NF models to generate test traffic [22,41]
or to verify intended properties [35]. If these models are inac-
curate, the results can have any of the following error types:
(1) false positives, where the tool reports violations when
there is no violation; (2) false negatives, where the tool fails
to discover violations; or (3) inability to test or verify where
the tool fails completely because the models are not expres-
sive enough. As an example, consider BUZZ [22], a recently-
developed network testing tool. BUZZ uses a model-based
testing approach to generate test traffic for checking if the
network implements a policy, and the original paper includes
several handwritten models. In the remainder of this section,
we present three examples of how operators can encounter is-
sues while using the BUZZ tool due to discrepancies between
handwritten models and NF implementations. Our goal is
not to pinpoint limitations of the BUZZ tool but to highlight
shortcomings of handwritten models. We find that models
from other tools lead to similar problems [35, 40].

To control for NF-specific artifacts (for now), we use two
custom, Click-based [31] FWs that correctly implement the
above policies.2 Figure 2 shows the handwritten model of a
stateful FW used in the BUZZ tool [22]. We use the BUZZ
FW model for comparison as it implements a policy similar
to our example (i.e., the FW only forwards packets belonging
to a TCP connection initiated by an internal host).

Test case (policy 1): The operator uses the BUZZ tool to gen-
erate test traffic and check if TCP packets from B1 can reach
A1. Figure 2 shows a sample test traffic sequence generated
by BUZZ: SYNInternal

A1 )B1 (i.e., TCP SYN packet from A1 to B1),
SYN-ACKExternal

B1 )A1 , and finally SYNExternal
B1 )A1 . Our Click-based

2Because BUZZ’s included FW model does not encode the notion of
out-of-window packets, we wrote a FW that adheres to policies 1 and 2 for a
fair comparison, and a separate FW for policy 3.

FW drops the last SYN from B1, which matches the policy
intent as the TCP handshake did not complete. However, ac-
cording to the handwritten model, SYNExternal

B1 )A1 is marked as
forwarded. Specifically, the model updates the state to ES-
TABLISHED on receiving a SYN-ACK (SA in Figure 2)
from B1, allowing SYNExternal

B1 )A1 to be forwarded to A1. This
discrepancy between the model and the Click-based FW will
be flagged as a policy violation, resulting in a false positive.
Test case (policy 2): The operator wants to test if a RST from
A1 actually resets the connection state of the FW. However,
as we see in Figure 2, the handwritten model only checks for
FIN packets but not RST packets to reset the connection state.
Hence, the test cases generated by the handwritten model will
have discrepancies with the Click-based FW, resulting in a
false positive (similar to policy 1).
Test case (policy 3): The operator wants to test whether the
FW correctly handles packets with out-of-window seq and
ack numbers. We observe that many FW vendors enable this
feature by default (e.g., §8.4). Unfortunately, the handwrit-
ten model is not expressive enough to encode the notion of
packets with correct and incorrect seq and ack numbers.

To make matters worse, existing tools (e.g., [22, 35, 40])
assume homogeneous models across vendor implementations
for a given NF type. However, we found non-trivial differ-
ences in implementations (§8.4). Further, NF models fed to
testing and verification tools need to be aware of the impact of
specific configurations, which can easily be missed by hand-
written models. For instance, the BUZZ FW model assumes
a default drop policy from the external interface, which is
consistent with many vendors. However, while running model
inference using Alembic, we found that one specific NF (Un-
tangle FW) allows packets by default [7]. To implement a
default-drop policy in Untangle, we need an explicit drop-all
rule, and a model for Untangle needs to be customized for
this configuration.

3 Alembic System Overview

In this section, we state our goals, identify the key challenges,
describe our insights to address these challenges, and provide
an end-to-end overview of Alembic.
Preliminaries: We introduce the terminology related to NF
configurations, which describe an NF’s runtime behavior. A
configuration schema contains NF rule types. Each rule
type has various configuration fields, and the data types these
fields accept (e.g., “srcip” takes an IPv4 range). Once we
specify the concrete values for the fields (concrete values can
be wild-card), we obtain a concrete rule of the rule type.
A concrete configuration consists of multiple concrete
rules. Figure 3 shows an example of a firewall (FW) and a
network address translation (NAT) configuration schema and
their corresponding concrete configurations. In the NAT Rule
type, the outsrcip field denotes the possible output IP values
used in address translation.
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ProprietaryNF FW
ConfigSchema:
Rule type 1 (Accept): 〈srcip:IPv4 range, srcport:Port range, dstip:IPv4
range, dstport:Port range, action:1 〉
Rule type 2 (Deny): 〈 srcip:IPv4 range, srcport:Port range, dstip:IPv4
range, dstport:Port range, action:0 〉
ConcreteConfig:
Rule 1: 〈 srcip:10.1.1.1,srcport:*,dstip:156.4.0.1,dstport:*, action:1 〉
Rule 2: 〈 srcip:10.8.0.0/16,srcport:*,dstip:151.0.0.0/8,dstport:*,action:0〉

PfSense outbound NAT
ConfigSchema:
Rule type 1: 〈srcip: IPv4 range, srcport: Port range, dstip: IPv4 range,
dstport: Port range, outsrcip: IPv4 range, outsrcport: Port range〉
ConcreteConfig:
Rule 1: 〈srcip:10.1.0.0/16,srcport:*,dstip:156.4.0.0/16,dstport:*,
outsrcip:126.2.0.0/16,outsrcport=* 〉
Rule 2: 〈srcip:10.0.0.0/8,srcport:*,dstip:162.4.0.0/16,dstport:*,
outsrcip:192.1.0.0/16,outsrcport=* 〉

Figure 3: Example of a simplified ConfigSchema and Con-
creteConfig for a FW and a NAT

3.1 Problem formulation
Given an NF with a concrete configuration, Alembic’s goal is
to automatically synthesize a high-fidelity behavioral model
of the NF. Since NF implementations do not change often,
we can afford several tens of hours of offline profiling per NF.
However, since concrete configurations (e.g., a FW rule-set)
can change often, we need to generate a new model given a
new configuration quickly, within a few seconds.

Alembic takes five inputs: (1) the NF executable binary, (2)
the configuration schema (ConfigSchema), (3) the high-level
rule processing semantics of parsing the configuration (e.g.,
first match), (4) a list of network interfaces, and (5) the set of
input packet types (e.g., TCP SYN or ACK) the model needs
to cover. For (1), we assume no visibility into the internal
implementation or source code and only have access to its
manual describing configuration. For (2), the ConfigSchema is
typically already available from vendor documentation.3 The
ConfigSchema in Figure 3 assumes we are explicitly given a
set of rule types (e.g., accept or deny), where each rule type
is associated with a different runtime behavior. In practice,
the vendor documentation may only specify a set of fields
and their types. For instance, a FW ConfigSchema provides
one rule type with an action field that takes a binary value, in
which each value leads to a rule type with different runtime
behaviors. We show how we generate a set of all rule types
in such a case (§7). For (3), we assume the rule processing
semantics are available from the vendor documentation. Our
design can handle any NF that applies a single rule per packet.
Our implementation currently supports first-match semantics
but can be easily extended to handle others (e.g., last-match).
For (4), we need to know a list of interfaces that the NF is
configured with. In this work, we assume that we are given
two interfaces (e.g., internal and external-facing interfaces).

3Alembic requires a one-time, manual effort to translate this documenta-
tion into a format compatible with our current workflow.

Lastly, given packet types (5), Alembic will automatically
configure each packet type with appropriate field values.

Here, we focus on modeling TCP-relevant behavior for NFs
that forward, drop, or modify headers (e.g., FWs, NATs, and
LBs). We provide default packet types for TCP, but Alembic
can be extended with additional packet types. We scope the
types of NFs and their actions that Alembic can handle in §3.3
and discuss how to extend Alembic to handle more complex
NFs in §10.

3.2 Key ideas
To highlight our main insights to address challenges C1
through C4 from §1, suppose we want to model an NF with
a concrete configuration C1 composed of N concrete rules
{R1 · · ·RN}. Figure 4 illustrates our ideas to make this model-
ing problem tractable.
A) Compositional model (Fig. 4a): The concrete configura-
tion C1 can be logically decomposed into individual rules. As
seen in Figure 4a, suppose we have models M1 for R1 and M2
for R2. Then, we can create a compositional model for the NF
given the processing semantics defined by the ConfigSchema
(e.g., first-match). If the packet matches Rule1, then apply
Model1, else if it matches Rule2, then apply Model2. Other-
wise, apply Modeldefault.
B) Symbolic model (Fig. 4b): To start, we make two sim-
plifying assumptions, which we relax below: (1) the IP and
port fields in a concrete rule take a single value from a range
(e.g., 10.1.1.1 for srcip); and (2) the NF keeps per-connection
state. Suppose the srcip field in R1 (Figure 4b) takes a single
IP from 10.1.0.0/16. It is infeasible to exhaustively infer the
model for all possible values. Fortunately, we observe that the
logical behavior of the NF for a particular rule type (e.g., FW
accept rule) is homogeneous across different values for the
IPs and ports in this range. Thus, we can efficiently generate
a model by representing each IP and port field in a rule with
a symbolic value. Hence, for each logical rule type (e.g., FW
accept rule), we can learn a symbolic model (e.g., M1(A)).
C) Ensemble representation (Fig. 4c): We relax the as-
sumption that IPs and ports take single values and discuss
how we handle ranges within a rule (i.e., R1 in Figure 4b
takes a /16 prefix for a srcip). We observe that NF behavior
is logically independent for subsets of this large traffic space.
Consider a stateful firewall that keeps per-connection state.
Rather than viewing M1 as a monolithic model that captures
the behavior of all relevant connections, we can view the
model as a collection of independent models, one per connec-
tion (i.e., M1,1 for connection 1, M1,2 for connection 2, etc.).
Combining this idea with B above, we learn a symbolic model
for each rule type and logically clone the model to represent
IP and port ranges (henceforth, an ensemble of models). How-
ever, to leverage this idea, we need to infer the granularity at
which an NF keeps independent states (e.g., per-connection
or per-source). We show in §5 how to automatically infer this.
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Figure 4: Alembic Key Insights

