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Abstract—We have recently witnessed the real life demonstra-
tion of link-flooding attacks—DDoS attacks that target the core of
the Internet that can cause significant damage while remaining
undetected. Because these attacks use traffic patterns that are
indistinguishable from legitimate TCP-like flows, they can be
persistent and cause long-term traffic disruption. Existing DDoS
defenses that rely on detecting flow deviations from normal TCP
traffic patterns cannot work in this case. Given the low cost of
launching such attacks and their indistinguishability, we argue
that any countermeasure must fundamentally tackle the root
cause of the problem: either force attackers to increase their costs,
or barring that, force attack traffic to become distinguishable
from legitimate traffic. Our key insight is that to tackle this root
cause it is sufficient to perform a rate change test, where we
temporarily increase the effective bandwidth of the bottlenecked
core link and observe the response. Attacks by cost-sensitive
adversaries who try to fully utilize the bots’ upstream bandwidth
will be detected since they will be unable to demonstrably
increase throughput after bandwidth expansion. Alternatively,
adversaries are forced to increase costs by having to mimic
legitimate clients’ traffic patterns to avoid detection. We design
a software-defined network (SDN) based system called SPIFFY
that addresses key practical challenges in turning this high-level
idea into a concrete defense mechanism, and provide a practical
solution to force a tradeoff between cost vs. detectability for link-
flooding attacks. We develop fast traffic-engineering algorithms
to achieve effective bandwidth expansion and suggest scalable
monitoring algorithms for tracking the change in traffic-source
behaviors. We demonstrate the effectiveness of SPIFFY using
a real SDN testbed and large-scale packet-level and flow-level
simulations.

I. INTRODUCTION

Over the last few years, link-flooding DDoS attacks have
been proposed that can cause substantial damage to the core
of the Internet [51] [31]. Unlike traditional DDoS attacks that
exhaust the resources (access bandwidth or computation) of
the end targets, these DDoS attacks target the connectivity
infrastructure of the targets. These attacks utilize distributed
botnets to create a large number of low-rate attack flows
that traverse a set of chosen network links. Such flows can
cause severe congestion at the targeted links and ultimately
significantly degrade the connectivity of target hosts or servers.
These attacks have quickly moved from the realm of academic
curiosity [31], [51] to real-world incidents [28], [17].

Link-flooding attacks have two specific characteristics that
make them exceedingly effective at scale while rendering
traditional defense mechanisms irrelevant. First, they attack
targets indirectly. As the locus of attack is different from
the targeted end servers, they cannot be easily detected by
intrusion-detection systems and firewalls at the end servers.
Second, these attacks use protocol-conforming traffic flows
that are indistinguishable from legitimate flows, thereby caus-
ing high collateral damage when flows are dropped to relieve
congestion. Consequently, traditional defenses that rely on
detecting anomalous flows with specific attack signatures (e.g.,
SYN floods) or sources that appear in “elephant flows” [34],
[58] will simply be ineffective against these attacks, and may
in fact adversely impact legitimate connections.

Moreover, attackers have a fundamental cost-asymmetry
advantage with respect to defenders. On the one hand, the
cost of flooding a 10 Gbps network link can be as low as
US $80 and averages US $920, assuming 1 Mbps upload
bandwidth per bot [18]. On the other hand, the cost of the
backbone link bandwidth is orders of magnitude higher. For
example, 10 Gbps bandwidth in the Internet transit costs about
US $6,300 as of 2015 [3]. This is approximately 7 – 80 times
more expensive relative to the equivalent attack bandwidth.
Unfortunately, removing the attack-defense cost asymmetry
is very difficult to achieve since these costs are determined
by two fundamentally independent markets, namely, pay-per-
install bot markets [18] and Internet transit markets [53].
Taken together, indistinguishability and cost asymmetry enable
attackers to launch pernicious attacks on critical infrastructures
and services with impunity.

In this paper, we argue that any solution that purports
to defend against indistinguishable link-flooding attacks must
achieve at least one of the following goals: (1) remove or re-
duce the cost asymmetry; (2) ensure adversary detection; or (3)
create an untenable tradeoff between the cost and detectability.
By definition, any ISP that can either substantially increase the
attack cost relative to the defense cost or induce detectability
will deter attacks by rational adversaries; i.e., cost-sensitive
adversaries who wish to remain undetected.1

We show, perhaps surprisingly, that is indeed possible
to force the adversary into an untenable tradeoff that either
increases the attack cost or forces detectability. The high-level
intuition behind our approach is as follows; viz., Figure 1.
Suppose we know the locus of the attack L (i.e., a specific
ISP link) and we have some capability to logically increase

1In contrast, countermeasures for cost-insensitive, irrational adversaries are
known to be harder and more expensive to orchestrate and deploy; e.g.,
CoDef [38]. Thus, SPIFFY’s efficient deterrence is a very desirable first-line
defense for cost-sensitive, rational adversaries, which are believed to be the
majority of DDoS adversaries; viz., Section VIII-A.
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Fig. 1: Intuition for distinguishing legitimate senders from
bots via temporary bandwidth expansion.

the bandwidth of L by some factor M temporarily. After
the increase, we observe the response of the traffic source
IPs that were traversing L. Now, legitimate sources running
TCP-like flows will naturally see a corresponding increase in
their throughputs as the bandwidth of their bottleneck link
has increased. Attack sources, however, will not observe this
increase as a rational cost-sensitive attacker would have chosen
to fully utilize the available bandwidth of the upstream links
of the sources in the first stage; i.e., before the temporary
bandwidth expansion. Thus, the bottleneck bandwidth increase
will induce no increase in the effective throughput of the attack
sources. Alternatively, to avoid detection, the attacker could
choose to keep each bot’s attack traffic rate much lower than
the available bandwidth of its upstream link. Note, however,
that this will increase the number of required bots and thus
increase attack cost proportionally. In essence, adversaries are
forced to either allow their attack sources to be detected (via
rate-change measurements) or accept an increase in attack cost.
Note that the key requirement is to monitor the change in
throughput for traffic sources after the bottleneck bandwidth
increase; measuring the raw throughput itself alone will not
help detection as the attack flows are indistinguishable from
normal flows.

However, there are three practical challenges that need to
be addressed before this high-level intuition can turn into a
practical defense mechanism:

(1) Implementing bandwidth expansion: First, we need
some mechanism for increasing the logical bandwidth of
L with a sufficiently large expansion factor. Note that a
larger expansion factor will: (a) make it easier to distinguish
bots vs. legitimate sources (e.g., to create a clear separation
accounting for measurement noise) and (b) equivalently
increase the effective attack cost. However, it is infeasible
and uneconomical for ISPs to have spare dark fibers for each
link, and thus we need deployable mechanisms to virtually
increase the bandwidth, if only temporarily.

(2) Fast workflow: Second, we need the defense workflow to
be fast and responsive to be effective against real attacks.
If the temporary bandwidth expansion and detection takes
several hours, then the damage is already done.

(3) Robust rate-change detection: Third, we need per-sender
rate change measurements at scale, which may in turn
require high processing requirements on monitoring routers

bots	  
targeted	  link	  L 

legi/mate	  
public	  
servers	  

ISP 

Fig. 2: An example of link-flooding attacks. Legitimate
looking connections between the bots and the legitimate
public servers cross the link L in the ISP [31].

as well as high control overhead for reporting these mea-
surements. Furthermore, this detection must be robust to
TCP effects, especially given that many legitimate flows on
the Internet are short flows.

We address these practical challenges and present the de-
sign and implementation of SPIFFY.2 To address (1), SPIFFY
presents a new traffic engineering [25] technique based on
software-defined networking (SDN) whereby one can virtually
increase the bandwidth by routing around the bottleneck. To
address (2), we develop fast greedy algorithms to solve a traffic
optimization problem, which would otherwise take several
hours even with state-of-art solvers [2]. Finally, to address (3),
we suggest simple sketch-based change detection algorithms
that can measure rate changes with low overhead [33], [58].
We develop a proof-of-concept prototype using POX [7] and
use a combination of real testbed evaluation and large-scale
simulations to validate the effectiveness of SPIFFY against link
flooding attacks. SPIFFY relies on SDN’s centralized control
and traffic visibility to develop the first-known defense against
such link-flooding attacks.

