
C3: Internet-Scale Control Plane for Video Quality Optimization

Aditya Ganjam†, Junchen Jiang?, Xi Liu†, Vyas Sekar?,
Faisal Siddiqi†, Ion Stoica+†◦, Jibin Zhan†, Hui Zhang?†

†Conviva, ?CMU, +UC Berkeley, ◦ Databricks

Abstract
As Internet video goes mainstream, we see increas-
ing user expectations for higher video quality and new
global policy requirements for content providers. In-
spired by the case for centralizing network-layer control,
we present C3, a control system for optimizing Internet
video delivery. The design of C3 addresses key chal-
lenges in ensuring scalability and tackling data plane het-
erogeneity. First, to ensure scalability and responsive-
ness, C3 introduces a novel split control plane architec-
ture that can tolerate a small increase in model staleness
for a dramatic increase in scalability. Second, C3 sup-
ports diverse client-side platforms via a minimal client-
side sensing/actuation layer and offloads complex mon-
itoring and control logic to the control plane. C3 has
been operational for eight years, and today handles more
than 100M sessions per day from 244 countries for 100+
content providers and has improved the video quality sig-
nificantly. In doing so, C3 serves as a proof point of the
viability of fine-grained centralized control for Internet-
scale applications. Our experiences reinforce the case
for centralizing control with the continued emergence of
new use case pulls (e.g., client diversity) and technology
pushes (e.g., big data platforms).

1 Introduction
Internet video is a significant and growing segment of In-
ternet traffic today [2]. In conjunction with these grow-
ing traffic volumes, users’ expectations of high qual-
ity of experience (e.g., high resolution video, low re-
buffering, low startup delays) are continuously increas-
ing [35, 3, 14]. Given the ad- and subscription-driven
revenue model of the Internet video ecosystem, con-
tent providers strive to deliver high quality of experience
while meeting diverse policy and cost objectives [4, 38].

In this respect, several previous efforts have shown
that the observed video quality delivered by individual
CDNs can vary substantially across clients (e.g., across
different ISPs or content providers) and also across time
(e.g., flash crowds) [39, 37]. Similarly, because the video
player has only a few seconds worth of buffering and the
bandwidth could fluctuate significantly, we need to make

Modeling Layer 

Thin Sensing/actuation Layer 

Global Controller 

Sensing/actuation Layer 

Decision Layer 

Sensing/actuation Layer 
Sensing/actuation Layer 

Hypothetical two-layer architecture 
of a control plane 

Address scale 

Address  
client-side 
diversity 

Architecture of C3: 
Split control plane and thin client 

Figure 1: Conceptual two-layer architecture and the
ideas of split control plane and thin client
quick decisions (e.g., future bitrates) based on the current
client buffer level and bandwidth so that the buffer does
not drain out [27].

These observations have made the case for a logi-
cally centralized control plane for Internet video that
uses a global and real time view of network conditions
to choose the best CDN and bitrate for a given client.1

Furthermore, content providers have complex system-
wide policy and optimization objectives such as balanc-
ing costs across CDNs or servicing premium customers,
which are also difficult to achieve without a global real-
time view.

Conceptually, one can consider a hypothetical two-
layer architecture (the left part of Figure 1) of a con-
trol plane consisting of a global controller and a client-
side sensing/actuation layer. The controller uses real-
time measurements of client performance observed by
the sensing/actuation layer to create a model of expected
performance, uses this model to decide suitable parame-
ters (e.g., CDN and bitrate) for the clients and sends them
to sensing/actuation layer to execute. Unfortunately, re-
alizing such an Internet-scale control plane is easier said
than done! For instance, at peak load we have had to
handle over 3M concurrent users and we expect this to
grow by up to two orders of magnitude. This scale makes
it challenging to maintain up-to-date global views while
simultaneously being responsive to client-side events.

1Conceptually, this can be viewed as a management layer overlaid
on top of multiple CDNs and this optimization is orthogonal to the
server allocation optimizations done by the individual CDNs.

1



To address this fundamental scaling challenge, our so-
lution, called C3, introduces a split control plane archi-
tecture that logically decouples the modeling and deci-
sion functions of the controller as shown in the right part
of Figure 1. The key insight underlying this unique split
control plane architecture is an observation that we can
tolerate a small increase in amount of staleness in the
global modeling for a dramatic increase in scalability;
i.e., our decisions will be close to optimal even if the
global view used for decision making is out of date by a
few minutes (§3).

Building on this insight, the modeling layer operating
at a coarse time granularity is updated every tens of sec-
onds or minutes to build a global model based on global
view of client quality information. The decision layer
makes real-time decisions using the global model from
the modeling layer at a sub-second timescale in response
to client-side events; e.g., arrivals or bandwidth drops or
quality changes. Note that in contrast to traditional web
serving architectures, the decision layer is not a dumb
replicated caching layer but is actively making real-time
decisions merging global (but stale) models with local
(but up-to-date) data. An immediate consequence of the
decoupling is that the decision layer interfacing with the
clients is horizontally scalable.

Now, for any such control architecture to be effective,
we need a sensing/actuation layer to (a) accurately mea-
sure video quality from video players and (b) execute the
control decisions. Here, we observe a practical challenge
due to client-side diversity. For instance, we see close
to 100 distinct application combinations of framework
(i.e., providing libraries to support video players) and
streamer (i.e., the module responsible for downloading
and rendering video). The diversity of video players cou-
pled with practical challenges in players’ long software
update cycles makes it difficult to implement new mea-
surement techniques or control algorithms. To address
this client-side diversity, we make an explicit choice to
make the sensing/actuation layer functionality as mini-
mal as possible. Thus, we eschew complex control and
data summarization logic in the video players in favor
of a very thin sensing/actuation layer that exports raw
quality-related events using a common data model (§4).
These designs simplify adding support for new content
providers, accelerate testing and integration, and also en-
able independent evolution of client-side platforms and
C3’s control logic.

Over the 8 years of operation, C3 has optimized over
100M sessions each day from over 100 name brand
content providers. Our operational experience and mi-
crobenchmarks confirm that: (1) C3 controller is hor-
izontally scalable; (2) our client-side sensing/actuation
layer imposes small bandwidth overhead on the clients;
and (3) C3 can dramatically improve the video quality of

C3’s customers within the bounds of global policies.
While C3 has evolved in response to video-specific

technology trends and use-cases (§2), we believe that
our lessons and design decisions are more broadly ap-
plicable to other aspects of network control (§7). First,
we observe more drivers for centralized control due to
greater client-side heterogeneity and more complex pol-
icy demands. Second, we see more enablers for cen-
tralizing control with the advent of big-data solutions
and the ability to elastically scale service instances via
cloud providers. Third, our journey reinforces the be-
lief that separation of control and data and moving more
functionality to the controller is a powerful architectural
choice that enables rapid and independent evolution for
different stakeholders.

2 Evolutionary Perspective
Operational systems such as C3 do not exist in
vacuum—they have to constantly evolve in response to
use case pulls (e.g., more complex provider policies and
multi-CDN deployments) and technology trends (e.g.,
move from P2P to CDNs or RTMP to HTTP). In this
section, we provide an evolutionary perspective of the
8-year operation of C3. This retrospective is useful be-
cause it gives us the context to understand both how
the requirements (e.g., scale, diversity) have evolved and
how our design decisions have adapted accordingly. We
conclude with major trends that reinforce our decision to
centralize the control plane.