Algorithm 1 NF operational model for processing incoming
packets

1: function NF(locatedPkt p, Config c, ProcessingSemantic ps,
Map[rule, Map[key, state]] stateMap)

2: poutList = []
3: rule = FINDRULETOAPPLY(p, c, ps)
4: if rule is None then
5: rule = GETDEFAULTRULE( )
6: keyType = GETKEYTYPE(rule)
7: key = EXTRACTHEADER(keyType, p)
8: FSM = GETMODEL(key, rule)
9: curState = GETSTATE(stateMap, rule, key)

10: poutList, nextState = TRANSITION(FSM, p, curState)
11: UPDATESTATE(stateMap, rule, key, nextState)
12: return poutList

D) FSM inference: The remaining question is how to rep-
resent and infer a symbolic model. Following prior work in
stateful network analysis, we adopt the FSM as a natural ab-
straction [22, 35]. To this end, we develop a workflow that
leverages L* for FSM inference [12]. At a high-level, given
a set of relevant inputs, L* adaptively constructs sequences,
probes the blackbox, and infers the FSM. However, directly
applying L* for an NF entails significant challenges: First,
L* requires the set of inputs a priori. Hence, we need to
generate inputs from a large input space, and create suitable
mappings between inputs that L* takes and real packets for
the NF. Second, L* is not suitable for learning a FSM for
a header-modifying NF because it assumes: (1) we know
the input alphabet a priori, and (2) the underlying system is
deterministic. As an example violation of (2), a NAT may
nondeterministically choose the outgoing ports. We leverage
a domain-specific idea to extend L* for such cases (§6).

3.3 Operational model and limitations
Having described our key insights, we scope the types of
NFs for which Alembic is applicable. We use an abstract NF
(Algo. 1) to describe how incoming packets are processed (a
more detailed description can be found in §B). Our goal is to
handle NFs with logic stated in Algo. 1.

NF operational model: We start by describing the inputs
and outputs of the abstract NF. The NF receives or transmits a

Lin 
NF

L interface
Lout 

Rin 

Rout R interface
legend

Located 
packet

Figure 5: An NF with located packets

located packet [34] (i.e., a packet associated with an interface).
Figure 5 shows a setup for an NF with 4 located packets. The
NF is configured with two interfaces, L (e.g., internal) and R
(e.g., external). As an example, Lin is a packet entering the
NF via L, and Lout is an outgoing packet from the NF via L.

The abstract NF is configured with a concrete configuration,
composed of a set of rules. Each rule maintains a mapping be-
tween keys and concrete FSMs. For instance, if the NF uses a
per-connection key, then it will keep a concrete FSM for each
unique 5-tuple. The concrete FSMs describe the appropriate
action (i.e., Lout or Rout) for an incoming located packet (i.e.,
Lin or Rin). As shown in Algo. 1, when a located packet ar-
rives, the NF searches the configuration for the correct rule to
apply based on the processing semantics. If no rule is found,
the NF uses the default (i.e., empty) rule. Then, it uses the
relevant packet headers determined by the rule’s key to find
the concrete FSM and current state associated with that key.
Finally, the NF processes the packet according to the FSM
and updates the current state (Lines 10 and 11). Alembic aims
to synthesize models for NFs following Algo. 1.
Assumptions on configurations: We make the following
assumptions about NF configurations:
• Rules in a concrete configuration are independent. For

instance, we do not consider NFs that share the same state
across different rules. At most one rule in a configuration
can be applied to an incoming packet.

• Within a concrete rule, the states across different keys (i.e.,
state granularity tracked by an NF) are independent. For
a per-connection FW with a rule that takes IP and port
ranges, states across connections are independent.

• When IPs and ports in a concrete rule take ranges (e.g.,
ports=*), NFs treat each value in the range homogeneously
such that we can pick a representative sample and learn a
symbolic model (i.e., the symbolic model obtained using
port 80 or port 5000 for an outsrcip is identical).

Assumptions on NF actions: We now scope the NF actions
that Alembic can handle:
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• For simplicity, we only consider single-function NFs, ex-
cluding cases such as combined NFs processing FW rules
and then NAT rules.

• To make learning tractable, we only look at IP and port
modifications. Our implementation does not consider se-
q/ack numbers, ToS, or other fields (§4.3). We only handle
header modifications for connection-oriented NFs (§6).4

We tackle header modification for an NF that initially mod-
ifies IP/port of a packet, p1, entering from a particular
interface before modifying a packet, p2 (that belongs to the
same connection as p1) entering from the other interface.
Lastly, we cannot infer context-sensitive relations such as
how the modified IP or port (e.g., NAT ports) is chosen.

• We do not explicitly model temporal effects, such as con-
nection timeouts. When we inject input packets into the
NF, we collect outputs for ∆wait (e.g., 100 ms) before in-
jecting the next input packet. Alembic cannot handle cases
where output packets are results of prior input packets (e.g.,
retries after 1 second).

• We support five types of state granularity: per-connection,
per-source (e.g., a scan detector which counts a number
of SYN packets), per-destination (e.g., DDoS detector),
cross-connection, and stateless.

3.4 Alembic workflow
Having described our key insights and scope, we now present
our workflow (Figure 6) consisting of two stages:

Offline stage: From the ConfigSchema, we generate a set of
rule types (§7). Given each rule type, the ConfigGen mod-
ule generates a SymbolicRule, Rsymb, and a corresponding
ConcreteRule. For instance, given a FW ConfigSchema, it
generates two SymbolicRules and ConcreteRules (e.g., FW
accept and deny rule as shown in Figure 7).

4Most header modifying NFs we are aware of are connection-oriented.

Rsymb
1 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:1〉 FW TCP Accept

Rconc
1 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:1〉

Rsymb
2 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:0〉 FW TCP Deny

Rconc
2 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:0〉

Figure 7: SymbolicRules and ConcreteRules for a FW

For each SymbolicRule, we use the FSMInference mod-
ule, which leverages L*-based workflow to infer a symbolic
model where IPs and ports are symbolic (§4) and handles
header modifications (§6). This module uses our version of
L* (i.e., Extended L*). We also design the KeyLearning
module, which leverages the FSMInference module and in-
fers the state granularity (i.e., key type) tracked by the NF
(e.g., per-connection). Using the key type, we can identify
the key, a set of header field values that identifies logically
independent states (e.g., a 5-tuple for per-connection NF).
The offline stage produces a set of symbolic models, mapping
each SymbolicRule to a symbolic model and its key type.

Online stage: Given a new configuration, each rule is
matched to a corresponding SymbolicRule, mapped to a key
type and a symbolic model. Based on the key type, we logi-
cally clone the symbolic model to represent concrete IP and
port ranges (collectively, an ensemble of FSMs). Given the
processing semantics, we logically compose each ensemble
to create the final model for this configuration. Network man-
agement tools can then use the resulting model.

Roadmap: In the interest of clarity, §4 describes the FS-
MInference module of Alembic for a given SymbolicRule
with the following simplifying assumptions: NFs keep per-
connection state and do not modify headers. In subsequent
sections, we relax these assumptions and show how we infer
the state granularity (§5) and handle header-modifying NFs
(§6). §7 discusses how we generate a set of rule types and the
corresponding SymbolicRule and the Alembic online stage.

4 Extended L* for FSM Inference

We now present the FSMInference module, which leverages
the Extended L* for inferring a symbolic model given a Sym-
bolicRule, Rsymb (e.g., in Figure 7). Recall that we are also
given a corresponding ConcreteRule, Rconc, to configure the
NF. For clarity, we start with two simplifying assumptions:
(1) NFs keep per-connection state, and (2) NFs do not modify
packet headers. We relax these assumptions in §5 and §6.

4.1 Background on L* algorithm
Before discussing the challenges of directly applying L*, we
provide a high-level description of the L* algorithm [12],
which infers a FSM for a given blackbox. Given the input
alphabet, Σ (e.g., {a,b} where a, b are input symbols), L*
generates sequences (e.g., a, aa, aba), and probes the black-
box, resetting the box between sequences. For each input

704    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Initialize Equivalence 
Oracle

Generate query 
+Probe Blackbox Update Complete?

Yes
No

Done

If counterexample
Refinement Stage

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1,b/0

0 1
a/1

b/0

a/0,b/1 aa! 10
ab! 11
ba! 00
bb! 01

input, i=abbb
M(i)! 1111
BB(i)! 1110

2
0 1 2

a/1

b/0 b/1

a/0
Blackbox under learning

0 1 2 3
a/1

b/0 b/1 b/1

a/0 a/0 ⇤/0 aba! 110
abb! 111

. . .
abba! 1110

Terminate

Figure 6: Iterations of Angluin

of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t)! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be
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of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t)! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be
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copies it for each connection. The copies are created reactively as
the model encounters new, active connections.

5.1 Key Learning

Figure 10: key learning module i/o

Ideally, we would like to remove the assumption that the NF is
keeping state based on the fields {srcip,srcport,dstip,dstport} (i.e.,
keeping connection-based state). For instance, an IDS may keep
per-source state, such as in tracking and limiting the number of
outgoing connections from a single host. We now discuss how we
learn the granularity at which this state is maintained (i.e., learn the
key) assuming NF is deterministic but not necessarily connection-
oriented.

We first describe input/output model of key learning. Key learn-
ingtakes as input a AtomicSymbolicConfig and a ConfigSchema.
Both are used to identify packet header fields with IP and port types
that can also take ranges. It also requires access to the ModelInfer-
ence module (as described in §4) and the blackbox NF. The output
of key learning is a set of configuration fields that influence the
state. For instance, the output for an IDS that keeps per-source state
would be {srcip, srcport}. Note that the key is only relevant for a
particular AtomicSymbolicConfig. Thus, for a particular NF, the key
learningalgorithm needs to be run for every AtomicSymbolicConfig.

This is a large cost only needs to be incurred once, however, as the
results can be stored.