Contributions: In summary, this paper makes the following
contributions:
• A practical solution to force link-flooding adversaries into

an untenable tradeoff between cost and detectability, which
provides an effective first-line defense;

• A bandwidth expansion mechanism for SDN via traffic en-
gineering based on a fast heuristic for solving the underlying
optimization problem;

• An SDN-based implementation of SPIFFY and an extensive
evaluation demonstrating its robustness with realistic TCP
effects.

II. BACKGROUND AND THREAT MODEL

In this section, we review the types of link-flooding attacks
we address in this paper and then formally characterize the
attacker goals and constraints.

Background: The link-flooding attacks we consider in this
paper target network links in the core of the Internet (e.g.,
backbone links in large ISPs or inter-ISP links) and create
a large number of attack flows crossing the targeted links to
flood and virtually disconnect them; viz., Figure 2. This is in
sharp contrast to traditional DDoS attacks that aim to choke
the resources of the end target; e.g., computation, memory, or

2SPIFFY stands for handling ‘Scalable Persistent Indistinguishable link-Flooding
attacks with reduced cost asymmetrY.’
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access link bandwidth. Recent research (e.g., Coremelt [51]
and Crossfire [31]) and real-life attacks against core routers
of upstream networks (e.g., ProtonMail attack [28], Spamhaus
attack [17]) are the examples of such attacks.

In the general case, link-flooding attacks may flood multi-
ple link targets, as exemplified in Crossfire [31]. For simplicity
of presentation, we focus on the link-flooding attacks against a
single infrastructure link throughout this paper. However, our
system is also robust to multiple link-flooding attacks; viz.,
Section VIII-C for a detailed discussion.

Threat model: We consider a rational adversary who wants
to inflict as much damage as possible on legitimate flows of
the target network link using as few resources as possible, and
while remaining indistinguishable. Formally, our link-flooding
adversary pursues three goals:
• Attack-Strength Maximization (Gstrength ): Suppose the

network a mechanism to guarantee a per-flow rate under
“normal” network operation when there are no attacks; e.g.,
through a combination of link capacity provisioning and
traffic engineering [12]. Let this guaranteed rate be denoted
by rg . The adversary aims to reduce the per-TCP-flow fair-
share rate of flows traversing the target link to the degraded
rate, denoted by rd. The degraded rate will be much smaller
than the guaranteed rate (i.e., rd ≪ rg); otherwise (e.g.,
rd ∼ rg) the attack would fail to degrade a legitimate flow
much beyond the guaranteed rate rg .

The degraded rate rd is an adversary-chosen parameter
that measures the attack strength. A smaller rd indicates a
stronger attack since legitimate flow rates would be degraded
more.

• Attack Persistence (Gpersistence ): To circumvent detection
and hence be persistent, a link-flooding attack needs to
mimic legitimate traffic patterns. That is, the attack flows
are indistinguishable from legitimate ones via traffic analysis
of headers/payloads and/or intrusion detection at the target
link. For instance, this can be achieved by using legitimate
looking web sessions to decoy servers [31]. To this end,
the adversary uses TCP-based flooding attacks. Because
TCP traffic constitutes the majority of the Internet backbone
traffic, as it represents about 90 – 98% of the byte volume
of the backbone links, these attacks are more difficult to
detect and filter than UDP-based flooding attacks [59].

• Attack-Cost Minimization (Gcost ): A rational adversary
will seek to minimize the cost of the attack. In this paper,
we assume that the cost of the attack is proportional to
the number of bots necessary for the attack; thus, the
number of bots is a good proxy for the attack cost. This
assumption is based on the observation that, in general, bots
are sold in bulk (e.g., several thousands) in the pay-per-
install markets [18].

We assume that the network follows a per-flow fair-share
allocation of link bandwidth to all flows served. This is already
widely observed in today’s Internet since TCP flows adjust
their rates in response to congestion, and thus approximate
per-flow max-min fair rates [8]. If senders do not conform to
the TCP flow control (i.e., they send flows faster than the fair-
share rates) they can be detected by other mechanisms [34].

Based on this threat model defined, we develop and eval-

uate SPIFFY in the following sections.

III. SPIFFY INTUITION AND SECURITY ANALYSIS

In this section, we provide the intuition behind SPIFFY
and the security analysis showing why it forces adversaries
to either increase costs (Gcost ) or forgo indistinguishability
(Gpersistence ) while achieving rate degradation for legitimate
flows (Gstrength ).

A. High-level Idea

The key reason why link-flooding attacks are so successful
and dangerous is that they are affordable and indistinguishable.
Thus, our overall goal is to force attackers to compromise
on either Gpersistence or Gcost for a given Gstrength ; i.e., the
attackers either become detectable or pay an increased cost.

The intuition behind our approach is as follows. During
a link-flooding attack, a legitimate sender would only be
able to send traffic at a much lower per-host rate compared
to the desired application-layer data rates. This is because
the attack with the rate-reduction goal (Gstrength ) decreases
legitimate flow rates significantly. However, an attacker who
is trying to optimize cost (Gcost ) would have all its bots send
at their highest per-host send rate (i.e., saturate its upstream
bandwidth), by creating additional attack flows whenever its
upstream bandwidth allows it. Due to these fundamental goal
differences, a legitimate sender and an adversary’s bot would
react very differently when the congestion is relieved; viz.,
Figure 1. A legitimate sender would very likely increase its
send rate to meet its rate demand (e.g., buffered traffic from
application layer) due to TCP rate control while a bot would
have no available bandwidth left for further rate increase.

We can implement the controlled congestion relief by what
we call the temporary bandwidth expansion (TBE). That is, we
temporarily increase the virtual bandwidth of the target link
by some factor M to allow senders suffering from congestion
to increase their send rates. TBE enables us to measure the
rate increases of senders and ultimately distinguish bots from
legitimate senders.

In order to prevent bots from being detected, a link-flooding
adversary must give up fully utilizing the upstream bandwidth
of bots and mimic the legitimate senders’ rate increase when
congestion is relieved, as we will see below. However, this
rate-increase mimicry will lower the bandwidth utilization of
each bot and in turn cause the link-flooding adversary to
significantly increase the number of attack bots. As a result,
the link-flooding adversary faces an untenable choice: (1) she
could maintain the low-attack cost while allowing her bots to
be detected, or (2) she could make bots indistinguishable while
increasing the attack cost significantly.

B. Security Analysis

We begin by formulating the optimal attack strategy for
a scenario without the SPIFFY defense and then argue why
SPIFFY creates a fundamental cost-detectability tradeoff for
link-flooding adversaries. For simplicity of presentation and
without loss of generality, the following analysis assumes a
homogeneous bot deployment where each bot has the same
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upstream bandwidth u. Let B be the bandwidth of the target
link which is under the link-flooding attack.

Optimal adversary strategy without SPIFFY (AS¬spiffy ):
An adversary can optimally satisfy the attack goals Gstrength ,
Gcost , Gpersistence by using B/u bots, where each bot creates
u/rd attack flows and saturates its upstream bandwidth u.

Proof: To congest the target and reduce the per-flow TCP
fair-share rate Gstrength , the attack first has to flood the target
link. Thus, the minimum number of bots required for the attack
Gcost is nb = B/u. Also, due to TCP per-flow fairness, the
fair-share rate provided by the target is rFS = B

Nb
, where Nb

represents the total number of attack flows. This assumes no
legitimate flows in the target link: the attack strategy designed
without considering legitimate flows guarantees meeting the
attack goals even when legitimate flows exist. Also, due to
the rate-reduction goal the fair-share rate is reduced to the
degraded rate Gstrength , rFS = rd. Since Nb attack flows are
created by nb bots, on average each bot creates Nb/nb attack
flows, which is Nb/nb = (B/rd)/(B/u) = u/rd.3

An adversary with attack strategy AS¬spiffy has already
saturated the upstream bandwidth of each bot. As a result,
bots cannot increase their sending rate by a factor of M and
cannot avoid being detected by SPIFFY. We argue that for the
adversary to evade the test, it must satisfy a property we call
rate-increase mimicry.