2.1 Overview of evolution
We identify three high-level phases in the evolution of
C3 (shown in Figure 2).
Phase I: The origins of C3 can be traced back to a very
different operational context. The original C3 architec-
ture was motivated by the problem of optimizing P2P live
streaming. This was around 2006, when video streaming
via CDNs was quite expensive with an effective cost of
≈ 40 cents/GB. At the time, P2P was widely perceived
as an alternative low-cost solution. Unfortunately, exist-
ing overlay schemes were unreliable and unable to de-
liver high-quality streams equivalent to CDN-based per-
formance. Inspired by concurrent work on the 4D archi-
tecture for network control [45], C3 was a centralized
solution to manage the overlay tree in order to deliver
high (CDN equivalent) quality streaming over P2P. This
centralized view also enabled to implement simple per-
stream global policies; e.g., limiting total bandwidth or
number of viewers on a specific live channel.

During this early stage, most video streaming was
based on Flash/RTMP and clients were largely homoge-
neous. They were largely desktop clients that needed to
explicitly download/install our P2P client software, simi-
lar to other P2P systems at the time. This software would

2



Phases 
(Time) 

Environments Design overview 

Video delivery User scale Platform Policy Key decisions Major considerations 

I  
(2006-2009) 

P2P Live 100s-10Ks Single Per-stream Centralized overlay-tree construction in the  
controller. Frequent update and control. 

Modest size of users. Existing protocols not  
sufficient for high-quality streams. 

II  
(2009-2011) 

CDN, Live/VoD 1M-10Ms Single Global Joint control: Controller changes the logic and  
bitrate/CDN list. Clients run real-time control. 

Controller unable to support real-time control at  
scale. Flash supports dynamical loading plugin. 

III  
(2011-now) 

CDN, Live/VoD 10Ms-100Ms Diverse Global 
Complex 

Minimal clients: push all decision making and  
quality summary to the controller. 

Diverse client platforms, long software update  
cycle. Advent of big-data technology. 

Figure 2: Overview of C3 evolution.

work in close coordination with the C3 controller to con-
struct a robust overlay tree that gracefully handled user
churn.

Moreover, Internet video was still in its infancy, and
many premium providers were yet to step in to the mar-
ket. Thus, the scale of the client demand was also rel-
atively small. As such, C3’s controller was deployed
using custom server software running in dedicated data-
centers. This was sufficient to provide the desired sub-
second responsiveness to handle tens of thousands of
clients.

Phase II: Around 2009, we saw an inflection point with
several key technology and industry shifts. First, the
cost of streaming using CDNs dropped significantly to
≈ 5 cents/GB. Second, many mainstream providers (e.g.,
iTunes, Hulu) started warming up to the potential of In-
ternet video and started discovering monetization strate-
gies for online video, for both live and VoD content.
While Flash/RTMP still dominated as the de-facto plat-
form for video streaming, we saw the emergence of al-
ternatives (e.g., due to Apple refusing to support Flash).
On a practical note, given that content was now being
monetized, as opposed to the free video over P2P, there
was some understandable reluctance from the providers
to force clients to install a new client software.

These transitions had significant effects on the de-
sign of C3. First, the entry of mainstream providers
meant that the workload grew several orders of magni-
tude from Phase I to 100s of thousands to millions users.
Second, the transition to CDN-based delivery for both
live and VoD meant that the C3 logic had to evolve.
Specifically, the emergence of HTTP- and chunk-based
video streaming protocols (e.g., [13, 8]) meant that a
video client could seamlessly choose a suitable bitrate
and CDN (server) at the beginning as well as in the mid-
dle of a video session with little overhead. Thus, C3 was
now targeted toward the goal of better CDN and bitrate
selection instead of the earlier goal of computing optimal
overlay trees for live streaming.

However, our control platform was not yet mature
enough to provide sub-second responsiveness at such
scale. Our response in this phase was a pragmatic so-
lution that had to sacrifice both the global view and
real-time requirement to ensure the required scalabil-
ity. Specifically, our solution relied on a combination

of exploiting application-level resilience and clever en-
gineering. We made a decision to coarsen the control
functionality of C3. Instead of the client software, we
designed a player plugin that clients would download
from C3 when the video session started. This gave us
coarse control wherein we could modify the player logic
at the beginning of the session (e.g., choosing a CDN
intelligently). For subsequent adaptation (e.g., dynamic
bitrate adaptation), however, we had to rely on the lo-
cal decision making and capabilities. To deal with the
moderate amount of client heterogeneity, we developed
custom cross-compiler techniques that allowed us to in-
tegrate our development across platforms. While this
cross-compiler served us well as an interim solution,
the approach soon started showing cracks as more di-
verse client platforms given the idiosyncrasies of differ-
ent technologies.

Phase III: The current phase of C3’s operation, starting
in 2011, can be truly described as the coming of age of
Internet video. With the ad- and subscription-driven rev-
enue models, and the availability of rich content, many
more providers and users now rely on Internet video.
In fact, some industry analysts report that Internet video
consumption might even exceed traditional TV.

Consequently, C3 had to evolve to once again han-
dle 2-3 orders of magnitude increase in the client
population—tens of millions clients, with 10s-100s of
thousands new client arrivals per minute at peak hours.
In addition, C3 now faced a more serious challenge due
to client heterogeneity as we now observed very diverse
client-side platforms of streaming protocols (proprietary
protocols and HTTP chunking, etc), application frame-
works (e.g., OSMF, Ooyala, Akamai) and devices (e.g.,
set-top boxes, connected TVs, tablets).

There was an independent technology shift that was
synergistically aligned with these trends—the emergence
of big data platforms to enable real-time processing of
very large volumes of data. We embraced this technol-
ogy and exploited it to enable novel solutions to handle
the client-side heterogeneity. Specifically, it enabled us
to make the client implementation very minimal; e.g.,
moving the data summarization logic originally located
in the client in Phase II to the controller. This allowed us
greater flexibility in adapting to new client platforms and
also simplified the development cycle.

3



However, big-data platforms by themselves do not ad-
dress the scalability challenge of providing sub-second
responsiveness to client-side events for millions of
clients. This required us to significantly rearchitect the
control plane and motivated the split control plane archi-
tecture that we describe in the next section. Specifically,
we split the controller to a geo-distributed decision layer
with sub-second responsiveness exploiting the reach of
cloud providers, and a consolidated modeling layer that
provides minute-level freshness w.r.t. global visibility.

2.2 Major trends
The above evolution highlights two key trends that rein-
force the case (in terms of both drivers and enablers) for
centralizing network control:
• Drivers: First, we see ever increasing demands of

user experience and growing complexity of the video
delivery system. This naturally motivates us to move
more control logic to the controller in order to use the
global visibility and satisfy global policies. Second,
the proliferation of diverse client platforms makes it
difficult from an engineering standpoint to integrate
and test the client-side logic.

• Enablers: With the recent advances in big data tech-
nology, we can build a backend system with unprece-
dented capacity to support scalable data processing in
real-time with low cost. Furthermore, it is now possi-
ble to deploy the centralized control plane on-demand
using cloud services with global presence. The emer-
gence of big data platforms and cloud services can en-
able even greater centralized control.
In the rest of this paper, we focus on the design and

implementation of the split control plane architecture and
the sensing/actuation layer during this most recent phase
of C3’s operation.