[SM: in key learning, we also re-run the inputgen to generate inputs.. shud i say

that? ]

Figure 11: Intuition on Keylearning

Types of key: We conduct a survey on canonical NF configurations
(e.g., [1–3]). We find that NF configured with a concrete configu-
ration can be classified into the following classes based the type
of state they keep: (1) per-connection; (2) per-source (i.e., scan de-
tector which counts the number of packets from each source); (3)
per-destination; (4) cross-connection (e.g., caching proxy that sends
request based on the content), and (5) stateless. We describe our
key learning algorithm that determines the category that NF with a
concrete configuration belongs amongst the five categories.

Intuition: We start by illustrating the high-level intuition behind
our approach. First, consider a connection-oriented firewall with

9

Flowchart

Detailed Steps
Refinement Stage

Target FSM

M1
Input seq, i=abbb

M1(i) à 1111
Blackbox(i) à 1110

M2

Figure 8: L* overview and example

sequence, L* builds a hypothesis FSM consistent with the
input-output pairs seen so far. Specifically, it builds a Mealy
machine whose outputs are a function of its current state and
inputs. As shown in Figure 8, L* iteratively refines the hypoth-
esis FSM until it is complete (i.e., the set of probing sequences
cover the state space of this hypothesis). After the hypothesis
converges, L* queries an Equivalence Oracle (EO), which
checks if the inferred FSM is identical to the blackbox and
provides a counterexample if they are not. If the EO reports
that the hypothesis is identical to the blackbox, the algorithm
terminates. Otherwise, L* uses the counterexample to further
refine the hypothesis. The process repeats until the EO reports
no counterexamples. L*’s runtime complexity is polynomial
in the number of states and transitions of a minimal FSM rep-
resenting the target FSM as well as the length of the longest
counterexample used to refine the hypothesis [12].

Example: Figure 8 illustrates an example of the steps in L*
for the target FSM shown with Σ = {a,b}. Initially, L* starts
with the inputs, a and b, and a single-state FSM. It generates
four sequences to refine the model and converges to M1 as
shown. It then queries the EO and finds a counterexample
where Blackbox(abbb)=1110 but M1(abbb)=1111, which is
used to update the model. To explore the state space of the
new hypothesis, L* generates longer sequences. After this
second iteration, the EO finds no counterexamples (as M2 is
identical to the blackbox), and the algorithm terminates.

4.2 Challenges in using L* for NFs
While L* is a natural starting point, there are practical chal-
lenges in applying it directly to NFs. We will describe these
challenges using Figure 9 and discuss our solutions.

1) Generating input alphabet (§4.3): L* assumes the input
alphabet (Σ) is known. As discussed in §3, we can set Σ for
Alembic to be a set of located symbolic packets, which are
packets with symbolic IPs and ports associated to interfaces.
From now on, when we say packets, we refer to located pack-
ets. The main disconnect here is that the NF (i.e., the blackbox

Input Alphabet
L* Algo

Equivalence
Oracle

NF
(Concrete Rule)

$4.3
Generating 
input alphabet

Symbolic pkt

{Symbolic pkt}

concrete pkt concrete pkt

Symbolic pkt $4.4 Classifying
output packets

$4.5

Figure 9: Key challenges in adopting the L* workflow for
NF model inference

in the L* workflow) takes in concrete packets and not sym-
bolic packets. Thus, we need to map a symbolic packet to a
concrete packet. Two challenges exist here: First, the possible
header space for concrete packets is large (i.e., all IPs and
ports), and second, the concrete packets need to exercise the
internal states of the NF (e.g., trigger the NF behavior).
2) Classifying output packets (§4.4): Next, for each sym-
bolic packet suggested by L*, we need to map it to an NF
action. The practical challenge is that NFs may require an
unpredictable delay. If we assume a processing delay that is
too short and classify the action as a drop, we might learn a
spurious model. While a delay that is too long will lead to our
inferences taking a long time. Thus, we need a robust way to
map an input to the observed output.
3) Building an equivalence oracle (§4.5): L* assumes ac-
cess to an EO (Figure 9). In cases where we do not have
access to the ground truth, we can only approximate the or-
acle via input-output observations. There are two practical
issues. First, existing approaches (e.g., [17, 25]) to building
an EO generate a large number of equivalence queries, creat-
ing a scalability bottleneck. Second, different approaches for
building an EO may affect the soundness of Alembic (§4.5).

4.3 Generating input alphabet
We now describe how we generate a set of located sym-
bolic packets for the input alphabet and how we map each
located symbolic packet to a concrete packet. As discussed
in §3, we are given the representative packet types of interest
PktTypeProto (e.g., TCP handshake) as an input.

To illustrate these challenges, consider two straw-man so-
lutions that generate packets for: (1) every possible combi-
nations of header fields, and (2) randomly generated header
fields. (1) is prohibitively expensive, and (2) may not exercise
the relevant stateful behaviors. Our idea is to use the symbolic
and concrete rules to identify relevant header fields and their
values. Specifically, we observe that the header fields and
their values (e.g., IP-port) in Rconc will trigger relevant NF be-
haviors. Thus, we generate all combinations of these relevant
IP-port pairs using their concrete values from Rconc. Using a
pair of Rsymb

1 and Rconc
1 as an example (Figure 7), we identify

A=10.1.1.1 as a possible candidate for both source and des-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation    705



tination IPs across all interfaces (i.e., A can be a source or
destination IP on packets entering from internal or external
interfaces). We consider all interfaces, as a packet entering
different interfaces can be treated differently.

We also consider the scenario where the packet does not
match any rules. One approach is to pick concrete header
values that do not appear in the concrete rule and generate a
corresponding symbolic packet (e.g., not A=12.1.0.1). How-
ever, this would double the size of Σ. Instead, we leverage
our insight regarding the compositional behavior of NFs and
view this as composing the action with the default behavior
of the NF when no concrete rule is installed. We separately
infer a model, Mde f ault , with an empty configuration (e.g., a
FW without any rules).5

Example: From Rsymb, we mark A:Ap1 and B:Bp1 as pos-
sible IP:port pairs, where A:Ap1 and B:Bp1 refer to sr-
cip:srcport and dstip:dstport pairs from Rsymb. Then, we gen-
erate all possible combinations across source and destina-
tion IP/ports and network interfaces: (1) TCPInternal

A:Ap1 )B:Bp1
(corresponding to a TCP packet with srcip:port=A1:Ap1
and dstip:port=B1:Bp1 on the internal interface), (2)
TCPExternal

A:Ap1 )B:Bp1, (3) TCPInternal
B:Bp1 )A:Ap1, . . ., etc. Suppose the

packet types of interest are: {SYN,SYN-ACK,ACK}. Then,
for (1), we obtain SYNInternal

A:Ap1 )B:Bp1, SYN-ACKInternal
A:Ap1 )B:Bp1,

· · · . We follow the similar procedure for (2) and (3). Essen-
tially, SYNInternal

A:Ap1 )B:Bp1 is a symbolic packet which maps to a
concrete SYN packet with A=10.1.1.1 and Ap1=2000 that is
injected from the internal interface. Alembic internally tracks
the symbolic-to-concrete map (i.e., A=10.1.1.1) to connect the
symbolic packet used by L* to the concrete packets into the
NF. Finally, we (optionally) prune out packets that are infea-
sible given the known reachability properties of the network.
For instance, it is infeasible for a packet with srcip=10.1.1.1
to enter from the external interface.

4.4 Classifying output packets
To classify the output from the NF, we monitor for output
packets at all interfaces of the NF and map them to their
symbolic representations. For instance, after detecting a SYN
on the external interface with source IP:port, 10.1.1.1:2000,
and destination IP:port, 156.4.0.1:5000, we assign the output
symbols as SYNExternal

A:Ap1 )B:Bp1. Specifically, Alembic monitors
all interfaces for ∆wait and reports the set of observed packets
(e.g., Lout and Rin). ∆wait is critical for classifying dropped
packets and we cannot have an arbitrarily assigned values. Un-
fortunately, an NF sometimes introduces unexpectedly long
delays in packets (≥ 200ms). For instance, Untangle performs
connection setup steps with variable latency upon receiving
SYN packets, and ProprietaryNF experiences periodic spikes
in CPU usage leading to delayed packets. Such delays can

5We acknowledge an assumption that rule matching is correctly imple-
mented by the NF. If the NF has a rule for src=A and dst=B but a buggy
implementation that matches A’ and B’, we will not uncover this behavior.

result in misclassifying a packet as a drop and affect the learn-
ing process. For these NFs, ∆wait is determined by injecting
the TCP packets and measuring the maximum observed delay.
Further, we extended L* with an option to probe the same
sequence multiple times and pick the action that occurs in the
majority of test sequences.

4.5 Building an equivalence oracle
Building an efficient oracle is difficult with just black-box ac-
cess [17,25]. Any EO will be incomplete as it cannot generate
all sequences. Our goal is to achieve soundness with respect
to the generated Σ without sacrificing scalability.

We tested three standard approaches for generating EOs
that LearnLib [38], an open-source tool for FSM learning,
supports: (1) Complete Oracle (CO), which exhaustively
searches sequences to a specified length; (2) Random Oracle
(RO), which randomly generates sequences; and (3) Partial W-
method (Wp-method) [25], which takes d as an input parame-
ter which is an upper bound on the number of additional states
from its current estimate at each iteration.6 We discarded the
CO as it simply performs an exhaustive search and the RO as
it is not systematic in exploring the state space. Instead, we
use the Wp-method, a variant of the W-method [17] that uses
fewer test sequences without sacrificing W-method’s cover-
age guarantees. Briefly, the W-method uses a characterization
set, the W-set, which is a set of sequences that distinguish
every pair of states in the hypothesis FSM. The W-method
searches for new states that are within d additional inputs of
the current hypothesis and uses the W-set to confirm the new
states. In theory, one can set d to be large but increases the
runtime by a factor of |Σ|d . For this reason, we set d = 1 in
Alembic. Alembic can only discover additional NF states that
are discoverable by the Wp-method with d = 1; i.e., Alembic
with Wp-method (d = 1) is sound. Even with d = 1, Alem-
bic synthesizes models that are more expressive than many
handwritten models and discovers implementation-specific
differences (§8).