• Rate-increase Mimicry (RM): Bots are capable of
instantly increasing their send rate by a factor of M
when congestion is relieved at the bottlenecked link. This
implies that bots must use only u/M of their upstream
bandwidth when congesting the target link.

The RM property enables the adversary to simultaneously
satisfy Gstrength and Gpersistence while compromising Gcost .
If all bots are capable of rate increase with a factor of M , they
pass the SPIFFY test and thus bots remain undetected. This
leaves the adversary with the following new attack strategy
under SPIFFY.

Optimal attack strategy with SPIFFY (AS spiffy ): The attack
strategy must satisfy the two conditions to achieve the two
attack goals Gstrength and Gpersistence under SPIFFY.

(1) the attack utilizes M · (B/u) bots and
(2) each bot creates (u/rd)/M attack flows by utilizing only

1/M of its upstream bandwidth u.

Proof: The proof is similar to that of the optimal attack
strategy with SPIFFY (AS¬spiffy ). However, due to the RM
property, when attacking the target link, each bot uses only
1/M of its bandwidth limit u. Therefore, the attack requires
B/(u/M ) = M · (B/u) bots, where each bot creates u/rg =
u/(M · rd) attack flows.

Thus, a link-flooding adversary now faces the following
mutually-exclusive options forcing a fundamental tradeoff be-
tween cost and detectability:

1) Adversary follows AS¬spiffy and requires (B/u) bots,
potentially allowing detection of his/her bots by SPIFFY.

3For simplicity, we ignore small errors generated when converting real
values to integers.

(1) Flooding 
Detection

(3) Bot
Identification

(2) Temporary Bandwidth 
Expansion (TBE)

Fig. 3: Workflow of SPIFFY

2) Adversary follows AS spiffy and requires M · (B/u) bots,
circumventing the bot detection.

We argue that an adversary has no other options than those
listed above. To see why, let us consider two attack strategies
that differ from these: (1) Per-flow rate increase strategy: In
this strategy, bots saturate their bandwidth to attain the cost-
minimization goal Gcost . They quickly detect the bandwidth
expansion and instantly allocate increased bandwidth to a set of
selected flows by pausing (or terminating) other attack flows,
making the selected flows look legitimate. However, since
SPIFFY measures per-sender (not per-flow) rate changes, such
bots would be detected due to their unchanged per-sender rates.
(2) Bot replacement strategy: This strategy also saturates the
bots to achieve Gcost . The adversary replaces his/her bots in
operation with new bots whenever the current bots are detected
by SPIFFY. Although this strategy can be efficient for a short
period of time, the cost of maintaining the attack persistence
grows linearly with attack duration increases since bots need
to be replaced repeatedly.

IV. SPIFFY SYSTEM OVERVIEW

In this section, we describe an end-to-end view of SPIFFY
and highlight key practical challenges that we need to address
to realize it. We envision SPIFFY being run by an ISP where
the target link L is located, since the end customer who is the
eventual target of the attack cannot detect or respond to link-
flooding attacks. We believe that ISPs have a natural economic
incentive to protect their immediate customers (e.g., as a value-
added service [1]) and offer such capabilities on demand to
create new revenue streams.

To understand the key challenges in this deployment model,
let us consider the three logical stages in the SPIFFY workflow
as seen in Figure 3:

1. Flooding detection. SPIFFY detects the existence of a link-
flooding attack against a link (e.g., via SNMP-based link-
utilization measurements [21]) and estimates the degraded
rate rd for the attack by measuring the fair-share flow rate
of the target link.

2. Temporary bandwidth expansion (TBE). For all senders
that use the target link, SPIFFY provides a temporarily
expanded bandwidth M×(current per-sender rate), where
bandwidth expansion factor M ≫ 1. For the time being,
let us imagine an ideal TBE that increases the target link’s
physical bandwidth B to M ×B. Section V explains how
TBE can be implemented in real networks. Note that the
bandwidth expansion is temporary (e.g., < 5 seconds)
and the bandwidth of the link returns to B after TBE.
The bandwidth expansion factor M is set to the ratio of
the guaranteed rate rg to the degraded rate rd, namely,
M = rg/rd, to let the legitimate senders increase rates
from rd to rg in response to TBE. This value of M enables
SPIFFY to identify senders with the per-sender rate change
close to M as legitimate ones.
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Fig. 4: Overview of the SPIFFY using an SDN in the
Internet core.

3. Bot identification. SPIFFY measures the per-sender rate
changes of all the senders that use the target link. It starts
measuring the per-sender rate before TBE and stops mea-
suring after TBE. The frequency of measurements should
be high enough to capture the rate increase and calculate
the ratio of the increase; e.g., every 1 second. Before TBE,
flows from a legitimate sender will have the flow rate
rd (viz., Gstrength ), but during TBE the majority of the
legitimate flows increases their rates at least up to rg, and
thus the total per-sender rate increases by a factor close to
or higher than M (= rg/rd). In contrast, a bot would not
increase its send rate even if the bandwidth allocated to
it is expanded due to its saturated upload bandwidth; viz.,
Attack Strategy AS¬spiffy .

Challenges: Our focus in this paper is on steps (2) and
(3) of this workflow. We assume that existing monitoring
mechanisms are used for (1); e.g., [21]. Our two key challenges
arise for steps (2) and (3).

First, the challenge in designing TBE is to provide the
senders significantly expanded bandwidth. Ideally, we want to
physically increase the target link bandwidth, but this may
not be viable unless the target network has spare dark fiber.
Instead, our goal is to find an immediate solution that does not
rely on spare optical fibers. Moreover, the operation of TBE
has to be real-time to quickly react to the flooding attacks;
e.g., in a few seconds.

Second, bot identification is challenging because it requires
real-time per-sender rate measurements for all senders at the
target link. In practice, it is difficult to keep track of these
rate changes because the number of senders might easily go
up to tens or hundreds of thousands. Finally, the rate-change
estimation must be robust to real-world considerations; e.g.,
TCP effects in reacting to changes in the RTT or the impact
on short legitimate flows.

Key ideas: We address these two challenges as follows.
SPIFFY can leverage recent advances in software-defined
networking (SDN) to implement the above workflow. An
SDN’s central controller provides new capabilities for network
management [24], [29], [43], [44]. While we do not claim
that SDN is necessary for countering link-flooding attacks, we

consider it to be a natural enabler for realizing the SPIFFY
workflow. The overall system is illustrated in Figure 4.
• Practical TBE: To enable practical TBE, we develop a traffic

engineering application that dynamically changes traffic
routing to meet desired goals [25]. At a high level, we
increase the effective bandwidth of the link-flooding target
link by routing flows around the bottleneck. We also provide
practical techniques to work around the constraints of real
networks where the bandwidth expansion factor (M ) might
be low. Finally, we develop fast heuristics to solve the traffic
engineering optimization.

• Robust bot detection: First, to detect bots, we provide
a scalable monitoring mechanism that relies on simple
“sketching” algorithms running in the edge switches [58].
This algorithm guarantees the accurate per-flow rate change
measurement with only small size of SRAM and few hash
computations. Second, to obtain the robust bot-detection
results, we develop strategies that yield very low false-
positive rate. We investigate several cases where legitimate
senders might be misidentified as bots (e.g., legitimate
senders that do not react to TBE or TCP effects in response
to changed RTT measurements) and propose solutions to
remove such undesirable events.

V. SCALABLE AND PRACTICAL TBE

In this section, we focus on a practical implementation of
TBE. As discussed earlier, there are two key challenges here.
First, given that networks do not have spare fibers lying around,
we need a network-layer solution for TBE. Second, we need
this step to be fast because it ultimately impacts our ability to
rapidly test and detect bots.

Our network-layer TBE approach dynamically reroutes the
flows traversing the target link through other under-utilized
links in the network. It computes the new routes, which provide
large bandwidth expansion to all senders using the target link
simultaneously, as if the target link bandwidth is physically
expanded. The new routes are calculated at a central controller
and installed in SDN-supported switches at the edge. Note that
for ease of explanation we refer to the physical bandwidth
expansion as the ideal TBE.