3 C3 Split Control Plane
The goal of the C3 controller is to optimize the video
quality and enforce global policies given by content
providers. Note that C3 does not control the CDN
servers or distribution logic. Rather it acts an additional
management layer to enable content providers to achieve
their quality and policy objectives on top of their existing
delivery ecosystem.

There are three (arguably conflicting) goals that the
C3 controller needs to meet. First, given the variability in
video quality across time and space (e.g., ISP-CDN com-
binations) the C3 controller needs an up-to-date global
view of network conditions to be effective in choosing
a suitable CDN and bitrate for clients. Second, it needs
to be responsive at sub-second timescales to handle new
client arrivals (e.g., to minimize video startup delay) and
quality-related events during video playback (e.g., drop
in bandwidth or CDN congestion). Finally, and most im-

portantly, it must be scalable to handle 10s-100s millions
of concurrent clients.

Unfortunately, simultaneously achieving all three re-
quirements of freshness, responsiveness and global view
is hard. To see why, let us consider two strawman solu-
tions. The first option is a single controller handling all
clients. However, even state-of-the-art big data process-
ing platforms cannot provide sub-second responsiveness
with new samples arriving at the rate of 50-100 GB per
minute. Even if such a system exists, there is an inherent
delay to collect enough data for making decisions with
high confidence; e.g., it may take minutes to infer with
high confidence that a particular CDN is overloaded. A
second option is to deploy replicated servers with each
replica responsible for a subset of clients. Though this
parallelism ensures scalability and responsiveness, the
quality of the decisions will degrade as each replica will
make decisions only on the partial view from its clients
rather than on the global view.

Next, we present the split control plane architecture of
C3 and discuss how it is crucial to simultaneously meet
three key requirements—freshness, responsiveness, and
global views.

3.1 Logical view
The key insight behind the split control plane is a
domain-specific observation that we can slightly re-
lax the freshness requirement to simultaneously achieve
scalability, responsiveness, and a global view. Specifi-
cally, we observe that some global characteristics (e.g.,
relative rankings of CDN based on quality) are relatively
stable on the order of minutes [29].

Figure 3 shows one representative result showing the
persistence of the best CDN for clients in a given AS,
which we define as the number of contiguous minute-
level epochs in which this CDN has the lowest buffering
ratioa cross all available CDNs. Figure 3 shows the dis-
tribution of this persistence metric across three content
providers (A,B,C) that use multiple CDNs.2 We see that
the 80%ile of the persistence is 3 minutes across all three
content providers.

However, such persistence does not hold for states of
individual clients. For instance, when the current CDN
is not available, CDN must be switched immediately to
prevent the buffer from draining out (e.g.,buffer length
for live videos is no more than several seconds). In
this case decisions must rely on the freshest information
(e.g., buffer length) to prevent quality from suffering.

The above observations on global state persistence
coupled with local per-client variability make a case for
a split control plane scheme that consists of two loosely

2To avoid any potential bias due to C3’s control decisions, this re-
sult explicitly focuses on content providers who have not opted-in for
C3’s optimized control but use only the quality monitoring services.

4



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

C
D

F

Persistence(min)

CP A
CP B
CP C

Figure 3: Distribution of the persistence of the best
CDN for different content providers.

coupled stages:
• A coarse-grained global model layer that operates at

the timescale of few tens of seconds (or minutes) and
uses a global view of client quality measurements to
build a data-driven prediction global model of video
quality (see below).

• A fine-grained per-client decision layer that oper-
ates at the millisecond timescale and makes actual de-
cisions upon a client request. This is based on the
latest (but possibly stale) pre-computed global model
and up-to-date per-client state.
Figure 4(a) shows how the split control plane is

mapped into the two logical layers of the C3 con-
troller. Specifically, the modeling layer implements the
coarse-grained control loop (i.e., blue arrows) in a coarse
timescale and trains a global model based on the mea-
surements of each client session it receives from the de-
cision layer. The decision layer implements the fine-
grained control loop (i.e., red arrows) for each client,
and makes CDN and bitrate decisions based on the global
model trained by the modeling layer and latest heartbeats
received from the sensing/actuation layer (see §4).

We make one important observation to distinguish the
functionality of the decision layer that presents a signif-
icant departure from traditional replicated web services.
Unlike traditional web services where the serving layer
is a “dumb” distributed caching layer, the decision layer
makes real-time control decisions by combining freshest
quality measurements of the client under control and the
global model.

This above split control plane design has two key char-
acteristics that are critical for a scale-out realization of
the decision layer without synchronization bottlenecks.
First, note that there is a loose coupling between the
fine-grained per-client and coarse-grained global control
loops. Thus, we do not need the decision layer to be
perfectly synchronized with the modeling layer. Sec-
ond, the decision layer is operating on a per-client basis,
which eliminates the need for coordination across deci-
sion layer instances. Taken together, this means that we
can effectively partition the workload across clients by
having a replicated decision layer where instances are
deployed close to the clients and independently execute

 
 

Per-client 
quality info 

Fine-grained 
decision logic 

Coarse-grained  
training 

Global model 
(1-2 min stale) 

Per-client info 
(Up-to-date) 

(a) Logical view of split control plane 

SDM 

Quality info of 
all clients Global view 

Modeling Layer 

Decision Layer 

 
 

 
 

(b) Design and workflow of the 
C3 controller 

Control 
decisions 

Latest 
Heartbeats 

Sensing/actuation Layer 

C3 Controller 

 
 

Clients 

Frontend 
Data Centers 

Compute 
Cluster 

Figure 4: Overview of the C3 controller. The SDM
and Heartbeats are discussed in the next section.

the logic for the subset of clients assigned to it.

3.2 End-to-end workflow
Having discussed the core ideas in the previous section,
next we discuss the concrete physical realization of the
C3 controller (shown in Figure 4(b)) and describe the
end-to-end workflow.

3.2.1 Modeling layer workflow

The modeling layer is a compute cluster running a big
data processing stack. The modeling layer periodically
uses the information (its specific format will be intro-
duced later in §4.2.1 ) collected from all clients to learn a
global model that encodes actionable information useful
for decision making.

Our focus in this paper is primarily on the control ar-
chitecture and the design of the specific algorithms in
the modeling layer is outside the scope of the paper. For
completeness, we provide a high-level sketch of the algo-
rithm. The model is similar to the nearest neighbor like
prediction model suggested in prior work [39]. In partic-
ular, we leverage the insight that similar video sessions
should have similar quality. Therefore, quality measure-
ments of sessions sharing certain spatial (e.g., CDN, ISP,
content provider) and temporal (e.g., time of day) fea-
tures are grouped together, and intuitively, the quality of
a new session can be predicted based on the quality of
the most similar sessions.

To enforce global policies (e.g., traffic caps for cer-
tain CDNs), the modeling layer also includes the relevant
global states as part of the global model (e.g., amount of
traffic currently assigned to each CDN), so that the deci-
sion logic can take into account the global information it
needs. There is a large space of potential decision log-
ics that can take the global model, individual client state,
and global policies to make optimal per-client decisions.
The design of policies and algorithms to meet policy ob-
jectives is outside the scope of this paper.