Distributed learning: Both L* and Wp-method for d = 1 are
polynomial in runtime. However, the Wp-method is the bot-
tleneck as the number of sequences generated by Wp-method
is approximately |Σ| factor higher than that of the L*. For-
tunately, the equivalence queries can be parallelized. In our
system implementation (§8), we run equivalence queries in
parallel across multiple workers until we find a counterex-
ample. Using this technique, we can significantly reduce the
time for learning a complex behavioral models (§8.3).

5 KeyLearning: Learning State Granularity

Thus far, we assumed that the NF maintains per-connection
state. We now relax this assumption and show how we tackle

6In practice, the number of states can grow by > d at each iteration.
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NFs that maintains other key types (e.g., per-source). Specifi-
cally, we implement a KeyLearning module. Given a Symbol-
icRule, the module outputs the key type, a set of header fields
that identify a relevant model in an ensemble representation.
Note that here we still assume that the NF does not modify
packet headers, which we will relax next in §6.
High-level intuition: Consider a FW configured with a rule
that keeps per-connection state. A packet from one connection
only affects its own FSM and is unaffected by packets that
belong to other connections. Now, consider an NF which
keeps per-source state, and packets, p1 and p2, with the same
srcip, but with different dstip. The arrival of p1 affects not
only the state for processing p1, but also the state associated
with p2 because they share the same srcip. The KeyLearning
algorithm builds on the above intuition; if two connections
are independent with respect to an NF’s processing logic, then
the packet corresponding to one connection only affects the
state of its FSM. Thus, to infer the key type, we construct test
cases using multiple connections to validate the independence
assumptions across these connections. We show how we can
validate independence by inspecting two connections using
carefully constructed source and destination values.

The KeyLearning algorithm is composed of test cases
to distinguish between different key types. As a con-
crete example of a test case, suppose we have a Symbol-
icRule, which takes 〈srcip=A, dstip=B〉 where A and B
are ranges of IPs (e.g., A=10.1.0.0/16 and B=156.4.0.0/16).
First, we infer two models with two separate ConcreteRules,
where we configure each IP using a concrete singleton
(e.g., Rconc

1 , with 〈srcip=10.1.1.1,dstip=156.4.0.1〉 to learn
Model1, and Rconc

2 with 〈srcip=10.1.1.1,dstip=156.4.0.2〉 to
learn Model2). Note that these two have the same srcip. We
leverage the FSMInference module in §4. We first gener-
ate Σ1 for Rconc

1 and use the FSMInference in §4 to obtain
Model1, and then repeat for Model2. Assuming these models
are independent, we run a logical FSM composition opera-
tion to construct Modelcomposite (Def.7 in §C). This is what
the hypothetical model will be if these two connections are
independent. As a second step, we now learn a joint model
Modeljoint, where we combine input alphabets from both con-
nections. Specifically, we configure a ConcreteRule, where
the dstip takes a range of IPs (e.g., 156.4.0.1-156.4.0.2).

For example, consider a scan detector, that keeps per-source
state. As the above two connections have the same srcip,
Modeljoint will reflect that the packets affect each other’s state
(i.e., Modeljoint is not equivalent to Modelcomposite, which as-
sumes independence across two connections). But, for a per-
connection model, the two connections are independent (i.e.,
Modeljoint would be equivalent to Modelcomposite). Thus, we
now have a simple logical test to distinguish between per-
connection and per-source.
Inference Algorithm: Our inference algorithm generalizes
the basic test described above. By crafting different Con-
creteRules (i.e., changing the overlap on srcip or dstip) and
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Figure 10: KeyLearning Decision Tree

running the equivalence tests between Modelcomposite and
Modeljoint for each case, we create a decision tree to iden-
tify the key type maintained by the NF, which are: (1) per-
connection, (2) per-source (e.g., a scan detector), (3) per-
destination, (4) cross-connection, or (5) stateless. 7

Figure 10 shows the result of test cases for these key types.
For instance, Test 1 configures two connections to have differ-
ent sources and destinations, to check whether the NF keeps
cross-connection state. Test 2 configures two connections to
have the same sources, but with different destinations. If Test 2
outputs that two connections affect the states relevant for each
other, then the NF is maintaining either a cross-connection
or per-source state. The decision tree (Figure 10) uniquely
distinguishes the key and the correctness naturally follows
from our carefully constructed test cases. We formally prove
the correctness of this approach in §C.

6 Handling NF Header Modifications

Now, we extend our FSMInference in §4 to handle header
modifications, such as a NAT rewriting a private IP-port pair to
a public IP-port pair. We currently only handle NFs that main-
tain per-connection state while modifying IPs and ports. We
consider two cases of possible header modifications: (1) static
(e.g., a source NAT modifies a private port to a static public
port), and (2) dynamic (e.g., a source NAT or LB randomly
generates port mappings across resets). We first describe how
we handle each case individually, then present our combined
workflow to handle both cases. Our workflow does not require
knowing a priori that an NF modifies header fields, which
field it modifies, or how it modifies packet headers (i.e., static
or dynamic).

Static header modifications: Consider a source NAT that
deterministically maps a source IP-port pair (e.g., A:Ap1) to
a public source IP-port pair (e.g., X:Xp1). To discover the
NAT’s behavior that rewrites the public IP-port back to the
private IP-port, we need to generate a symbolic packet using

7The key for a stateless NF is a 5-tuple. We can view a stateless NF as an
FSM with a single state, which is identical to each 5-tuple keeping one state.
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the public (modified) IP-port (i.e., X:Xp1). However, we may
not know the concrete value of X:Xp1 a priori. Hence, we
cannot generate a complete set of |Σ|. Our idea is to first
run the inference module (§4) and check whether a symbolic
model has additional symbolic IPs and ports. If so, we append
the new IP-port pairs to the Σ and re-run the inference. We
repeat this step until the output FSM contains no new IP-port
pairs. Given that the static modification maps an IP-port to
the same IP-port pair, this approach converges.

Dynamic header modification: The above approach of up-
dating the input alphabet will not converge for NFs that dy-
namically modify packet headers, however. Consider a NAT
that randomly picks one of the available ports for the same 5-
tuple (e.g., a private IP-port (e.g., A:Ap1 first maps to X:Xp1
but then to X:Xp2 after L* resets the NF). Since L* assumes
a deterministic FSM, it will crash as a result of this nondeter-
minism. Our idea is simple. If L* crashes, then we identify the
IP-port pair that caused the nondeterministic behavior. Next,
we mask this nondeterministic behavior of the NF from L* by
explicitly mapping such IP-port pairs to consistent symbolic
values (e.g., Alembic maps SYNInternal

A )B to SYNInternal
X )B regard-

less of the concrete value of the rewritten source IP). Since the
concrete value of X will change across resets, the extended
L* uses the most-recently observed concrete value of X when
playing sequences.

Combining both cases, we first run the FSMInference mod-
ule (§4). If L* completes but discovers new symbols (i.e.,
static modification), then we re-run the workflow with new
symbols. However, if L* crashes due to a nondetermistic FSM
(i.e., dynamic modification), we mask the non-deterministic
behavior as discussed. After the required modifications are
applied, the L* is repeated until it converges. As we only
handle modification for per-connection NF, we assume the
key is per-connection for an NF that modifies packet headers.

7 Handling an Arbitrary Config

We now discuss how we generate a set of SymbolicRules
(§7.1) and then how the online stage constructs a concrete
model given a concrete configuration (§7.2).

7.1 Generating SymbolicRules
The ConfigGen module generates a set of SymbolicRules. As
discussed in §3.1, the vendor documentation may not clearly
give a set of rule types where each type is associated with a
different runtime behavior (e.g., FW accept vs. deny). Sup-
pose the FW ConfigSchema specifies a rule types as 〈srcip,
srcport, dstip, dstport, action〉 where “action” takes a binary
value. To obtain a set of logical rule types, we use a set of con-
servative heuristics. Typically, we observe that fields which
take a large set of values (e.g., IPs and ports) demonstrate sim-
ilar behaviors across values within the set. For fields that only
take a small set of values (e.g., action), each value typically

carries a distinct runtime behavior. Based on this observation,
the ConfigGen module first assigns a new symbol (i.e., A for
srcip) to each field that takes a large set of values. Then for
each combination of other small fields (e.g., action), this mod-
ule generates a SymbolicRule (for each rule type). We also
generate a corresponding ConcreteRules by sampling a value
for each field. For the example above, ConfigGen generates
two rule types, accept and deny.

7.2 Alembic online
We now describe Alembic’s online stage, which constructs
a concrete model for a given a configuration. The concrete
model then uses our operational model (Algo. 1) to model
how an NF processes incoming packets.
Constructing a concrete model: For each concrete rule, R,
in a concrete configuration, we first fetch the corresponding by
SymbolicRule by substituting fields that were made symbolic
with concrete values from the rule, R (e.g., 〈srcip=10.1.0.1
· · · action=1〉 matches a SymbolicRule, 〈srcip=A · · · action
=1〉). Then, we fetch the corresponding symbolic FSM and the
key type, and use the key type (e.g., srcip-port for per-source
NF) to appropriately clone the symbolic model to create an
ensemble representation. There is one additional step when
the key type is not per-connection; we must substitute any
ranges based upon the key type. For example, for a per-source
NF, dstip-port in a concrete model refers to a range of concrete
values specified in R for dstip and dstport. The output is an
ensemble of concrete models for each rule in a configuration.
Processing incoming packets: Upon receiving a packet, the
NF fetches the corresponding rule in a configuration using
the processing semantics (e.g., first-match). The NF then uses
the key to access the relevant concrete FSM in an ensemble of
FSMs and the current state associated with the packet (Line 9
in Algo. 1). Finally, the NF applies the appropriate action
and updates the current state associated with that packet. We
present a more detailed description of how we instantiate an
ensemble of FSMs in §B.