The goal of the network-layer TBE is to emulate the ideal
TBE with large bandwidth expansion factor. The ideal band-
width expansion factor we wish to achieve is Mideal = rg/rd,
as described earlier. Then the question that arises is how the
network-layer TBE can achieve this high Mideal. To answer
the question, we first look at how much bandwidth expansion
can be achieved by the network-layer TBE for a given network.
Then we evaluate whether the bandwidth expansion factor is
large enough for Mideal.

We formulate the routing problem of finding the maximum
bandwidth expansion factor, denoted as Mnetwork, for a given
a network configuration. Let us assume that we are given a
network graph G = (V,E), where V represents the set of
routers and E represents the set of links between the routers.
We denote by b(x, y), where (x, y) ∈ E, the bandwidth that
is not used at the time of TBE; i.e., residual bandwidth. We
define a flooding traffic matrix T where each ingress/egress
pair (s, t) denotes the total traffic rate T (s, t) between s and t
that contribute to the flooding at the target link. Note that we
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assume that the residual bandwidth b(x, y) and the flooding
traffic matrix T are unchanged during TBE operation. We
associate a variable f

(s,t)
(x,y), with each pair (s, t) and each link

(x, y) ∈ E, that denotes the fraction of the traffic flow from s
to t over the link (x, y). The problem of finding the maximum
bandwidth expansion factor for network-layer TBE is defined
by following linear program:

(LP)

max m (1)

s.t.
∑

y:(x,y)∈E

f
(s,t)
(x,y) =


−m · T (s, t), if y = s

m · T (s, t), if y = t

0, otherwise
(2)

∑
(s,t)

f
(s,t)
(x,y) + f

(s,t)
(y,x) ≤ b(x, y), (x, y) ∈ E (3)

We denote the objective value of this linear program by
Mnetwork. The objective (1) in LP is to maximize the
bandwidth expansion factor via rerouting. Conditions (2)
represent the flow conservation constraints that ensure the
m-times expanded traffic T (s, t) is routed from the attack
relevant ingress/egress router pairs (s, t). Constraints (3)
define the load on each link and ensure it is smaller than its
residual link bandwidth.4

Here, we face two challenges in solving the LP and
applying it for the ideal TBE emulation.
• Scalability: Although the LP can be solved in polynomial

time, the size of the problem becomes impractically large
when the number of routers R is large (e.g., R > 100). The
time to solve the problem grows rapidly with the network
size and becomes unrealistic for real-time operations; e.g.,
few thousand seconds in a network of size R = 196.

• Small Mnetwork compared to Mideal: In practice, the value
of Mnetwork is small compared to Mideal. As we will see
in detail in Section VII, Mnetwork is typically in the range
of 2 – 3 and it is likely that Mideal = rg/rd is 5 – 10 times
larger than Mnetwork.

We solve the TBE scalability problem by greedy algorithm
(Section V-A) and the small Mnetwork problem by randomized
sequential TBE (Section V-B).

A. Greedy algorithm for TBE Scaling

As a solution to the scalability problem, we propose a
simple greedy routing algorithm that runs much faster than
solving LP with off-the-shelf solvers. One can also use other
efficient ways of solving such problems in general; e.g., [13],
[47]. The greedy algorithm presented here is one possible way
for calculating an approximate solution.

The greedy algorithm takes as inputs the set of ingress/
egress pairs and the number of their flows that cross the
target link, the desired bandwidth expansion factor m, and the
network graph G = (V,E) and the residual link bandwidth
b(x, y) for each link (x, y) ∈ E. Then it outputs a feasible
routing solution R(s, t) for all ingress/egress pairs (s, t).
The pseudocode of this algorithm is given in the following
Algorithm 1.

4Since we use the undirected graph G, for any link (x, y) ∈ E we set
b(x, y) = b(y, x) but we activate only one them for the constraints (3).

Algorithm 1 Greedy algorithm for TBE

1: Inputs: Set of ingress/egress pairs (s, t) crossing target link,
2: Number of flows on each ingress/egress pair n(s, t),
3: Desired bandwidth expansion factor m,
4: Network topology graph G = (V,E), and
5: Residual link bandwidth b(i, j) for (i, j) ∈ E.
6: while (∃(s, t) that has not yet selected) do
7: Select ingress/egress pair (s, t) at random w/o replacement.
8: Calculate the available network graph G′ = (V,E \ E′),

where E′={links w/ available bandwidth ≥ m ·n(s, t) · rd}.
9: Calculate new route R(s, t) in G′.

10: if R(s, t) ̸= NULL then
11: Move all flows in (s, t) to R(s, t).
12: Output: New routes R(s, t) for all ingress/egress pairs (s, t).

We use a binary search procedure over the value of m
in Algorithm 1 and obtain the estimate of the maximum
bandwidth expansion factor M̂network and the corresponding
routing solution. We show in Section VII that the difference
between Mnetwork and M̂network is negligible in practice.

B. Randomized Sequential TBE

To solve the problem of small value of Mnetwork, we use
a randomized sequential TBE approach. That is, we test only
a subset RTBE = Mnetwork/Mideal of senders at each TBE
round so that a subset of senders can have feasible routes that
provide Mideal-times bandwidth expansion. We then repeat
this process until most of the senders are tested. If the obtained
Mnetwork from LP is larger than or equal to Mideal, no more
than a single TBE is required.

Random sender selection. We randomly select a fraction
RTBE of senders in each ingress/egress pair and reroute them
using the solution of LP. The obtained routing solution pro-
vides the selected senders Mideal-times expanded bandwidth.
Since we randomly sample the senders at every TBE, an
adversary cannot anticipate when a particular bot will be
tested. The number of TBE rounds that needs to be performed
to test the majority (e.g., 90%) of the senders depends on the
fraction RTBE .

VI. RATE-CHANGE MEASUREMENT TESTS

In this section, we focus on the rate-change measurement
test. As previously mentioned, there are two key challenges
in designing the test. First, stateful per-sender rate monitoring
could be expensive and induce high control overhead at the
SDN controller. Second, the robustness can be undermined by
real world TCP effects; e.g., prevalence of short-lived TCP
flows or reaction to RTT changes.

A. Sketch-based Per-Sender Rate Change Detection

As mentioned, SPIFFY requires rate change detection for
all senders that cross the target link. This raises concerns about
the computation and memory complexity of such “stateful”
operations. Another concern is that when the real-time per-
sender rate measurements are reported back to the SDN
controller the control channel could be easily congested due
to the large volume of control messages.
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SPIFFY can address these challenges by utilizing sketch-
based measurements [30]. Sketch is a memory-efficient data
structure that stores summaries of streaming data. In particular,
a simplified variant of sketch-based rate change detection [33]
can be used for efficiently and quickly detecting per-sender rate
changes. With the sketch-based rate change detection, the edge
switches report only the measurement summary to the SDN
controller, such as list of bot IPs, and significantly minimize
the control channel overhead.

Sketch-based rate-change measurement: We use the
original sketch-based change detection mechanism by Krish-
namurthy et al. [33] for measuring per-sender rate changes.
In fact, SPIFFY needs a simpler version of the original
sketch-based change detection since it measures with the
granularity of a sender (i.e., source IP), which is coarser than
the granularity of a flow. The three basic components are
the sketch module, the forecasting module, and the change-
detection module [33]:

1) The sketch module creates a sketch; i.e., a H ×K table
of SRAM memory. When a packet arrives at an edge
switch, the source IP is fed into the H independent hash
functions. Based on the mod K of the H hash outputs,
H registers in the H rows are updated by the packet size
u. By updating all packets in a time interval t, we obtain
a sketch S(t) at the end of the interval t.

2) The forecasting module uses the observed sketches in the
past intervals S(t′) (t′ < t) to compute the forecast sketch
Sf (t).

3) The change-detection module constructs the forecast error
sketch Se(t) = S(t)−Sf (t). For each sender’s IPsrc, this
module calculates the forecast error.