The remaining question is disseminating the global
model to the decision instances. Instead of a pull model

5



like traditional web caching, the modeling layer pushes
the global model to each frontend data center where deci-
sion instances run. The reasons for a push rather than pull
approach is to ensure that each decision instance has an
up-to-date model as soon as the modeling layer recom-
putes the global model. The overhead of the push step
is quite low since the size of the global model is 100s
of MBs, which can be disseminated to all data centers
in several seconds without any additional optimizations
and can easily fit in the memory of a modern server. (In
contrast, web caches cannot know the set of requests and
have to use a pull model because they cannot store the
entire content catalog.)

3.2.2 Decision layer workflow

In order to minimize the response latency between clients
and their corresponding decision instances, the decision
instances are hosted in geographically distributed fron-
tend datacenters as close to the clients as possible. When
C3 clients arrive, they are assigned to specific deci-
sion instances via standard load balancing mechanisms,
which ensure that subsequent requests (both control re-
quests and heartbeats) of the same client are consistently
mapped to the same instances. These mechanisms op-
erate across data centers and across decision instances,
and handle geographic locality, load balancing, and fault
tolerance. We use industry-standard mechanisms such
as DNS-based consistent mapping of clients to instances
based on latency measurements. These mechanisms use
standard failure detection mechanisms to detect if a spe-
cific instance has failed and reassigns clients as needed.
(As shown in §4.3, the measurement collection from
clients can be easily re-synced when the decision in-
stances are reassigned.)

The clients send periodic heartbeats (described in
§4.2.1) to decision instances. Based on the heartbeats of
a client, a decision instance maintains a state-machine,
which provides an accurate and up-to-date view of the
current video quality experienced by the client. Upon
receiving a control request from a client , the decision
instance runs a proprietary decision algorithm to choose
a suitable CDN and bitrate.

This decision logic combines both the up-to-date per-
client information and the (slightly stale) global model
the decision logic, and tries to optimize video quality
while operating within the bounds of global polices (e.g.,
load per CDN or cost). In a simple example, consider
two CDNs; CDN1 provides poor quality to viewers and
CDN2 provides good quality in a certain city. The deci-
sion logic is able to detect that CDN1 has worse quality
than CDN2 based on the quality feedback from clients
using both CDNs from that particular city, and it will
then instruct new clients to CDN2.

3.3 Summary of key design decisions
In summary, we make the following key decisions.
1. To balance global visibility and data freshness, we

use a split control plane mechanism with a coarse
timescale modeling layer loosely coupled with a fine
timescale decision layer.

2. The modeling layer trains on a minute-level timescale
and pushes the global model to decision layer.

3. The decision layer is horizontally scalable and can op-
erate on a millisecond-level timescale. It combines the
up-to-date per-client information, the global model,
and other policies to makes optimal CDN/bitrate deci-
sions for clients.

4 Sensing/Actuation Layer
This section presents the design of the C3 client side
modules, which provide three functions. First, it reports
video quality from the players to the C3 controller. Sec-
ond, it receives and implements control decisions from
the controller. Third, it has built-in fault tolerance when
it loses connectivity to the C3 controller. There are two
practical challenges in implementing these functions: (1)
diversity of client-side platforms and (2) slow software
update cycles of client-side platforms. We first elaborate
the challenges and then describe how C3 addresses them.

4.1 Challenges
To understand the causes of the practical challenges, we
need some background on the structure of the client-side
platform. Each client-side platform consists of four key
components: client operating system, application frame-
work, streamer, and player application. The application
framework runs on top of the operating system and pro-
vides the libraries to support the development of video
player applications. Many application frameworks can
run atop the same operating system and device hardware.
The streamer is responsible for downloading and render-
ing the video. Finally, the player application is the soft-
ware developed by a content publisher based on specific
application framework, to implement the user interface,
access to content library, and player navigation.
Diversity: We observe client diversity along sev-
eral dimensions; e.g., programming language (e.g., C,
Javascript, Lua), system support for code execution (e.g.,
support for multi-threading), application framework, and
streamer. The diversity of application frameworks and
streamers is especially critical as it defines the interfaces
used to monitor and control the video quality, and speci-
fies the programming environment. Table 1 shows three
examples of operating systems and devices and a subset
of application frameworks. In total, we encounter 95 dis-
tinct application framework and streamer combinations.
Each such combination requires special attention to mon-

6



OS Devices Application Frameworks
Android
OS

Android
phones/tablets

MediaPlayer, Irdeto, NexStreaming,
Video View, VisualOn, PrimeTime,
Akamai

PlayStation
OS

PS3, PS4, PS
Vita

Trilithium, LibJScript, WebMAF,
Touchfactor

Mac OS &
Windows
with Flash

PCs OSMF, Kaltura, Ooyala, Prime-
Time, Brightcove, FlowPlayer, The-
Platform, JWPlayer

iOS iPhone, iPad,
iPod Touch

AVFoundation, Ooyala, Brightcove,
PrimeTime, MediaPlayer, Irdeto

Table 1: Examples of OS and devices with the corre-
sponding application frameworks.

itoring and control interfaces. Such diversity further rein-
forces the need to minimize the client-side functionality.
Long software update cycles: The second major chal-
lenge is long software update cycles for client-side plat-
forms. There are a host of contributing factors here; e.g.,
device firmware update cycle (3-12 months), publisher
app updates (1-6 months) and app store ratifications (1-4
weeks), and user delays in applying updates (weeks to
months). Unlike in Phase II where Flash/RTMP plat-
forms support a player module to be downloaded dy-
namically, the integration code in most Phase-III plat-
forms is embedded in the player binary and cannot be
changed arbitrarily. This long update cycle fundamen-
tally constrains the pace of evolution of the C3 platform
with respect to any functions that depend on sensing/ac-
tuation layer. Although the decision algorithms are not
constrained by the update cycle as it is already on the
controller, it does impact the information available to the
control logic. For instance, if some quality metric is cur-
rently not collected or cannot be extrapolated from the
collected information, the control logic will not be able
to use it until the next release, which as we have see can
take months or even a year (e.g., set-top boxes).

4.2 Thin Client-Side Design
Next, we discuss how we address the challenge of client
diversity and long update cycles by making the sens-
ing/actuation layer functionality as minimal as possible.
We do so via two key design decisions. First, we intro-
duce a general and abstract representation of video player
actions. This allows us to handle client diversity. Second,
we make an explicit decision to export raw events rather
than summary statistics and push this computation to the
backend. This delayed binding enables us to tackle the
uncertain software upgrade cycles in the wild.

4.2.1 Abstracting player state and control

To minimize the amount of engineering effort required to
support the client-side heterogeneity, we identify a logi-
cal narrow waist that we call the ConvivaStreamingProxy
(CSP) (Figure 5). CSP abstracts away the idiosyncrasies
of different players, and implements high-level moni-
toring APIs for collecting player performance informa-

Sensing/ 
Actuation 
 
 
 
 

 
 

Diverse platforms 

C3 Controller 

Adaptors 

Shim API layer – CSP 
(Monitoring APIs, Control APIs) 

Session Data Model (SDM) 
(Events, states, measurements) 

Figure 5: Overview of the sensing/actuation layer.

tion, and control APIs for switching bitrate and CDN.
For each unique pair of streamer and application frame-
work that we want to integrate, we implement an adaptor
using the CSP API. The adaptor translates between the
framework/streamer-specific APIs and the CSP APIs.