8 Implementation & Evaluation

System Implementation: We implemented Alembic us-
ing Java for the extended L*, C for monitoring NF actions,
and Python for the rest. We create packet templates using
Scapy [6]. Then, Alembic feeds the output of prior mod-
ules into the Extended L* built atop LearnLib [38]. We
re-architected the Learnlib framework to enable distributed
learning where queries are distributed to workers via JSON-
RPC [4].8 Our L* implementation tracks the symbol-concrete
mapping of IPs and ports to translate between symbolic and
concrete packets. The symbolic FSM output is stored in DOT
format, which is then consumed by the online stage.

8Due to some unhandled edge cases, our current implementation requires
using only one worker for NFs with dynamic header modifications.
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Table 1: Coverage of models over input packet types
FW staticNAT randNAT LB

PktType pf ut pNF pf pNF pf pf hp
correct-seq  #    G# G# #
combined-seq   
pf: PfSense, ut: Untangle, pNF: ProprietaryNF, hp: HAProxy
G#: TCP-handshake pkts, {SYNC,SYN-ACKC,ACKC}, for both interfaces
#: G# set excluding SYNC from the external interface

L* assumes that we have the ability to reliably reset the NF
between every sequences. For Alembic, we need to reset the
connection states. For some NFs, this can be performed using
a single command (e.g., pfctl -k in PfSense). However,
other NFs required that the VM be rebooted (e.g., Untangle).
In such cases, we take a snapshot of the initial state of the
VM and restore the state to emulate a reset. This does cost up
to tens of seconds but is a practical alternative to rebooting.

Experimental Setup: We used Alembic to model a variety of
synthetic, open-source, and proprietary NFs. First, we created
synthetic NFs using Click [31] to validate the correctness of
Alembic. Each Click NF takes an FSM as input and processes
packets accordingly, so we know NF’s ground-truth FSM. To
validate against real NFs, we generated models of PfSense [5]
(FW, static NAT, NAT that randomizes the port mappings,
and LB), ProprietaryNF (FW, static NAT), Untangle [7] (FW),
HAProxy [2] (LB). We now use NAT to refer to a static NAT
and a randNAT to refer to a NAT that randomizes the IP-port
mappings. Our experiments were performed using Cloud-
Lab [1]. We ran PfSense, Untangle, ProprietaryNF, HAProxy,
and Click in VMs running on VirtualBox [8]. Recall that ∆wait
needs to be customized for each NF. We used ∆wait of 100 for
PfSense and Click-based NFs, 250 ms for ProprietaryNF, 200
ms for Untangle, and 300 ms for HAProxy. For NFs that incur
unexpected delays (e.g., HAProxy, ProprietaryNF, Untangle),
we took a majority vote of 3.

Packet types: We use two TCP packet types. First, the
correct-seq set consists of standard TCP packets, {SYNC,
SYN-ACKC, ACKC, RST-ACKC, FIN-ACKC}, where the
handling of seq and ack are under-the-hood. Instead of in-
troducing seq and ack numbers in Σ, we introduce additional
logic in the Extended L* to track seq and ack of the transmit-
ted packets and rewrite them during the inference to adhere
to the correct semantics (i.e., update the ack of SYN-ACKC
after we observed an output of SYNC).9 Second, we introduce
combined-seq set to model the interaction of TCP packets in
the presence of out-of-window packets. We extend the correct-
seq set with packets with randomly-chosen, incorrect seq and
ack values, {SYN-ACKI, ACKI, RST-ACKI, FIN-ACKI}.

8.1 Validation using synthetic NFs

A) Inferring the ground-truth model: We provide
Click [31] with a 4-state FSM that describes a stateful FW

9The seq number is incremented by 1 for packets with a SYN or FIN
flag set and otherwise, by the data size. T. The ack number for a side of a
connection is 1 greater than any received packet’s sequence number.

Table 2: Results of stress testing
NF (pkt type) accuracy NF (pkt type) accuracy
PfSense FW (C) 98.8-100% ProprietaryNF FW (C) 99.9-100%
PfSense FW (CI) 94.8-100% ProprietaryNF FW (CI) 98-100%
PfSense NAT (C) 99.1-100% PfSense randNAT (C) 98.2-100%
PfSense LB (C) 96.4-97.4% ProprietaryNF NAT (C) 98.8-100%

C : correct-seq CI : combined-seq

that only accepts packets from external hosts after a valid
three-way handshake. We also constructed another 18-state
FSM that describes a similar FW and a 3-state FSM that de-
scribes a source NAT (SNAT). In all three cases, Alembic
inferred the ground-truth FSM.
B) Finding intent violations: We used a red-team exercise
to evaluate the effectiveness of Alembic in finding intent vio-
lations in NF implementations. In each scenario, we modified
the FSM from A to introduce violations and verified that the
Alembic-generated model captured the behavior for all of the
following four cases. A and B refer to an internal and external
host, respectively: (1) a FW prevents the connection from
being established by dropping SYN-ACK packets; (2) a FW
proactively sends SYN-ACK upon receiving SYN from A to
B; (3) a SNAT rewrites the packet to unspecified srcip-port;
and (4) a SNAT rewrites a dstip-port. Some of these scenarios
are inspired by real-world NFs.
C) Validating key learning: We wrote additional Click [31]
NFs that track the number of TCP connections based on dif-
ferent keys. We applied the key learning algorithm to each
and confirmed it identifies the correct key (Table 5 in §C).

8.2 Correctness with real NFs
As summarized in Table 1, we generated models for PfSense
and ProprietaryNF FWs using both correct-seq and combined-
seq sets. For the other NF types, we used only the correct-seq
set because the FW models for these NFs already modeled the
interaction of TCP packets in the presence of out-of-window
packets. For an NF that uses dynamic modification (e.g., rand-
NAT), we cannot correctly instantiate the model in the pres-
ence of RST-ACK and FIN-ACK packets (§B). Hence, we
only showcased how this NF handles connection establish-
ment. Untangle and HAProxy have SYN retries and spurious
resets (i.e., temporal effects) that are beyond our current scope
(§3.3) and could not be disabled. Thus, we again only model
how these NFs handle connection establishment. Further, dur-
ing our attempts to infer models, we discovered these two NFs
are connection-terminating, where an external SYNC packet
interfered with the connection initiation attempt from the in-
ternal host, which violates our independence assumption. To
make the learning tractable, we removed the SYNC from the
external interface for these connection-terminating NFs.
Complementary testing methodologies: Since we do not
know the ground truth models and thus cannot report the cov-
erage of code paths inside the NF, we used three approaches
to validate the correctness of our models: (1) iperf [3] testing,
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Table 3: Time to infer a symbolic model (h: hours, m: min)
NF (pkt type) time NF (pkt type) time
PfSense FW (C) 11 m ProprietaryNF FW (C) 48 h
PfSense FW (CI) 16 h ProprietaryNF FW (CI) 25 h 18 m
PfSense NAT (C) 28 m PfSense randNAT (C) 14 m
PfSense LB (C) 14 m ProprietaryNF NAT (C) 48 h
Untangle FW (C) 37 m HAProxy LB (C) 20 m

generating valid sequences of TCP packets; (2) fuzz testing,
randomly picking a packet type and a concrete IP and port;
and (3) stress testing, generating packets by first picking a
packet type and selecting concrete IP and port values to acti-
vate at least one rule.

For each test run, we generated an arbitrary configuration.
For NFs that take multiple rules (e.g., FW and NAT), we var-
ied the number of rules between 1, 5, 20, and 100. For each
concrete rule, we randomly sampled a field from the field type
defined by the ConfigSchema. We ensured that we picked con-
crete configurations different from the ones used during the
inference (§4). For FWs and NATs, the generated configura-
tions were installed on one interface (i.e., internal). Further, as
Alembic cannot compose models for multi-function NFs (i.e.,
a FW with NAT), we set allow rules on the FWs when we
inferred models for NATs and LBs. For iperf [3] testing, we
set up a client and a server and collect the traces on each in-
terface. Because iperf [3] generates a deterministic sequence
of packets, we only tested with 1 accept rule. For stress and
fuzz testing, we generated sequences of 20, 50, 100, and 300
packets. In each setting, we measured model accuracy by cal-
culating the fraction of packets for which the model produced
the exact same output as the NF. Each setting is a combina-
tion of the NF vendor and type (e.g., PfSense FW with the
correct-seq set), input packet type (e.g., 300 packets), and the
number of rules (e.g., 20 rules).

Iperf testing: Our models predicted the behavior of all NFs
with 100% accuracy.

Fuzz testing: Across all settings for ProprietaryNF and Pf-
Sense FWs (both combined-seq and correct-seq set), the ac-
curacy was 100%. For PfSense and ProprietaryNF NATs, the
accuracy was 99.8% to 100%.

Stress testing: We summarize the results in Table 2. For
many NFs (e.g., ProprietaryNF and PfSense FWs), we see the
lowest accuracy (e.g., 98%) for 1 rule with 300 packets. This
is expected because our testing generates a long sequence
of packets that the Wp-method with d = 1 did not probe.
Also, given the same FW (e.g., PfSense FW), we observe
higher accuracy for an NF modeled with the correct-seq set
compared to that modeled using the combined-seq set. We
confirm that the model learned using the combined-seq set
is rather large (> 100 states) resulting from the many ways
in which the correct and incorrect packets can interact. Note
that ProprietaryNF NAT correct-seq took 49 hours to model
and ProprietaryNF FW combined-seq took 5 days to infer
the model. Going back to our earlier requirements that we

Table 4: Scalability benefits of our design choices

Runtime
(|Σ|)

1 connection
(Σ=6)

2 connections
(Σ=12)

3 connection
(Σ=18)

26 min 10 hr > 3 days

Runtime
(d in Wp-method)

d=1 d=2 d=3
13 min 1 hr 10 min 7 hr

can afford several tens of hours (i.e., a couple days) for the
offline stage, we ran the accuracy testing on an intermediate
model inferred after 48 hours, which still achieved high accu-
racy. We did not perform fuzz or stress testing for Untangle
FW and HAProxy LB. These NFs have temporal effects that
result in mis-attribution, which is outside our scope (§3.3).
We see that Alembic achieves high accuracy even with large
configurations.