Estimated measurement complexity: We analyze the esti-
mated memory size and the sketch computations. The required
memory size is determined by the number of independent hash
functions H and the size of sketch bins K for each hash
function. For a real Internet trace dataset with more than 60
million flows, H = 5 and K = 32K produce very accurate
rate-change measurement; e.g., 95% accuracy for top 1000
flows with the maximum rate changes [33]. Our rate-change
measurement will also be accurate with these parameters, since
each edge switch will not need to measure more than 60
million senders in most cases. When we assume 3 bytes for
each register in the sketch memory, each edge switch requires
480 KB SRAM memory space.

Sketch-based measurement requires H hash operations for
individual incoming packets. Also, each SRAM access requires
few tens of nano seconds. However, since the hash operations
and SRAM access can be implemented in parallel in hardware,
these per-packet operations can be very efficiently imple-
mented and thus do not affect the data plane throughput [58].

At every rate-change detection interval, each edge switch
calculates the forecast sketches Sf (t) and the forecast error
sketches Se(t). These and the final rate-change calculation
requires a computational overhead of about 1.91 seconds,
when for example H = 5, K = 64K, and 10 million flows
are monitored [33]. Our per-sender rate-change measurement
would require much shorter (e.g., ≪ 1 sec) time for the
computation at each edge switch since today’s commodity
CPUs are at least 3-4 times faster than the one used (900
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Fig. 5: Simulation setup.

MHz CPU clock speed) more than a decade ago [33].

Bot-detection summary reports: Instead of reporting the
rate-changes of all senders, each edge switch can report only
the subset of senders that are determined as bots (or legitimate
senders). Thus, the aggregate bandwidth for control channel
can be limited to a few Mbps or less; e.g., only 4 MB
data transfer is required even when 1 million bot IPs are
reported. Notice that the reports are made only when the TBE
is performed.

B. Bot Detection Robustness to TCP Effects

The robustness of SPIFFY’s bot detection relies on the
prompt and fast rate increase of legitimate senders when TBE
is performed. The rate increase is mainly determined by TCP
operations at the senders since they control the maximum flow
rates at a given time. However, achieving robust bot detection
can be challenging due to the two following TCP effects: (1)
short-lived flows (e.g., few packets in a flow) in the Internet
terminate before TCP increases their rates; (2) when TBE’s
route changes cause sudden increase of RTT values, TCP might
decrease the send rates by decreasing congestion windows
and/or causing spurious timeouts.

To achieve robust bot detection, our primary focus is to
maintain low false-positive rate because false-positive events
cause collateral damage to legitimate senders. In contrast,
false-negative rate (i.e., the rate in which bots are misidentified
as legitimate senders) is not a particularly useful metric since
SPIFFY allows false-negative events to happen for the cost-
detectability tradeoffs. For example, if an adversary is deter-
mined to remain undetected, she can make the false-negative
rate to be practically one at a highly increased attack cost.

Robustness to short TCP flows: Unlike long-lived flows,
short-lived flows might not increase their rates in response to
TBE because they may not last long enough (e.g., few seconds)
when the bottlenecked bandwidth is expanded. Therefore,
when the majority of flows are short-lived (as is the case of
today’s Internet traffic), per-sender rate of legitimate senders
could be almost unchanged when TBE is performed, causing
false-positive events.

Here, we first observe that the prevalence of short-lived
flows does not affect the rate changes of senders that create
realistic traffic with the mixture of short- and long-lived flows.
Moreover, we show that SPIFFY can maintain false-positive
rate as low as 1% or less by exempting senders with per-
sender rates lower than minimum per-sender rate from the bot
detection process regardless of their rate-change ratios.

To test our claims, we perform simulations with a syn-
thetic web-traffic generator. We use the ns2 simulator with
PackMime-HTTP web-traffic generator to construct diverse
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Fig. 7: Simulated per-flow rates of flows in realistic HTTP
web traffic (a) before and (b) during TBE with bandwidth
expansion factor M = 10.

network environments and simulate accurate TCP operations
with realistic HTTP application traffic demand [4], [19].
Approximately 70% of the synthetic web-traffic flows have
size smaller than a single IP packet’s maximum size (1,500
Bytes) while a small number of large flows exist. We deter-
mine the queue size based on a rule-of-thumb practice; i.e.,
QueueSize = RTT×C, where RTT is the average round-trip
time of the flows crossing the link and C is the data rate of the
link [11]. For TBE, we assume that the bandwidth of the target
link is expanded by a factor of M = 10. As shown in Figure 5,
we simulate 1000 pairs of clients/servers exchanging HTTP
traffic through a target network link. We set the ideal (i.e.,
when no traffic on the path) round-trip time of 100 msec and
the application-layer data rate of 1000 Kbps for the purpose
of clear illustration.

Figure 6 shows a rate measurements of 100 randomly
selected senders. Before TBE starts at t = 10 seconds, all
senders achieve approximately 100 Kbps with small standard
devidations; however, after TBE starts, most senders achieve
10 times higher rates within 2 seconds. This result shows that
the rate change detection is robust for the legitimate senders
with realistic flows, in particular with large portion of short-
lived flows.

The reason for the negligible effect of short-lived TCP
flows on the effectiveness of rate-change detection is that a few
long-lived flows from senders increase their rate significantly
once TBE is performed and thus induce the overall per-sender
rate change. Figure 7 shows the simulated flow rates versus
flow sizes. Notice that before TBE only short-flows (i.e., small
flow size) are observed. They achieve low rates and long-lived
flows are not even able to complete their TCP connections.
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Fig. 8: Whisker plots representing the rate-change ratios
for varying RTT/application-layer data rates when the
bandwidth expansion factor M = 10.

This is because short-lived flows spend most of their life
in the TCP slow start and thus they can rapidly capture a
greater proportion of resources than long-lived flows in TCP
congestion avoidance, often driving the long-lived flows into
timeouts. After TBE starts, long-lived flows achieve much
higher rates whereas short-lived flows achieve only slightly
higher rates than before. This is because long-lived flows now
have enough time to increase the congestion windows.

Next, we evaluate the false-positive rate of the SPIFFY’s
bot detection with realistic traffic and propose a mechanism to
maintain low false-positive rate. To simulate various types of
realistic legitimate senders in different locations with different
traffic rates, we vary the end-to-end propagation delays (in
msec) and the application-layer data rate (in Kbps) per sender.

Figure 8 shows the measured rate-change ratio (RC) when
the ideal round-trip time (RTT) (i.e., RTT measured when no
traffic on the path) or the application-layer data rate (i.e.,
average HTTP data rate) vary. Figure 8a shows that the
vast majority of measured rate-change ratios are close to the
bandwidth expansion factor M = 10 and largely independent
of the ideal RTT of the flows. This suggests that bot detection
can achieve low false-positive ratio when it uses a rate-change
ratio threshold RCth close to M to identify senders with
RC < RCth as bots. However, as shown in Figure 8b, the
rate-change ratio RC is heavily affected by the application-
layer data rate. While senders with high application-layer data
rates show rate-change ratios very close to the bandwidth
expansion factor M = 10, senders with low rates result in
rate-change ratios that are spread over a large range. This
would potentially induce non-negligible false-positive ratios
when bots are identified by thresholding the rate-change ratios.

From this observation, we set the minimum per-sender rate
(ratemin) and exempt the senders with per-sender rate lower
than ratemin from bot detection. In other words, senders with
per-sender rate lower than ratemin are not tested by the target
network regardless of their rate change ratios. By exempting
these low-rate senders from the bot detection, we can also
protect the legitimate, inherently low-rate senders from being
misidentified as bots; e.g., legitimate users with slow legacy
cellular connections or casual web surfing users with light
activity are protected by this exemption.

Figure 9 shows the false-positive rate for varying rate-
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change ratios RCth and for several values minimum per-sender
rate ratemin. We first observe that the larger threshold ratio
RCth, the higher false-positive rate is expected because small
rate fluctuations can cause false positive when the threshold
ratio RCth is high. We also notice that as we exclude more
low-rate senders (i.e., set higher minimum per-sender rate
ratemin), we can reduce the false-positive rate. As shown
in Figure 9, with proper parameters we can easily maintain
very low false-positive rate; e.g., 1% or less. Note that the
exemption of low-rate senders could contribute to some false-
negative errors; i.e., indicating bots as legitimate. However,
the influence of the non-detected bots is limited since they do
not send at the rate higher than the minimum per-sender rate
ratemin, which is the chosen small rate value.