While the adaptor is specific to each framework and
streamer, the common logic above the CSP is reusable
across different platforms. To reduce the engineering ef-
forts and support diverse programming languages used
by the application, we developed a custom language
translator that can take the source code from one lan-
guage (in this case C#) and generate the equivalent
source code for other languages. The design of this trans-
lator is outside the scope of this paper.

The CSP uses a unified monitoring interface, called
Session Data Model (SDM) between clients and the C3
controller (Figure 5). SDM is a conceptual model for
Internet video sessions and is agnostic to device, OS, ap-
plication framework, or streamer features. Consequently
new platforms can be integrated with little change on the
controller. The SDM defines events, states and measure-
ments as following:
• Events encode one-time actions and may change a

state variable. Examples are bitrate switch start/end,
application error.

• States encode persistent state variables, such as player
state (buffering, playing, etc), bitrate and CDN.

• Measurements are continuous variables that show the
health of the player, such as frame rate, available
bandwidth, and buffer length.
CSP also provides the control APIs between clients

and the controller. The clients send poll requests to get
control decisions of bitrate and CDN at well-defined in-
tervals (e.g., either at periodic intervals or at video chunk
boundaries).

4.2.2 Exposing raw data

While the SDM abstraction minimizes the effort in inte-
grating new platforms, it does not address the other prac-
tical challenges arising from long software update cy-
cles. Specifically, this means that some logic (e.g., qual-
ity metric computation) becomes inflexibly hardcoded in
client side. In order to reduce the need to make changes

7



to clients, we build on top of the SDM abstraction and
instrument the client to report the raw events and player
states. For example, we could calculate the average bi-
trate of a session on the client and send this to the con-
troller. In contrast, our approach reports all bitrate switch
events to the backend and allow it calculate the average
bitrate (or any other bitrate-related metric). This delayed
binding in postponing summarization of quality metrics
to the controller further embodies the high-level decision
to make the client-side as minimal as possible.

The frequency at which the clients report the controller
naturally induces a tradeoff between overhead and infor-
mation freshness. On one hand, the clients should report
quality frequently so that the controller can detect client-
side events (e.g., session exit, buffer draining out) in time
and make decisions accordingly. On the other hand, up-
dating too frequently may overload the controller and/or
consume too much client-side resources. To address this
problem, we take the following practical approach. The
sensing/actuation layer periodically batches the collected
information into heartbeats before sending them to the
controller. In practice, we choose a sweet spot between
5 seconds and 20 seconds; intervals ≤ 5 seconds intro-
duce undesirable interactions especially on mobile de-
vices (e.g., draining battery by increasing CPU and ra-
dio use) and intervals ≥ 20 seconds significantly reduce
freshness of data used in decision making. Fortunately,
most playback buffers are on the order of 30 seconds,
so the controller is always able to react before the buffer
drains out. Additionally, the controller can dynamically
tune the reporting frequency; e.g., decreasing the fre-
quency during flash crowds to reduce the overhead and
increasing the frequency for a client with a low buffer.

4.3 Fault tolerance
The main failure mode is when the client can no longer
contact one of the C3 servers implementing the decision
layer functions; e.g., the server failed or the network link
is unreliable. There are two potential concerns we need
to address: (1) loss in quality (because the client can-
not receive control decisions) and (2) information loss
(because the client cannot send quality measurements).
Fortunately, we can leverage application-level resilience
in conjunction with the SDM to address both issues.

First, we ensure that client-perceived quality will de-
grade gracefully when the C3 controller is unreachable.
Because there is no tight coupling between the client and
the decision layer, we can handle decision layer failures
by simply resending requests and reports, and allow the
load balancer to reassign the client to a new server. If the
client is unable to contact the controller, it will fall back
to the native bitrate adaptation algorithms [30, 9], which
most platforms support today. The native algorithms are
able to select bitrate with local logic (e.g., using through-

put or buffer occupancy), so the player can still provide
descent quality of experience.

Second, to mitigate the impact of information loss, we
use built-in resilience provided by the SDM semantics
because it explicitly includes current player states. To see
why, consider an alternative solution that only reports the
events without reporting current player states. The prob-
lem is that even a single lost event can mislead the con-
troller; e.g., if we miss an event where the player transi-
tioned from playing to buffering state, the controller will
incorrectly assume that it is currently in playing state.
However, we can mitigate the impact of lost heartbeats
by including a snapshot of current states in each heart-
beat. When a heartbeat is lost or a C3 server is down
(when all history events are lost), even though the con-
troller cannot recover lost events, the new C3 server can
infer the current state using the next heartbeat.

4.4 Summary of key design decisions
In summary, the C3 client-side component has the fol-
lowing key aspects:
1. A common data/control abstraction via the SDM in-

terface to tackle client-side diversity.
2. Exposing raw data to address slow client release cycle.
3. Providing a configurable reporting frequency to re-

duce the overhead.
4. Enabling graceful degradation by falling back to the

native adaptation algorithm to handle transient fail-
ures and using stateful SDM features to re-establish
context when raw events are lost.

5 Evaluation
In this section, we evaluate the performance of C3 and
the benefits it offers. We divide our evaluation into the
following parts;

• We evaluate the C3 controller in terms of (a) scalabil-
ity and responsiveness of the decision layer (§5.1) and
(b) the ability of the modeling layer to handle various
workloads within the deadlines (§5.2).

• We show the sensing/actuation layer is lightweight in
terms of bandwidth consumed and can gracefully de-
grade user experience under failures (§5.3).

• We analyze the quality improvement that C3 offers in
the wild and discuss anecdotal experiences in handling
high impact events (e.g., FIFA World Cup) (§5.4).

5.1 Decision layer
Scalability: By design, the decision layer is horizontally
scalable (§3), with no synchronization needed between
its instances to handle client requests.

Here, we focus on evaluating the requests per second
(RPS) that a single decision instance can process within a
given response time threshold. The instance under test is

8



 0

 20

 40

 60

 80

 100
C

P
U

 (
%

)

 0
 0.5

 1
 1.5

 2
 2.5

 3

0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1 5.7

R
P

S
 (

K
)

# of requests sent per second (K)

Figure 6: Scalability of single decision instance.

based on an Intel Xeon L5520 2.27Gz with 4 GB RAM,
and only one core is used. Note that the requests include
heartbeats and control requests, both of which are pro-
cessed via the same procedure.

Figure 6 shows the RPS and CPU utilization when re-
ceiving different number of requests. It shows a linear
growth in RPS and CPU utilization before the instance is
saturated at the point of 2500 requests.
Load balancing: Next, we use real world measurements
to show that the requests assigned by the load balancer to
each decision instance is evenly distributed, even under
high load. Figure 7 shows the distribution of RPS and
CPU utilization of decision instances in different deci-
sion data centers, under a high load during the one of
the most popular games in World Cup 2014. The means
and standard deviations are based on all instances in each
data center. It shows that the load balancer can assign
the requests almost evenly across all decision instances
within each data center with little variance and no request
being dropped. The differences across the data centers
is because the wide-area load balancing used geographi-
cal proximity and the workload was unevenly distributed
around the world. Finally, the low CPU utilization sug-
gests this load is well below the instance capacity.