8.3 Scalability
We now evaluate the runtime of Alembic’s components.
Time to learn symbolic models: For each NF, we report the
longest time to model one SymbolicRule as learning can be
parallelized across symbolic rules. In all cases, we use 20
servers setup, except for with PfSense random NAT which
used one. 8 The results are summarized in Table 3. In sum-
mary, we achieved our goal of inferring high-fidelity models
in less than 48 hours. We find that the runtime depends on: (1)
the size of the FSM and |Σ|, and (2) Alembic or NF-specific
details (e.g., rebooting). For (1), as the size of |Σ| was double
for the combined-seq set, it took more than 48 hours to dis-
cover 72-state FSM (ProprietaryNF FW, combined-seq) but
less than 26 hours for 79-state with the correct-seq set. For (2),
discovering the NAT model ProprietaryNF NAT (correct-seq)
took longer than the FW as the NAT inference ran in two
phases (§6). Lastly, PfSense models take less time to infer as
PfSense does not require rebooting, and has shorter ∆wait.
Time to validate the key: We use PfSense FW (correct-seq)
to report the time to infer the key. It took 6 hours to infer the
key (e.g., 2 hrs for each test).
Time for the online stage: For ProprietaryNF FW, the time
to compose a concrete model is 75 ms for 10 rules, 0.6 s for
100 rules, and 5 seconds for 1,000 rules. The result generalizes
to other NFs.
Scalability benefits of our design choices: The insights
to leverage compositional modeling and KeyLearning allow
Alembic are critical in achieving reasonable runtime by re-
ducing the size of Σ. Suppose one FW rule takes a source
IP field takes a /16 prefix. Without KeyLearning, we need to
infer a model with all 216 connections. Similarly, for a con-
figuration with 20 rules, we need to infer a model with all
relevant connections. The top half of the Table 4 shows how
the runtime drastically increases as we increase the number of
connections using a Click-based [31] FWs from §8.1 (using
just one worker). Further, we measured the runtime as a func-
tion of d in Wp-method (bottom of Table 4). Using d = 1, we
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were still able to infer the ground truth while reducing the run-
time. These results demonstrate how reducing the size of |Σ|
is critical to obtain a reasonable runtime. Lastly, distributed
learning helps scalability. The Click-based [31] FW with 18
states takes 1.6 hours with 1 worker but only 16 minutes with
19 workers (and 1 controller).

8.4 Case studies
We now highlight vendor-specific differences found using
Alembic. For clarity, we present and discuss only partial rep-
resentations of the inferred FSMs (as some FSMs are large).
Firewall (correct-seq): A common view of stateful FWs
in many tools is a three-state abstraction (SYN, SYN-ACK,
ACK) of the TCP handshake. Using Alembic, however, we
discovered that the reality is significantly more complex. With
a single FW accept rule, the inferred PfSense model (correct-
seq) shows that a TCP SYN from an internal host, A, is suffi-
cient for an external host, B, to send any TCP packets (Fig-
ure 11). Furthermore, FIN-ACK, which signals termination
of the connection, does not cause a state transition. We find
that ProprietaryNF FW has 79 states for a FW accept rule in
contrast to 3 states for PfSense FW. ProprietaryNF, too, does
not check for entire three-way handshake (e.g., only SYN,
SYN-ACK). We find that the complexity of the FSM (i.e.,
79 states) results from the number of ways in which the two
TCP handshakes (from A and B) can interfere with each other.
Such behavior could not have been exposed through handwrit-
ten models. Untangle FW actually behaves like a connection-
terminating NF (Figure 13 in §A for partial model). The FW
lets the first SYN from A through, but when B replies with
a SYN-ACK, Untangle forwards it but preemptively replies
with an ACK. When the A replies with ACK, Untangle drops
it to prevent a duplicate.
Firewall (combined-seq): Surprisingly, for PfSense, we
learned 257 states with combined-seq. The complexity is
a result of packets with incorrect seq and ack causing state
transitions, where many are forwarded. We learned a 72-state
FSM for the ProprietaryNF FW after 48 hours and the full
model (104-state) after 5 days. The cause for the larger FSM
for PfSense is that the incorrect seq and ack packets often
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cause state transitions more frequently than ProprietaryNF
FWs. Further, it is interesting to see how PfSense only had 3
states for the correct-seq set but 257 states with combined-seq,
in contrast to ProprietaryNF where the number of states for
both sets are similar. At a high-level, we find that obtaining
such model is useful as it could possibly be used to generate a
sequence of packets to bypass the firewall, but this is beyond
the scope of our work.
Load balancer: HAProxy (Figure 12) follows the NF’s
connection-terminating semantics. It completes the TCP hand-
shake with the client before sending packets to the server.
After the handshake, the source of outgoing packets is mod-
ified to server-facing IP of LB, and destination is modified
to the server (i.e., star on both-ends of TCP SYN in Fig. 12).
In contrast, PfSense LB behaves like a NAT. When a client
sends a SYN to the LB, the destination is modified to the
server’s IP (i.e., star in state 1 in Figure 12). Then, the LB
modifies destination of packets from both client and server.
We confirmed that PfSense indeed implements load balancing
this way [37]. Alembic automatically discovered this without
prior assumptions of any connection-termination behavior.
Further, the connection-termination semantics of HAProxy
differ from those of Untangle FW. Unlike HAProxy, Untangle
lets SYN packets through and preemptively completes the
connection with the external host. This is yet another example
of non-uniformity across NF implementations.

8.5 Implications for network verification
We use two existing tools, BUZZ [22] and VMN [35], to
demonstrate how Alembic can aid in network testing and
verification. Using a Click-based [31] FW which adheres
policy 1 and 2 (§2), we compare the test output using: (1)
MAlembic inferred using Alembic, and (2) existing Mhand for
FW. Using MAlembic, BUZZ did not report a violation. Using
Mhand , BUZZ reported a violation (false-positive) as 1 of 6
test traces did not match (trace in §2). Similarly, for policy 2,
BUZZ reported a violation using Mhand . The failed test case is:
SYNInternal

A )B , RSTExternal
B )A , RSTExternal

B )A . Mhand predicts that both
RST packets are dropped, as the model does not check for
RST flags. However, Click NF allows the first RST packet to
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reset the NF state. We also plugged the model for PfSense into
a network verification tool, VMN [35]. The existing model in
VMN does not check TCP flags. Using VMN, we verified the
property: “TCP packets from an external host, B, can reach A
even if no SYN packet is sent from A.” Recall that in PfSense,
SYNInternal

A )B needs to be sent for B to send TCP packets to A.
Hence, the property is NOT SATISFIED. Using Modelhand,
the tool returned that the property is SATISFIED whereas
using ModelAlembic indicated that it is not (i.e., false-negative
for Modelhand).

9 Related Work

NF modeling: There is a large body of work on understand-
ing and modeling NFs [19, 26, 30, 35, 39]. Joseph and Sto-
ica [30] propose a language to model stateless NFs to ease
the NF deployment process. NFactor [45] uses code analysis
techniques to extract packet forwarding models in the form
of a match-action table. While this can be complementary, it
may be difficult to obtain source-code for proprietary NFs.
Some works focus on the NF internal states and how to man-
age them [26, 39]. Our work is orthogonal as we focus on NF
behavioral models of externally-visible actions.

FSM inference: L* algorithm by Angluin lays the founda-
tion for learning the FSM [12]. The techniques of learning
FSMs has been used for model checking blackbox systems
(e.g., [28,36]). Symbolic finite automata (SFA) [42] are FSMs
where the alphabet is given by a Boolean algebra with an infi-
nite domain. While Alembic does not directly formulate the
problem to infer SFAs, we use the homogeneity assumption
in the IP and port ranges to learn a symbolic model. Hence,
using abstractions like SFA may help us to naturally embed
symbolic encodings. We could potentially leverage a tool
(e.g., [20]) that extends L* to infer the SFA. However, using
SFA does not address the NF-specific challenges (e.g., infer-
ring the key, handling modifications) but may serve as the
basis for interesting future work.

NF model use cases: Many network testing and verification
tools need NF models [22,35,43]. Some [35,40] proposed new
modeling languages to represent NFs. However, it is unclear
how to represent existing NFs using these languages. Sym-
net [40] wrote parsers to automatically generate NF models
using their language, SEFL. Again, it is unclear whether the
parser generalizes to other FWs or to arbitrary configurations.
However, not all network verification tools require models.
Vigor [46] uses the C code of a NAT to verify properties such
as memory-safety, which are orthogonal to our approach.

Application of L*: L* has been used to discover protocol vul-
nerabilities (e.g., [15, 16]) or specific attacks (e.g., cross-site
scripting) against web-application firewalls [13]. However,
these approaches do not tackle the NF-specific challenges
(e.g., handling large configuration space and header modifica-
tions). Other works also use L* to infer models of various pro-

tocols (e.g., TLS [18]). While Fiterau-Brostean et al. [23, 24]
inferred the behavior of TCP/ IP implementations in an op-
erating system, these tools leverage a simple extension of L*
and cannot model NFs with a large configuration space.

10 Discussion

Before we conclude, we discuss outstanding issues.

Handling more protocols: NFs such as layer-7 load bal-
ancers (LB), transparent proxy, or deep packet inspection
(DPI) operate at the application layer. To model these cases,
Alembic needs to generate relevant input packet types for these
protocols (e.g., GET, POST, PUT for HTTP). However, the
main challenge is to model the multi-layer interactions.

Representing complex NFs: Some NFs exhibit complex ac-
tions that cannot be captured with “packet in and packet out”
semantics. For instance, to represent quantitative properties
(e.g., rate-limiting), we need to incorporate them as part of
the input alphabet (e.g., “sessions sent at a certain rate”) and
monitor relevant properties to classify NF actions. Similarly,
to handle temporal effects (e.g., timeout), we need to add the
passage of time (e.g., wait 30 s) to the input alphabet. While
we could extend our current infrastructure to handle these
NFs, it may be worthwhile to consider more native abstrac-
tions other than deterministic FSMs. For instance, many have
proposed different abstractions to represent quantitative prop-
erties (e.g., [9, 11, 29, 33]) and timing properties (e.g., [10]).
Once we pick the abstraction, we can find relevant techniques
that extend L* (i.e., [14,27]). It is difficult to find one abstrac-
tion to model multiple properties at once, and we need to pick
the abstraction based on the properties of interest.