Note also that adversaries cannot exploit the exemption
of low-rate senders. An adversary might configure her bots
to send at a rate lower than the minimum per-sender rate
ratemin to avoid detection, but this only increases the attack
cost significantly because more bots are needed to create the
same amount of attack traffic to congest the target link.

Robustness to sudden RTT increase: Our TBE mech-
anism reroutes traffic around the target link. Rerouting may
find a new route longer than the initial one. According to our
experiments (Section VII-B), TBE increases the route length
(i.e., number of routers in a route) on average by up to 24%.
This raises the question of whether this suddenly increased
RTT adversely impacts the false-positive rates of SPIFFY.
We list two possible cases where sudden RTT increase might
cause false-positive events: (1) Some delay-based TCP variants
(e.g., Compound TCP [52] and TCP Vegas [16]) use RTT
measurements at receivers to adjust TCP congestion windows.
These TCP variants consider RTT increase as the sign of
congestion and reduces their sending rates; (2) TCP senders
might experience spurious timeouts and drop sending rates
significantly. A spurious timeout occurs when RTT suddenly
increases and exceeds the retransmission timer that had been
determined a priori [39].

Here, we claim that such rate decrease due to RTT increase
is not likely to happen becuase RTT will actually be reduced
significantly when TBE is performed. The rationale behind this
is that TBE removes high queueing delay at the (almost) full
buffer of the target link. The RTT reduction due to this con-
gestion relief is in general much larger than the RTT increase
due to TBE rerouting, ultimately causing RTT reduction.

To support our claim, we measure RTT changes when TBE
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Fig. 10: RTT and congestion window changes when TBE
is performed.

is performed in a simulation. We set the ideal (i.e., when no
congestion on a path) RTT to 100 msec and assume 25%
increase of the RTT when rerouting takes place. We assume the
rule-of-thumb queue size (i.e., RTT times link capacity [11])
at the target link. As shown in Figure 10a, as soon as TBE
is executed at time 5.0 sec, the measured RTT is significantly
reduced to the near ideal RTT value. The new measured RTT
is 25% higher than the ideal RTT due to TBE’s rerouting, but it
is still significantly smaller than the RTT measurements before
TBE.

We also test how the two delay-based TCP variants, Com-
pound TCP and TCP Vegas, adjust their congestion window
in response to TBE. Figure 10b shows that both TCP variants
increase their congestion window promptly when TBE is
performed and reach the converged points less than 3 seconds.

VII. EVALUATION

In this section, we evaluate SPIFFY in an SDN testbed
to show its effectiveness (§VII-A). Then we evaluate it using
flow-level simulations to show its feasibility in large ISP
networks (§VII-B).

A. Testbed Experiments

Our evaluations are executed on a server-grade Dell R720
machine with 20-core 2.8 GHz Xeon CPUs and 128 GB of
memory, which runs the KVM hypervisor on CentOS 6.5
(Linux kernel v2.6.32). We use Open vSwitch (OVS v2.3),
virtual switches [6]. OVS v2.3 supports the OpenFlow v1.3
[5] specification. We use OpenFlow-enabled switches only at
the edges of our test network and traditional switches inside
the network. Note that we will interchangeably use switches
and routers in this paper. We implement SPIFFY as a POX
application [7] on the centralized network controller. Notice
that in these SDN testbed experiments, we test only long-lived
TCP flows generated by iperf3. The effects of short-lived
flows are studied in packet-level simulations, as discussed in
Section VI-B.

1) Effectiveness of Bot Detection: We evaluate how ef-
fective SPIFFY is in identifying bots when they are mixed
with legitimate senders. We implement the bots based on the
Attack Strategy AS¬spiffy . Bot upstream is saturated by attack
flows, each of which have the degraded rate, rd. Note that the
adversary in this evaluation does not apply the rate-increase
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mimicry (RM) and thus her bots have no available bandwidth
to demonstrate the rate increase.

In our simplified ISP network with two edge switches (one
ingress and one egress) and 10 parallel links that connect the
two edge switches (one of them is the target link of the attack),
we reroute traffic crossing the target link to other parallel links
and provide ten-times expanded bandwidth (i.e., M = 10) to
the two senders. For this, the SPIFFY application installs rules
and MPLS labels (which are prevalently used in large ISPs [22]
and can be implemented by SDN switches [48]) at the edge
switches.

Figure 11 shows the general parameters for the SPIFFY
experiments. A bot bi (1 ≤ i ≤ m) has upstream bandwidth
ub
i and a legitimate sender lj , (1 ≤ j ≤ n) has upstream

bandwidth ul
j . We set the number of bots m and their upstream

bandwidths ub
i in such a way that the fair-share per-flow rate

at the target link L equals rd (i.e., B∑m
i=1 fb

i +
∑n

j=1 f l
j

= rd)
to achieve the attack goal Gstrength . Notice that all bots
generate f b

i = ub
i/rd flows of rate rd to saturate their upstream

bandwidth.

In our experiments, we set all senders (both bots and legit-
imate senders) to send 50 long-lived TCP flows to make them
indistinguishable to any per-host rate filtering mechanisms.
Accordingly, all bots are set to have upstream bandwidth ub

i =
f b
i ×rd = 0.5 Mbps when rd = 10 Kbps. We set all legitimate

senders’ bandwidth to accommodate all 50 legitimate flows
with guaranteed rate rg. That is, ul

j = f l
j×rg = 5 Mbps when

rg = 100 Kbps. Note that the upstream bandwidth parameters
for bots and legitimate senders are selected for illustrative
purpose only. SPIFFY is effective for any practical upstream
link bandwidth. RTTs are set to be 200 msec to experiment
the practically worst-case rate-change responsive time for TBE
operation.

Figure 12 shows the per-sender rate changes of the two
senders measured every second by the edge switches. The
rate is measured from t = 0 to t = 20 seconds, when the
TBE operation is performed at t = 10 second. Notice that
before TBE (i.e., at t < 10), the two senders’ rates are almost
identical. However, once TBE is performed, within less than 5
seconds (i.e., at t < 15), the two senders show very different
rate changes; the legitimate sender’s rate increases by almost
10 times whereas the bot’s per-sender rate remains the same. At
the legitimate sender TCP adapts to the expanded bandwidth in
less than 5 seconds. Note that after TBE ends (i.e., at t = 15),
SPIFFY immediately starts the bot identification. The target
network notices the difference in the rate changes, identifies
the bot, and filters its source IP at the corresponding ingress
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Fig. 12: Effectiveness of TBE for bot identification.

switch of the network. As a result, after t = 15 the bot’s
rate tapers off quickly while the legitimate sender achieves the
guaranteed rate rg = 100 Kbps = 5 Mbps / 50 flows.

2) Effectiveness of Increasing Attack Cost: Unlike the
previous experiment, in this evaluation an adversary decides
to follow the rate-increase mimicry (RM) and increases her
attack cost. To demonstrate how the number of bots required
to achieve Gstrength differ for defense strategies, we implement
a simple adversary program that manages the bots and adapts
to the defense changes at the target network. This program
increases the number of bots in the attack; i.e., if the attack is
unsuccessful (i.e., the average per-flow rate, ravg , at the target
network is larger than rd), it adds more bots at the rate of one
additional bot per second.

We evaluate the effectiveness and the cost of the attack
against the three different defense strategies: (a) no defense:
a strategy that only provides per-flow fairness, which is au-
tomatically achieved by TCP’s congestion control mechanism;
(b) ordinary traffic engineering (TE): a strategy that provisions
additional bandwidth by rerouting traffic crossing the target
link (both malicious and benign) persistently as long as the
flooding continues; and (c) SPIFFY: a strategy that performs
TBE and rate-increase measurement on demand to test the
bots. Note that ordinary TE provisions the additional band-
width persistently without attempting to detect the bots, while
the TBE operation is temporary and only for testing bots.