 0

 10

 20

 30

C
P

U
 (

%
)

 0
 100
 200
 300
 400

DC-1 DC-2 DC-3

R
P

S
 (

K
)

Figure 7: Number of requests and CPU utilization
(mean and standard error) of decision instances un-
der a high load.
End-to-end response time: The key metric of interest
for the decision layer is the end-to-end response time –
the time between client sends a request and it receives
the response (typically a control decision). It includes
internal processing latency as well as network latency.

We measured the response time of requests in the real
production system. Figure 8 presents the response time
of requests observed from 10 countries representing dif-
ferent continents. It does show variance among different
countries, but overall, we observe the 50%ile (or 80%ile)
is always below 400ms (or 800ms)

 10

 100

 1000

US UK Russia

China

Japan

Turkey

India
ZA Brazil

AU

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

10-20-50-80-90%ile
400 ms
800 ms

Figure 8: Response time is consistently low across
countries from different continent.

5.2 Modeling layer
The modeling layer has to process various processing
jobs with different characteristics. Figure 9 shows the
processing latency of three most typical types of jobs
and compares them with their deadlines, i.e., maximum
expected processing time. The global model (“Global-
Training”) needs to be refreshed every minute and needs
to run complex machine learning algorithms over the re-
cent (few minutes) of global measurements. Customer
interactive queries (“InteractiveQuery”) run on-demand,
and have to be completed in sub-second response time
to prevent the customers from waiting too long. Finally,
live update of quality metrics (“LiveUpdate”) is the met-
ric computation and aggregation process and has to be
sub-second. As shown in Figure 9, the processing la-
tency can easily satisfy the deadlines of different jobs.

 10

 100

 1000

 10000

 100000

GlobalTraining
InteractiveQuery

LiveUpdate

T
im

e
 (

m
s
)

Processing latency
Deadline

Figure 9: Processing latency (mean and standard de-
viation) of different types of jobs in modeling layer
compared to their deadlines.
5.3 Sensing/actuation layer
Next, we show that sensing/actuation layer has relatively
light overhead compared to player execution and it pro-
vides local failover under decision layer failures.
Overhead of sensing/actuation layer: We evaluate
the sensing/actuation layer overhead in terms of the ad-
ditional bandwidth used by comparing a C3-enabled

9



0 

1 

2 

3 

4 

5/1/14 5/8/14 5/15/14 5/22/14 5/29/14 

V
S

F 
(%

) 

TIme (mm/dd/yy) 

Native control 
C3 control 

(a) Video start failure rate (VSF).

0 

0.5 

1 

1.5 

2 

2.5 

5/1/14 5/8/14 5/15/14 5/22/14 5/29/14 

B
uf

R
at

io
 (%

) 

Time (mm/dd/yy) 

Native control 
C3 control 

(b) Buffering ratio (BufRatio).

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 2 3 4 5 

B
uf

R
at

io
 (%

) 

Content Providers 

Native control 
C3 control 

(c) Buffering ratio of 5 content providers.

Figure 11: Quality improvement of using C3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50

B
it
ra

te
 (

k
b
p
s
)

Time (sec)

C3 avail.
C3 unavail.

Figure 10: Local application-level resilience when C3
controller is unavailable.

player and a base video player. The base player we use is
a fully functional player with OSMF as its streamer, and
we let both the base player and C3-enabled version play
a video encoded in 1.5Mbps bitrate on a laptop running
Windows OS. We find that the additional bandwidth used
by C3 is are typically very low and ≤ 1% of the band-
width used to download the video (not shown).
Local failover under decision layer failures: Next, we
stress test the client under the scenario when it loses com-
munication with the C3 controller. By design (§4.3), the
player should fall back to the player’s native adaptive bi-
trate logic and play smoothly; i.e., as long as the avail-
able bandwidth can sustain the lowest bitrate, the player
should play smoothly, though with a low quality. We
set up a real player to play a video encoded in multiple
bitrates (from 880 to 2750 kbps), and the content is avail-
able from two CDNs. Figure 10 shows the time-series of
bitrate downloaded by the player over two runs. In the
first run, the C3 controller is not available and we throt-
tle the bandwidth to the default CDN, so that the player
backoffs to the native control logic and sticks to the low
bitrate but not crash. In the second run, the C3 controller
is available, and we again throttle the bandwidth to the
same CDN. This time, because the C3 controller identi-
fies the performance difference of two CDNs, it instructs
the player to start with the unthrottled CDN, and thus it
is able to switch to higher bitrate after a few chunks.3

5.4 C3 real-world deployment
Finally, we present the quality improvement C3 offers
in the wild and our experiences in managing some high-
impact events.

3The bitrates of the initial chunks are intentionally chosen to be low
to minimize join time and avoid early buffering.

5.4.1 Quality improvement

We begin with the real-world quality improvements
brought by centralizing decision logic detailed in §3.2.

Benefits of using C3: To estimate the quality improve-
ment, we did a randomized trial where each session was
randomly assigned to use either C3 or the native con-
trol logic. Figure 11 shows the improvement during May
2014, in terms of two quality metrics and across five con-
tent providers by comparing the median quality of ses-
sions using C3 vs. native clients.

First, Figure 11(a) shows that C3 can significantly re-
duce the video start failure rate (percent of video ses-
sions that failed to start) of a content provider. The
reason is that using the global view allows us to pre-
dict CDN performance and choose an initial CDN that
is not overloaded, unlike the native logic, which is typ-
ically statically configured (or chosen at random). Sec-
ond, Figure 11(b) compares the buffering ratio of a con-
tent provider, and it shows a consistent reduction by 50%
in buffering ratio by C3. The reason is that we can adapt
the midstream selection of bitrate and CDN by leverag-
ing the quality information of other sessions to achieve
higher bitrate and a lower buffering ratio. Finally, Fig-
ure 11(c) shows that the quality improvement is consis-
tent across five different content providers that use C3.

Impact of data staleness: Next, we present a trace-
driven what-if analysis to quantify how much the de-
crease in freshness can impact the optimality of such
quality improvement. Recall that allowing the global
view to be stale on the order of few minutes was a key en-
abler for the scale-out design in §3. To avoid any biases
introduced by our own control logic, we use the trace of
sessions of Feb 10 from a content provider whose de-
cisions are not controlled by C3 (as in §3.1). We sim-
ulate the effect of selecting the best observed CDN t
minutes ago for each AS, and vary the degree of stale-
ness by modifying this observation window t. Ideally,
the decisions are made using the most recent view, i.e.,
t = 1. We evaluate multiple levels of staleness with
t = {2,10,20,40,80,160} minutes. For each t, we com-
pare FreshestDecision (i.e., times of picking the actual
best CDN based on the freshest data) and StaleDecision
(i.e., times of picking the actual best CDN based on the

10



 0

 0.1

 0.2

 0.3

2 10 20 40 80 160

G
a

p
T

o
O

p
ti
m

a
l

Staleness (min)

BufRatio

 0

 0.1

 0.2

2 10 20 40 80 160

Staleness (min)

AvgBitrate

Figure 12: Impact of using stale data as input.

t-minute stale data), and compute the GapToOptimal =
1− StaleDecision

FreshestDecision . The impact of staleness is smaller
when GapToOptimal is closer to zero.