Handling more complex ConfigSchema: To handle more
complex configuration semantics such as “if condition, do
X,” and “go to rule X”, we still need to model a rule type
(e.g., both X in the above example) similar to our workflow.
To incorporate new processing semantics, we need to change
how we compose individual models in the online stage.

11 Conclusions

We proposed Alembic, a system to automatically synthesize
NF models. To tackle the challenges stemming from large
configuration spaces, we synthesize NF models viewed as an
ensemble of FSMs. Alembic consists of an offline stage that
learns symbolic models and an online stage to compose con-
crete models given a configuration. Our evaluation shows that
Alembic is accurate, scalable, and enables more accurate net-
work verification. While Alembic demonstrates the promise of
NF model synthesis, there remain some open challenges (§3.3
and §10) that present interesting avenues for future work.
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A Partial FSM for Use Cases

Figure 13 shows partial FSM for Untangle FW accept, drop,
default rule, and ProprietaryNF accept rule.
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Figure 13: Partial FSM for Untangle FW accept, drop, default
rule, and ProprietaryNF accept rule

B Instantiating a Concrete Model

We present a detailed description of how we instantiate a
concrete model in our online stage. We consider three cases:
(1) NFs that keep per-connection state but do not modify
headers, (2) NFs that keep per-connection state and do, and
(3) NFs that keep state according to other keys but do not
modify headers. We do not consider header-modifying NFs
that keep state according to other keys (e.g., per-source) as
they are outside our current scope. For simplicity, we assume
a perfect Equivalence Oracle such that the generated symbolic
model from the offline stage is identical to the ground truth.
Case 1) NFs that keep per-connection state but do not
modify headers

For NFs that do not modify packet headers, we define a key
with (A:Ap1, B:Bp1) where A:Ap1 is a srcip-port and B:Bp1
is a dstip-port. Note that matches for a per-connection key are
bi-directional; a packet with srcip-port, B:Bp1, and dstip-port,
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A:Ap1, would also match the key, (A:Ap1, B:Bp1). Then,
for each concrete value of the key in a rule, we instantiate a
concrete FSM.

We posit that our instantiation logic is correct for an input
packet type with all TCP packet types (e.g., SYN, SYN-ACK,
ACK, RST-ACK) for the following reasons:
1. A model learned using one connection from the offline

stage represents the ground truth (assuming a perfect Equiv-
alence Oracle).

2. Because we assume each connection is independent and
shares the same logical behavior (from §3.3 and Def 4
in §C), cloning a model learned from one connection to
represent other connections does not introduce errors.

Rule Type 1:  Lin  à Rout 
(e.g., source NAT)  

Lin : IPL à IPR

NF
Lout : IPR à IPL

Rin : IPR à PIP

Rout : PIP à IPR

IPL    : an internal IP-port pair
IPR    : an external IP-port pair
PIP : a public-facing IP-port pair

Figure 14: NAT example

Case 2) NFs that keep per-connection state and do
modify headers

We extend the NF operational model presented in Alg 1 to
instantiate a concrete model for header-modifying NFs. Recall
that in the Alembic’s offline stage, we learn a model using a
range, where we infer a model using a symbolic IP and port in
a range. For header-modifying NFs, even though the learned
model contains symbolic IPs and ports, our instantiation logic
is correct because each concrete model is indexed with a
concrete IP and port (Algo. 2).

Consider a NAT with two rule types defined in its Con-
figSchema.

1. Rule Type 1: Lin→ Rout where the initial modification
for a new connections happens for Lin (e.g., modifying
the source IP of an internal IP to a public-facing IP).

2. Rule Type 2 : Rin→ Lout where the initial modification
for a new connections happens for Rin (e.g., port for-
warding where the port 8080 from the R interface is
forwarded to port 80 on the internal server).

For ease of explanation, we first show how we instantiate a
concrete model for a model inferred for rule type 1 and later
describe how we can easily extend our design to handle rule
type 2. Figure 14 shows the ranges of valid source and desti-
nation IPs and ports for located packets for a NAT configured
with a concrete rule for rule type 1 (e.g., a valid ranges for
Lin is IPL for a srcip pair and IPR for a dstip-port pair).

Algorithm 2 Instantiating a model for a per-connection NF
with header modifications

1: function ONLINEFORMODIFICATION(locatedPkt p, Rule r,
Map[rule, Map[key, state]] stateMap, TL�R, TR�L)

2: if p.interface == L then
3: pout = FWDDIRECTION(p, r, stateMap, TL�R, TR�L)
4: else
5: pout = REVERSEDIRECTION(p, r, stateMap, TL�R,

TR�L)
6: return pout

7: function FWDDIRECTION(locatedPkt p, Rule r, Map[rule,
Map[key, state]] stateMap, TL�R, TR�L)

8: if NewConnection then
9: Update TL�R, TR�L

10: Extract FSM, currentState
11: pout , nextState← Get action from the FSM
12: Update currentState with nextState
13: return pout

14: function REVERSEDIRECTION(locatedPkt p, Rule r, Map[rule,
Map[key, state]] stateMap, TL�R, TR�L)

15: if p ∈ TR�L then
16: Extract FSM, currentState
17: pout , nextState← Get action from the FSM
18: Update currentState with nextState
19: else
20: Extract default FSM, currentState
21: pout , nextState← Get action from default FSM
22: Update currentState with nextState
23: return pout

To tackle the challenge above, we introduce two maps to
associate an output (or modified) packet’s 5-tuple to the cor-
responding input packet’s 5-tuple for both interfaces. Specifi-
cally, we use TL�R to map Lin to Rout, and TR�L to map Rin
to Lout (Algo 2). Algo 2 is a detailed description after Line 3
in the operational model (Algo 1 in §3). Note that for each of
presentation, we assume we found a rule to apply (Line 3 in
Algo 1) for the incoming packet.

If an NF receives a packet from the L interface, the al-
gorithm checks whether the packet is a new connection by
performing a lookup in the map (in FWDDIRECTION). If
the connection does not already exist in the map, we up-
date the TL�R with (IPL, IPR)→ (PIP, IPR) and TR�L with
(IPR,PIP)→ (IPR, IPL). Then, we extract the corresponding
FSM and the current state (or the initial state if a new con-
nection) to apply the appropriate action (i.e., determine pout ).
If the incoming packet is from the R interface, we look up
the corresponding map, TR�L, to fetch the original IP-port
(e.g., IPL). Then, it uses the key to fetch the FSM and deter-
mine the appropriate action for the incoming packet. If the
entry does not exist in the map, our concrete model instead
uses the FSM associated with the NF’s default behavior. Note
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that in the case of static header modification, such as a NAT
configured with a list of static mappings between internal and
external IP-port pairs, we prepopulate TL�R and TR�L with
these static mappings. Hence, for an NF that statically modify
packet headers, we will not reach Line 20 as these mapping
already exist.
Extending for Rule Type 2 : We now discuss how to adapt
the above framework to handle rule type 2 where the initial
modification happens for packet entering the other interface
(e.g., Rin). In contrast to rule type 1, an NF configured with a
concrete rule for rule type 2 initially modifies packet header
for Rin (i.e., not Lin). We need to make two changes in Algo 2:

1. Line 2 must change to call FWDDIRECTION (Line 7) if
the packet comes via the R interface.

2. For the corresponding packet coming from the reverse
direction (i.e., Lin for rule type 2), we need to perform a
look up in TL�R to check if the reverse mapping exists
instead of TR�L (i.e., change Line 15 ).

Note that our approach does not need a priori knowledge
of which rule type the NF is configured with. We just need
to infer at which interface the initial modification happens
by parsing the generated model. For instance, if the initial
modification happens for Lin (i.e., rule type 1), then we follow
the original algorithm shown in Algo. 2. If the initial modifi-
cation happens for Rin (i.e., rule type 2), then we follow the
algorithm in Algo. 2 with two changes mentioned above.

The above algorithm describes how we instantiate a con-
crete FSM. Now, there are two types of modifications. In the
case of static modification, we know the value of the modi-
fied packet a priori for a given incoming packet, so we can
prepopulate the concrete FSMs with all the known IPs and
ports. However, in the case of dynamic modification where we
cannot predict the modified values in advance, we initialize
an ensemble of concrete FSMs with symbolic IP and port (for
the modified values) and bind them to concrete IPs and ports
as they are revealed (i.e., after injecting packets and observing
outputs).

Given this context, we posit the correctness of these in-
stantiated models (formal proof is outside our current scope).
For per-connection NFs with static header modifications, our
instantiation of FSMs is correct with an input packet type of
all TCP packet types, for the same two reasons described for
case 1. We now state additional reasonings:
1. The same 5-tuple for an input packet maps to the same 5-

tuple for the output packet, and TL�R and TR�L store these
mappings. Thus, we will correctly discover the reverse
mapping during the instantiation.

2. Even in the presence of connection resets, the same 5-tuple
will be mapped to the same output (i.e., 5-tuple). Hence, the
model for each connection is correct even in the presence
of packets that reset the connection state (i.e., we can reuse
the previous mappings stored).

Table 5: Validating the correctness of KeyLearning using
Click-based NFs (§8.1)

Ground Truth Test1 Test2 Test3 Result
Cross-conn Y Cross-conn
Per-src N Y Per-src
Per-dst N N Y Per-dst
Per-conn N N N Per-conn

For NFs that dynamically modify packet headers, we posit
that for the input set of TCP-handshake packets (i.e., SYN,
SYN-ACK, ACK). However, when we receive a TCP packet
that resets a connections (e.g., RST-ACK), the concrete IP
and port that was bound to a symbolic IP and port will change
(i.e., after a reset, srcip-port maps to P:Pp2 instead of P:Pp1).
Hence, the generated model will continue to use the map-
ping already stored in TL�R and TR�L, resulting in inaccurate
model.
Case 3: NFs that do not keep per-connection state

We now consider NFs that do not modify packet headers
but have keys other than per-connection. Recall the following
key types and their corresponding header fields:
1. Per-source key, defined by a source IP
2. Per-destination key, defined by a destination IP
3. Cross-connection key, defined by any packet (i.e., all IP

and ports with the range)
4. Stateless key, defined by srcip-port and dstip-port. Note

that we view the stateless NF as keeping a per-connection
state but the FSM is always just a single state.