We utilize 130 bots and each of them have 1 Mbps of up-
load bandwidth limit. The per-flow rate demand for legitimate
senders is rg = 100 Kbps while bots have the rate demand
of rd = 10 Kbps for no defense and ordinary TE. However,
since the attack against SPIFFY has the demand-rate mimicry
goal (RM), its bots have the rate demand of rg = 100 Kbps.
The target link bandwidth is set to be 8 Mbps. The number
of senders and the bottleneck bandwidth are limited by our
experiment setup. Through additional packet-level simulations
(Section VI-B) and flow-level simulations (Section VII-B), we
show that the results from these limited-bandwidth experiments
scale to large configurations.

Figure 13 shows the results of the evaluation over the three
defense strategies. In the two plots, the x-axis represents the
wall-clock time of the experiment. The adaptive adversary
program starts from time t = 0, increasing its number of
bots by 1 every second, if the adversary goal Gstrength is not
satisfied. Figure 13a shows the average per-flow rate changes
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Cogent Tata UUNET NTT Deutsche
Telekom

#routers 196 144 48 46 38
#links 245 194 84 63 55

TABLE I: Five ISP networks used for large-scale simula-
tions and their number of routers and links.

over time. Figure 13b illustrates the number of bots used in
the attack, which represents the attack cost. The number of
required bots varies widely for different defense strategies.
For no defense, only 10 bots are needed to achieve the goal.
For ordinary TE, initially the attack needs only 8 bots to
achieve its goal. However, as soon as the target network is
flooded at around t = 12 seconds, ordinary TE expands its
defense bandwidth by a factor of three and the average per-
flow rate of the target recovers the initial rg = 100 Kbps. As
a result, the adversary needs to further increase the number of
bots up to 31. Notice that both the attack and defense costs
increase roughly three times, which suggests that there is no
reduction in cost asymmetry. For SPIFFY, we observe that the
adversary requires 80 bots in total to achieve the rate-reduction
goal Gstrength while the defense does not use additional
bandwidth.5 This shows that the rate-increase mimicry (RM)
costs the adversary use roughly M = 10 times more bots to
achieve the attack goal Gstrength .

B. Large-Scale Flow-Level Simulations

In this section, we evaluate the feasibility of SPIFFY
in large-scale flow-level simulations with up to about 200
routers. In particular, we focus on the implementation of the
TBE to show that its proposed design (Section V-B) can be
implemented in practical ISP networks. For scalable evaluation
(e.g., millions of flooding flows and hundreds of routers), we
developed a simulator that models TCP flows (defined by srcIP,
dstIP, srcPort, dstPort, and protocol) as fluid flows [14]; i.e.,
each flow at each time epoch has its flow rate and occupies the
same amount of bandwidth at all the network links it travels.
We model the behavior of TCP flows by implementing the
ideal fair-share rate property (i.e., allocating equal bandwidth
to all competing flows) at every attack-targeted link in the
network. We examine the TBE algorithm using the flow
simulator with millions of flows. Our simulator models the five
large ISP topologies from the Topology Zoo database [32] as
shown in Table I. We use the uniform link-bandwidth model,
where all links have the same bandwidth, and non-uniform
model, where links in the center of the ISP topology have
higher bandwidth. The simulation proceeds in discrete time

5The TBE operations use additional bandwidth at the target only temporarily. Thus,
the increase in defense cost on average is negligible.

(in seconds)
Cogent Tata UUNET NTT Deutsche

Telekom

LP solution Mnetwork 2,039.06 435.79 0.79 0.27 0.27
Greedy algorithm 14.71 9.07 0.65 0.35 0.26

solution M̂network

TABLE II: Execution times for LP solution Mnetwork and
greedy algorithm solution M̂network.
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Fig. 14: Mnetwork values for the five ISPs in two link-
bandwidth models.

ticks. At each tick, the simulation updates the rates of all flows
in the network by visiting each network link and updating the
rates of all flows on the link.

Real-time operation of TBE in large networks. The
TBE operation needs to calculate the new route sets in real-
time; e.g., within few seconds. We evaluate the execution
time to calculate the new routes using the greedy routing
algorithm (i.e., Algorithm 1) and show how time efficient it
is, compared to solving the optimal LP. When solving the
greedy algorithm solution M̂network, we apply a binary search;
viz., Section V-A. We utilize the multi-core architecture of
our SDN controller for the binary search and evaluate 12
values of m concurrently at each iteration. Table II shows the
execution time for the LP solution Mnetwork and the greedy
algorithm solution M̂network. LP is solved with the CPLEX
solver in a server-grade machine with 20 cores. As explained,
LP requires an impractical amount of time for networks with
large number of routers R. In contrast, the greedy algorithm
with binary search requires only few seconds in general to
calculate M̂network. Even in the largest network we evaluate
(i.e., Cogent), it takes only 14.7 seconds, which is less than 1
percent of the time taken by the LP solution, which is 2,039
seconds.

Optimal LP solutions Mnetwork and effectiveness of
the TBE algorithm. We solve LP in the five ISP networks
with two different link-bandwidth models. The uniform link-
bandwidth model assumes the same bandwidth of 40 Gbps
for all the links. To model more realistic network bandwidth
provisioning, we also use the non-uniform model that assigns
link bandwidth based on the betweenness centrality of each
link. The betweenness centrality of a link is the number of
shortest-path routes between all pairs of edge routers that
include the link [26]. This metric represents how (logically)
central the link is in the network topology. We assign 40
Gbps link bandwidth to the 33% of links with the highest
centrality, 5 Gbps bandwidth to the 33% of links with the
smallest centrality, and 10 Gbps bandwidth to all other links
in the middle. For each case, we setup 10 different attacks,
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Fig. 15: Required number of TBE operations for varying
RTBE = Mnetwork/Mideal and Ps.

which target 10 different links for flooding. The targeted links
are chosen from the 10 links with the highest betweenness
centrality in each ISP topology. We assume that 30% of
bandwidth of each link is already used for underlying traffic
that is unrelated to the link-flooding attack. Figure 14 shows
the distribution of Mnetwork in the box plots. We achieve
Mnetwork close to 3 with the uniform model while Mnetwork

is close to 2 with the non-uniform model. The non-uniform
model has smaller Mnetwork since it provides less bandwidth
for alternative paths for TBE than the uniform model. As we
will see later in this section, a small value of Mnetwork ≃ 2 can
still be effective when used with the sequential TBE. Moreover,
we also evaluate the accuracy of the greedy algorithm solution
M̂network compared to the LP solution Mnetwork. We find
that in all five ISP networks the greedy algorithm solution
M̂network is nearly identical to the LP solution Mnetwork,
showing a difference of only few percentages (almost 1–2%).
Also, we find that the new routes due to TBE need just 1 to
3 more router hops (or 4 – 24% longer average route length
in the target network) compared to the original routes before
TBE.

Operation of randomized sequential TBE. We also
evaluate how many times the TBE operations need to be
performed to test the majority of all senders contributing to
the congest on the target link. As explained in Section V,
the required number of randomized sequential TBE operations,
n, depends on the ratio RTBE = Mnetwork/Mideal and the
percentage Ps of senders that must be tested at least once.
Figure 15 shows the required number of TBE operations for
various RTBE and Ps. As expected, the higher RTBE , the
lower n. Moreover, the lower Ps, the smaller the number of
TBE operations are required. Based on the observation that the
five ISPs we evaluate have Mnetwork in between 2.21 and 3.19,
we conclude that roughly 4 – 10 TBE rounds are required.

VIII. DISCUSSION

A. Handling Cost-Insensitive Irrational Adversaries

Countermeasures for cost-insensitive (e.g., state-sponsored)
or irrational adversaries require collaborative defenses, which
involve communication and coordination among different ISPs.
Collaborative defenses are necessary because cost-insensitive
adversaries can flood a large number of (if not all) the links
to a target, by definition. These defenses are more complex
to deploy and more expensive because they require bilateral
deployment agreements and coordination, added infrastructure
(e.g., CoDef [38]), and increased run-time detection costs.

Hence, collaborative defenses should not be the first-line of
defense.