Figure 12 shows the GapToOptimal of buffering ra-
tio and average bitrate under different staleness t. First
of all, it shows that using 2-minute stale data has
very little impact, increasing buffering ratio by less
than 7% and average bitrate by less than 2.5%. This
suggests that minute-level stale data is still useful to
make near-optimal decisions. Second, in both metrics,
GapToOptimal increases slowly when t increases from
2 to 20 minutes, and begins to increase much faster from
t = 40. This suggests that near-optimal decisions can be
made with slightly stale global model.

5.4.2 Case studies with high-impact events

In this section, we focuses on case studies on high-impact
events (e.g., popular sports events) to showcase that the
design of C3 is flexible and scales out horizontally.
Scale-out capability: The first case study highlights the
flexibility of the scale-out design that enabled us to in-
voke public resources on demand. During World Cup
2014, we provisioned additional decision instances ca-
pability, including instances from a major public cloud
service provider, in order to handle the scale of clients,
which was expected to be 6M concurrent viewers. As a
result, we were able to successfully handle the peak of
3.2M concurrent viewers during the US-Germany game.
The reason for this scale-out capability is that the client-
facing decision layer is decoupled from the modeling
layer, which is the only centralized function (§4.2).
Dynamic reconfiguration: The second case is an ex-
ample of flexibility that enables C3 to drop certain func-
tionality under unexpected flash crowd. During a very
popular soccer game of one European soccer league we
saw about 2M concurrent viewers. Specifically, we saw
a large flash crowd when the content provider switched
all of its viewers to another channel, causing a high join
rate which exceeded the capacity of our hardware load
balancer for doing SSL offload. Since we could not
add capacity to the hardware load balancer, we needed
to devise quick workarounds to reduce this load. Our
solution was to reduce the heartbeat frequency and dis-
able HTTPS for that particular content provider. This
effectively reduced the overhead of per-session operation
(e.g., SSL handshakes) and ensured the availability of C3

controller. This type of fast reaction to unexpected flash
crowds was possible because we had a thin client and
had moved most of the functions to the C3 controller—
it would have been virtually impossible to reconfigure
client behaviors with hardcoded client-side player logics.

6 Related Work
C3 is related to a rich body of work in network con-
trol, application-layer systems, and big data platforms.
While C3 borrows and extends ideas from these rele-
vant communities, the core contribution of our work is
in synthesizing these ideas to demonstrate the feasibility
of an Internet-scale control plane architecture for Inter-
net video. We briefly describe key similarities and dif-
ferences between C3 and related work.
Network control plane: As discussed earlier in §2,
the origins of C3 were inspired by the precursors to
SDN (e.g., [45, 18, 43, 33, 19]) and in many ways C3’s
evolution has paralleled the corresponding rise of SDN.
As such, there are natural analogies between C3 and
SDN, in terms of the sets of challenges that both have
to address: interface between control and data plane
(e.g., [41, 17], distributed and global state management
(e.g., [33, 15, 36]), consistency semantics (e.g., [40, 44]),
centralized optimization algorithms (e.g., [26, 28]). The
key differences are that C3 focuses on a specific video
application ecosystem, which entails different domain-
specific challenges (e.g., larger scale of clients and more
data plane heterogeneity) and domain-specific opportu-
nities (e.g., weaker consistency).
Video quality optimization: Previous work confirms
that video quality impacts user engagement [23, 14]. It
also identifies that many of the quality issues today are a
result of sub-optimal client-side control logic (e.g., [27,
30]), and spatial and temporal diversity of performance
across different CDNs and content providers [39, 38, 29],
which suggests a centralized controller or a federated
architecture [16] that provides global state and enables
better informed decision making. However, these prior
studies made a case for centralized control but fell short
of actually demonstrating the viability of that control
plane or the real benefits in the wild. In contrast, C3
is a concrete production design and implementation that
achieves the benefits identified by these efforts. In doing
so, it addresses many challenges (e.g., scalability, fault
tolerance) that these prior works did not try to address.
Application resilience: The idea of exploiting domain-
and workload-specific insights for improving system
scalability and resilience is far from new and has been
repeatedly identified; e.g., both in Internet services [24,
31, 5] and distributed file systems [25, 20]. For instance
GFS exploits a unique workload pattern [25] while Span-
ner exploits tolerance for weaker consistency [20]. Our
specific contribution is in reinforcing this insight in the

11



context of an Internet-scale control plane architecture.

Real-time data processing systems: In some sense, C3
can also be viewed as an instance of a scale out ana-
lytics and control system in the spirit of other big-data
solutions (e.g., [21, 6, 22, 12, 11, 34, 10, 1]). Indeed,
the C3 implementation builds on (and has actively con-
tributed to) a subset of these existing technologies. While
the C3 implementation relies on tools such as Spark [11]
and Kafka [34], the core ideas are quite general and can
be ported to other platforms. At a conceptual level, C3
also shares some similarity with the broad purview of
the recent Lambda Architecture [7], with a combination
of batch, serving, and speed layers. More recent work on
Velox [21] also recognized the separation of global mod-
eling and per-client prediction as a powerful system de-
sign choice for other data analytics applications. While
C3 follows a similar high-level multi-layer architecture,
the key is the specific division of functions between layer
for video quality optimization. For instance, unlike the
front-end layer in most scale-out systems, C3’s front-
end decision layer is an active layer that runs decision-
making functions as well. Moreover, C3 justifies the sep-
aration of modeling and decision making by the domain-
specific observation that slightly stale global models can
still achieve near-optimal decisions.

7 Lessons
We conclude with key lessons we have learned from
building and operating C3. Even though C3’s design
was driven by video-centric challenges and opportuni-
ties, these lessons have broader implications to concur-
rent and future efforts for centralized network control.

Feasibility of Internet-scale control: The one obvious
lesson from our journey is that it is indeed possible to im-
plement an Internet-scale control platform that achieves
policy goals with global visibility. While there are par-
allel SDN success stories demonstrating the viability of
centralized control, these have been in different (and ar-
guably more scoped) domains; e.g., low-latency datacen-
ters [32, 42], wide-area networks with a few PoPs [28] or
coarse-grained inter-domain route control [18]. With C3,
we provide another proof point in what we believe to be
a much more global deployment, with larger scale and
more heterogeneous clients, more stringent policy, and
greater expectations in quality of experience.

Decisions that worked: Among the many decision
choices that have made C3 a proof point of Internet-scale
control, we highlight three that were particularly useful:

• Exploiting application-level resilience: A key en-
abler for our scale-out control architecture is that we
were able to appreciate and exploit domain-specific
properties that allows us to weaken some requirements
(e.g., consistency and model freshness). While this

idea may not be new and has been re-observed in
many contexts, we believe that it is especially use-
ful for network control applications. For instance,
there has been considerable research effort develop-
ing consistent update schemes for SDN [40]. Rather
than building a general-purpose solution, it might be
possible to leverage application-specific resilience and
engineer simpler schemes with weaker consistency
properties.