When we instantiate an ensemble of concrete FSMs for an
NF that keeps per-source state, the IPs and ports that do not
define the key (i.e., srcport, dstip, and dstport) refer to ranges
of values. Hence, the model for a srcip should accept ANY
srcport, dstip, and dstport within the specified range.

We posit that our instantiation logic outputs a correct model
for an input packet type, with all TCP-relevant symbols (i.e.,
All TCP-relevant symbols as there are no modifications) if
the per-source NF adheres to Def. 2 (§C):
1. Our definition for per-source NF assumes that all destina-

tions given the same source IP are treated homogeneously.
Hence, it is correct to use the model learned from one con-
nection and simply replace the symbolic destination in the
model to any destination IP that appears in the configura-
tion.

2. As we assume no header modification, the instantiated
model is correct for all TCP-relevant symbols.
We omit the cases for per-destination, cross-connection,

and stateless for brevity. The correctness arguments for these
cases are similar to that of per-source NFs.

C Correctness of KeyLearning

We formalize the definition of the granularities of states main-
tained by NFs (i.e., keys) and prove the correctness of our
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KeyLearning algorithm in §5.
Recall that each NF SymbolicRule (1 rule) consists of

multiple configuration fields (e.g., FW needs to be config-
ured to allow packets from a subnet X to Y). To simplify
the presentation, let us consider a rule r in an NF that takes
two configuration fields, namely source and destination, and
thus also omit configuration fields that do not affect the key
(e.g., an action and a load-balancing algorithm that do not
affect the key). We use NF〈X ,Y 〉

r to refer to an NF instance
only with the targeted rule r that is configured with source
X and destination Y. Given such an NF instance, we use L*
to learn a model from it. Particularly, let LΓ(NF〈X ,Y 〉

r ) refer
to the FSM learned by L* for the NF instance NF〈X ,Y 〉

r using
packets only from the set Γ ⊂ X ×Y ∪Y ×X . We assume
that the FSM learned by L* is correct with respect to the NF
instance. That is, given any sequence of packets with source
a and destination b, running LΓ(NF〈X ,Y 〉

r ) on it obtains the
same output sequence as running NF〈X ,Y 〉

r on it, provided that
(a,b) ∈ X×Y or (a,b) ∈ Y ×X .
Definition of keys: To prove the correctness of our
KeyLearning algorithm, we first formalize the definition of
NF keys. The following table summarizes the notations we
use.

Term Definition

Σ

Σ(X ,Y )

the set of packets (symbol for FSMInference)
the set of packets with source (destination, resp.)
IP from X (Y , resp.)

σ|(a,b)

Given σ and a source-destination pair) (a,b), σ|(a,b)
is the sequence of packets obtained from σ by
removing all packets that are not with source a and
destination b.

σ|(a,b),(b,a)
Similar to above, but also keeps packets
with source b and destination a.

σ++(a,b)
The sequence obtained by appending (a,b)
to the sequence σ

NF〈X ,Y 〉
r (σ)

the output of the last packet given
σ to the NF configured with 〈X ,Y 〉

r

The definition of keys is given as follows.

Definition 1 (Cross-connection NF). A rule r in an NF keeps
cross-connection state iff for all NF instances NF〈X ,Y 〉

r , all
pairs of connections (a,b) and (c,d) such that a,c∈ X, b,d ∈
Y , and (a,b) 6= (c,d), there exists a sequence σ ∈ Σ(a,b), such
that NF〈X ,Y 〉

r (σ++(c,d)) 6= NF〈X ,Y 〉
r ((c,d)).

Definition 2 (Per-source NF). A rule r in an NF keeps per-
source state if all its instance NF〈X ,Y 〉

r satisfies the three con-
ditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ({a},Y ), such
that NF〈X ,Y 〉

r (σ++(a,b)) 6= NF〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ({a},Y ) such that
σ1 and σ2 have the same length, NF〈X ,Y 〉

r (σ1 ++(a,b)) =

NF〈X ,Y 〉
r (σ2 ++(a,b)).

3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y ),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(a,_)++(a,b)).

Definition 3 (Per-destination NF). A rule r in an NF keeps
per-destination state if all its instance NF〈X ,Y 〉

r satisfies the
three conditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ(X ,{b}), such
that NF〈X ,Y 〉

r (σ++(a,b)) 6= NF〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ(X ,{b}) such that
σ1 and σ2 have the same length, NF〈X ,Y 〉

r (σ1 ++(a,b)) =
NF〈X ,Y 〉

r (σ2 ++(a,b)).
3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y ),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(_,b)++(a,b)).

Definition 4 (Per-connection NF). A rule r in an NF keeps
per-connection state if all its instance NF〈X ,Y 〉

r satisfies the
two conditions:

1. for all (a,b) ∈ X × Y ∪ Y × X, there exits a σ

over Σ({a},{b}) ∪Σ({b},{a}), such that NF〈X ,Y 〉
r (σ++(a,b)) 6=

NF〈X ,Y 〉
r ((a,b)).

2. for all (a,b) ∈ X ×Y ∪Y ×X, and σ over Σ(X ,Y ) ∪Σ(Y,X),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(a,b),(b,a)++(a,b)).

Definition 5 (stateless). A rule r in an NF is called a stateless
NF iff for all NF instance NF〈X ,Y 〉

r , packet p ∈ Σ(X ,Y ), and
sequence σ over Σ(X ,Y ), NF〈X ,Y 〉

r (σ++p) = NF〈X ,Y 〉
r (p).

In addition, we assume all NFs satisfy the following con-
sistency in the configuration space:

Definition 6 (Consistency in the configuration space). For
all A,B,X ,Y,σ such that A⊂ X, B⊂ Y and σ is a sequence
over Σ(A,B), NF〈X ,Y 〉

r (σ) = NF〈A,B〉r (σ).

FSM composition: The definition of FSM composition is
given below.

Definition 7 (FSM composition for key learning). Given two
FSMs FSMi = (Si,Σi,∆i,δi,s0

i ), where Si is the state space, Σi
is the space of possible input symbols such that Σ1∩Σ2 = /0,
∆i is the set of output symbols, δi : Si×Σi → Si×∆i is the
transition function, and s0

i ∈ Si is the initial state of FSMi,
the composite FSM of FSM1 and FSM2 is FSMcomposite =
(S1× S2,Σ1 ∪ Σ2,∆1 ∪∆2,δ,s0

1× s0
2), where δ((s1,s2), p) =

((s′1,s
′
2), p′) if and only if 1) δ1(s1, p) = (s′1, p′) and s2 = s′2;

or 2) δ1(s2, p) = (s′2, p′) and s1 = s′1.

Proof of KeyLearning algorithm: The correctness of our
KeyLearning algorithm is given in the following theorem.

Theorem 1 (Correctness of KeyLearning). Figure 10 is cor-
rect.
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Proof Sketch. For brevity, we only prove the column for the
per-source NF; proofs of other columns are similar. The proof
for per-source NF follows from the three lemmas below.

Lemma 1. All NFs that keep per-source state cannot pass
Test 1.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{c},{d}〉r respectively (i.e., A1 = L{(a,b)}(NF〈{a},{b}〉r ),
similarly for A2), B be the FSM learned for
NF〈{a,c},{b,d}〉r using packets from (a,b) and (c,d) (i.e.,
B = L{(a,b),(c,d)}(NF〈{a,c},{b,d}〉r )), and C be the FSM
composed of A1 and A2. We only need to prove that for
any sequence σ consisting of packets over {(a,b),(c,d)},
B(σ) = C(σ). W.L.O.G., suppose σ ends with (a,b).
Then B(σ) = NF〈{a,c},{b,d}〉r (σ) = NF〈{a,c},{b,d}〉r (σ|(a,b)) =
B(σ|(a,b)) (condition 3), C(σ) =C(σ|(a,b)) = A1(σ|(a,b)) (the
first equality is by condition 3 and the second is by FSM
composition). But by homogeneity in the config space,
A1(σ|(a,b)) = B(σ|(a,b)). Thus, B(σ) =C(σ). In other words,
B is equivalent to C.

Lemma 2. All NFs that keep per-source state can pass Test
2.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{a},{c}〉r respectively, B be the FSM learned for
NF〈{a},{b,c}〉r , and C be the FSM composed of A1 and A2. By
the first condition of per-source NF, there exists a σ over
Σ({a},{b,c}), such that B(σ++(a,b)) 6= B((a,b)). By the sec-
ond condition, B(σ++(a,b)) = B(σ′++(a,b)), where σ′

is a sequence consisting of only (a,c). Since C is composed
of A1 and A2, C(σ′ ++(a,b)) = A1((a,b)). But by homo-
geneity in the config space, A1((a,b)) = B((a,b)). Thus,
C(σ′++(a,b)) 6= B(σ′++(a,b)). In other words, B is not
equivalent to the composite FSM of A1 and A2.

Lemma 3. All NFs that keep per-source state cannot pass
Test 3.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{c},{b}〉r respectively, B be the FSM learned for
NF〈{a,c},{b}〉r , and C be the FSM composed of A1 and A2. Con-
sider any sequence σ over Σ({a,c},{b}). W.L.O.G., suppose σ

ends with (a,b). Then by condition 3, B(σ) = B(σ|(a,b)). By
definition of composition, C(σ) = A1(σ|(a,b)). But by homo-
geneity in the config space, A1(σ|(a,b)) = B(σ|(a,b)). Thus,
C(σ) = B(σ). In order words, B and C are equivalent.
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