• Minimal client functionality: We cannot stress
enough the advantages that we have derived from min-
imizing the client functionality. This has (i) dramat-
ically simplified our product development, integra-
tion cycles to support the increasingly heterogeneous
client-side platforms, and (ii) made the C3 controller
flexible to enforce global policy and evolve. The mini-
mal client design is also made possible by the increas-
ing compute capabilities of the backend.

• Exposing lower-level APIs: While minimal client
functionality is useful, it has also been proved surpris-
ingly useful to expose as many lower-level APIs from
clients as possible, since they maximize control logic
extensibility with a (relatively) slowly evolving data
plane. We see immediate implications of this in SDN.
While SDN started off with a minimal API (e.g., early
OpenFlow versions), it soon devolved into the same
complexity pitfalls that it sought to avoid (e.g., Open-
Flow 1.3 spec is 106 pages long [17]). We believe it
might be worthwhile for the SDN community to re-
visit minimality in light of the benefits we have de-
rived and we already see early efforts to this end [17].

New research opportunities: C3’s design and deploy-
ment opens up new possibilities for video quality opti-
mization. The current C3 design is only a step in our
journey and we acknowledge that there are several direc-
tions for future work that we do not cover in this paper.
For example, one interesting question is analyzing the
interaction of C3 with CDN control loops. In terms of
quality improvement, we need a better understanding of
clients that show little improvement and techniques to
leverage network and CDN information for better qual-
ity diagnosis. Similarly, there are interesting modeling
and algorithmic questions in the design of the prediction
modeling and decision algorithms that have significant
room for improvement.

Acknowledgments
This paper would not be possible without the contribu-
tion of the Conviva staff. Junchen Jiang was supported
in part by NSF award CNS-1345305. The authors thank
Sachin Katti for shepherding the paper and the NSDI re-
viewers for their feedback.

12



References
[1] Apache flume. incubator.apache.org/

flume.

[2] Cisco forecast. http://blogs.cisco.
com/sp/comments/cisco_visual_
networking_index_forecast_annual_
update/.

[3] Cisco study. http://www.cisco.com/web/
about/ac79/docs/sp/Online-Video-
Consumption_Consumers.pdf.

[4] Driving Engagement for Online Video.
http://events.digitallyspeaking.
com/akamai/mddec10/post.html?hash=
ZDlBSGhsMXBidnJ3RXNWSW5mSE1HZz09.

[5] Facebook scribe. github.com/facebook/
scribe.

[6] Hadoop. http://hadoop.apache.org/.

[7] Lambda archictecture. lambda-
architecture.net.

[8] Microsoft Smooth Streaming. http:
//www.microsoft.com/silverlight/
smoothstreaming.

[9] Netflix. www.netflix.com/.

[10] S4 distributed stream computing platform.
incubator.apache.org/s4.

[11] Spark. http://spark.incubator.
apache.org/.

[12] Storm. storm-project.net.

[13] I. Sodagar. The MPEG-DASH Standard for Multi-
media Streaming Over the Internet. IEEE Multime-
dia, 2011.

[14] A. Balachandran, V. Sekar, A. Akella, S. Seshan,
I. Stoica, and H. Zhang. Developing a predictive
model of quality of experience for internet video.
In ACM SIGCOMM ’13.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. OConnor,
P. Radoslavov, W. Snow, et al. Onos: towards an
open, distributed sdn os. In ACM HotSDN 2014.

[16] A. Biliris, C. Cranor, F. Douglis, M. Rabinovich,
S. Sibal, O. Spatscheck, and W. Sturm. Cdn bro-
kering. Computer Communications, 2002.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIG-
COMM CCR, 2014.

[18] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and im-
plementation of a routing control platform. In NSDI
2005.

[19] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking con-
trol of the enterprise. ACM SIGCOMM CCR 2007.

[20] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, et al. Spanner: Googles
globally distributed database. ACM Transactions
on Computer Systems (TOCS) 2013.

[21] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li,
Z. Zhang, M. J. Franklin, A. Ghodsi, and M. I.
Jordan. The missing piece in complex analytics:
Low latency, scalable model management and serv-
ing with velox. In Conference on Innovative Data
Systems Research (CIDR), 2015.

[22] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI 2004.

[23] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A.
Joseph, A. Ganjam, J. Zhan, and H. Zhang. Un-
derstanding the impact of video quality on user en-
gagement. In Proc. SIGCOMM, 2011.

[24] M. J. Freedman. Experiences with coralcdn: A five-
year operational view. In NSDI 2010.

[25] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In ACM SIGOPS Operating
Systems Review 2003.

[26] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven wan. In ACM
SIGCOMM 2013.

[27] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: evidence from a large video streaming
service. In ACM SIGCOMM 2014.

[28] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
et al. B4: Experience with a globally-deployed
software defined wan. In ACM SIGCOMM 2013.

13



[29] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shed-
ding light on the structure of internet video quality
problems in the wild. In ACM CoNEXT 2013.

[30] J. Jiang, V. Sekar, and H. Zhang. Improv-
ing Fairness, Efficiency, and Stability in HTTP-
Based Adaptive Streaming with Festive . In ACM
CoNEXT 2012.

[31] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong,
R. Kleinberg, B. Mancuso, D. Shaw, and D. Stodol-
sky. A transport layer for live streaming in a con-
tent delivery network. Proceedings of the IEEE,
92(9):1408–1419, 2004.

[32] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross,
N. Gude, P. Ingram, et al. Network virtualization
in multi-tenant datacenters. In NSDI 2014.

[33] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, et al. Onix: A distributed con-
trol platform for large-scale production networks.
In OSDI 2010.

[34] J. Kreps, N. Narkhede, and J. Rao. Kafka: A dis-
tributed messaging system for log processing. In
Proceedings of the NetDB, 2011.

[35] S. S. Krishnan and R. K. Sitaraman. Video stream
quality impacts viewer behavior: inferring causal-
ity using quasi-experimental designs. In ACM IMC,
2012.

[36] D. Levin, A. Wundsam, B. Heller, N. Handigol, and
A. Feldmann. Logically centralized?: state distri-
bution trade-offs in software defined networks. In
ACM HotSDN 2012.

[37] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang.
Optimizing Cost and Performance for Content Mul-
tihoming. In Proc. SIGCOMM, 2012.

[38] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and
C. Tian. Optimizing cost and performance for con-
tent multihoming. ACM SIGCOMM CCR, pages
371–382, 2012.

[39] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang. A Case for a Coordinated
Internet Video Control Plane. In SIGCOMM, 2012.

[40] R. Mahajan and R. Wattenhofer. On consistent up-
dates in software defined networks. In ACM Hot-
Nets 2013.

[41] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: enabling innovation
in campus networks. ACM SIGCOMM CCR,
38(2):69–74, 2008.

[42] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: a centralized zero-queue
datacenter network. In ACM SIGCOMM 2014.

[43] B. Raghavan, M. Casado, T. Koponen, S. Rat-
nasamy, A. Ghodsi, and S. Shenker. Software-
defined internet architecture: decoupling architec-
ture from infrastructure. In ACM HotNets ’12.

[44] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang,
and A. Arefin. A network-state management ser-
vice. In ACM SIGCOMM 2014.

[45] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni,
H. Zhang, and Z. Cai. Tesseract: A 4d network
control plane. In NSDI, volume 7, pages 27–27,
2007.

14