To date, all available evidence indicates that the majority
of the link-flooding adversaries are in fact rational; e.g., cost
sensitive and stealthy as witnessed by the desire to use high-
amplification, low-cost attack traffic afforded by amplification
attacks that use hard-to-track sources [45]. Since rational
adversaries can always be deterred, SPIFFY can become an
effective first-line of defense for an ISP.

B. Legitimate Senders with Application-layer Rate Adaptation

Although the rate of a legitimate sender is mainly deter-
mined by its TCP window control (as discussed and evaluated
in Section VI-B), application programs might also adapt their
data rates and thus affect the send rate of the legitimate senders.
Such application-layer rate adaptation can potentially reduce
the effectiveness of bot detection. For example, let us assume
a legitimate sender that has suffered from severe congestion
for few minutes and its application program has adapted (i.e.,
reduced) its data rate to a low degraded rate. In such a case, if
the adaptation of the application-layer data rate is slow (e.g.,
few minutes), our bot detection mechanism might miss the
send rate increase of the sender and false identify the sender
as a bot.

In practice, video streaming is one of the most popular
examples of application-layer rate adaptation. Today’s most
video streaming services periodically (e.g., 1 – 10 seconds)
adjust the quality of a video stream to provide continuous
playback under various range of available network bandwidth.
An experimental evaluation study with major video streaming
services showed that the rate adaptation algorithm can adapt
its bitrate very quickly [9]. In particular, Netflix, the most
popular video streaming service, is shown to quickly adapt
to the sudden spikes of short-term (e.g., 2, 5, and 10 seconds)
bandwidth expansion; viz., Figure 12 in [9]. Based on this
experimental evidence, we believe that SPIFFY is effective to
most legitimate senders with application-layer rate adaptation.

C. Robustness against Multiple Link-Flooding Attacks

Rational, cost-sensitive adversaries might also target multi-
ple links concurrently to achieve higher damage to end targets.6
In such cases, individual links interact with the SPIFFY test
at each ISP. Thus, all the security analyses in Section III-B
are applicable to the multiple link-flooding attacks. That is,
the attacks must satisfy the rate-increase mimicry goal RM
to circumvent the tests launched by each link target and this
causes the attacks to increase the number of bots by a factor
of M for flooding each target link. If multiple link targets are
located in the same network, SPIFFY can simply measure the
per-sender rate changes as if single link in the network is being
targeted.

Multiplexed link attack: Although simple extensions of
single link attacks can be easily handled, when an adversary
carefully multiplexes the attack flows across her bots and a
small number (e.g., 10) target links, SPIFFY can detect the
bots only probabilistically. The steps of a multiplexed link

6Note that the irrational, cost-insensitive adversaries that flood a large
number of (if not all) links to the targets are discussed in Section VIII-A

12



attack are as follows. Each bot floods multiple (up to M )
link targets concurrently while using only 1/M of its upload
bandwidth (say u) for each link target. When one of the link
targets starts testing a bot, the bot allocates all of its upload
bandwidth u to the flows that are dedicated to that link by
pausing all the other attack flows. As a result, the bot can pass
the test by the link, and after the test the bot can continue to
flood the multiple link targets again. The bots in this attack can
be detected probabilistically when a bot is tested by more than
one target link simultaneously since it cannot increase rates for
the two tests simultaneously. The detection of the multiplexed
link attack can be improved to become deterministic when
the multiple SPIFFY operations in different ISPs exchange
the sender information they are testing (e.g., via standardized
channels [41]) and test same bots simultaneously.

D. Multiple senders sharing a single IP address

When multiple senders in a local network are served by
a single NAT gateway, they share the same source IP. If
some bots are located in the same local network, they might
identified as legitimate senders by SPIFFY because their flows
are mixed with other legitimate flows under the same source
IP.

In such cases, we examine whether a particular IP address
is shared or not; e.g., via existing mechanisms [15]. Then,
we perform the SPIFFY test with finer granularity of flow
aggregates; e.g., per-source-destination, per-source-protocol.
This enables SPIFFY to test different smaller sender groups
than the entire sender set sharing the same source IP and
thus improve the bot-identification accuracy even when senders
share a single source IP.

IX. RELATED WORK

We first summarize link-flooding attacks targeting core
network links. We then categorize existing defense approaches,
which are insufficient to defend against the link-flooding
attacks. Last, we list several other flooding attacks and discuss
their relationships with SPIFFY.

Link-flooding attacks. The link-flooding attacks that target
the core network links are the main threat model we consider in
this paper. The Coremelt attack [51] utilizes bots to send attack
traffic to other bots. This Coremelt attack coordinates large
numbers of bot pairs in a way that their communication paths
share the links in the Internet core. The Crossfire attack [31]
coordinates bots to send legitimate-looking low-rate traffic to
the attacker-chosen publicly accessible servers (e.g., HTTP
servers) in a way that their routes cross the link targets in
the core Internet. All attack flows are indistinguishable since
they are the connections to the legitimate open services and
low-rate protocol-conforming flows.

Profiling-based defense approaches. This type of mech-
anisms maintain the profiles of legitimate traffic based on
their flow rates, source IPs, destination IPs, protocols, etc.,
and distinguish attack traffic from legitimate one. PSP [20]
constructs the profiles of the rate history of origin-destination
pairs in a single ISP network. ACC (or Pushback) [40]
utilizes the rate/history of flow aggregates at the intermedi-
ate routers. Moreover, anomaly detection [37] monitors the
unusual changes in the entropy of packet header bits to detect

attack traffic. All attack-profiling approaches, however, can be
circumvented by an adversary who can freely choose attack
sources, destinations, and protocols, and completely conform
to network protocols (e.g., TCP congestion control) while
successfully flooding a target.

Proof-of-work defense approaches. Proof-of-work mech-
anisms enable target routers (or servers) to force both bots and
legitimate senders to submit proofs (e.g., computation resource
for solving puzzles [42], [55] or network bandwidth resource
[54]) that were performed before allowing access to the target.
These systems are fundamentally different from SPIFFY for
multiple reasons: (1) proof-of-work systems limit the traffic
generation of legitimate senders while SPIFFY limits that of
bots only; (2) proof-of-work systems create significant waste
of computation/bandwidth at traffic sources, which might
be prohibitive in energy/bandwidth-starved devices, whereas
SPIFFY does not waste any unnecessary resources; and (3)
proof-of-work systems require significant modifications to the
current Internet, including senders, routers, end-servers, and
protocols between them, while SPIFFY does not require such
modifications.

Capacity-provisioning defense approaches. Instead of
attempting to distinguish attack traffic or prioritize legitimate
traffic, the target network could simply provide more band-
width either via physical bandwidth addition or traffic engi-
neering for both legitimate and attack traffic [27]. However,
capacity provisioning alone cannot be effective because (1) it
does not reduce the attack-defense cost asymmetry (i.e., N -
times-provision of bandwidth at the target network requires
the same factor (N ) of increase of attack bandwidth for
successful attacks), and (2), if bandwidth is provisioned via
traffic engineering, the additional bandwidth available for the
provisioning in typical ISP networks is very small (e.g., 2 – 4
times) as shown in our evaluation in Section VII.

Collaboration-based defense approaches. These mech-
anisms require global collaboration among networks under
different ownership. CoDef [38] requires coordination between
the attack-target ISP and the ISPs hosting traffic sources to
mitigate attack traffic. SENSS [10] assumes the collaboration
between the target ISP and the intermediate ISPs in the
Internet to control the incoming flooding traffic. Although
ISP collaboration in general is not readily available in the
current Internet whose relationship between ISPs (e.g., [57])
are competitive rather than collaborative, increasing interest in
ISP collaboration for DDoS defense (viz., IETF DDoS Open
Threat Signaling (DOTS) Working Group [41]) may make
these mechanisms feasible in the near future.

SDN-based DDoS defense approaches. Orthogonal to
the above defense approaches, recent proposals utilized SDN-
based network architectures to handle DDoS attacks; e.g.,
Bohatei [23]. However, their focus (in particular Bohatei) is
on elastic scaling of defense for legacy DDoS attacks and they
do not tackle the link-flooding attacks we consider here.

Other attacks. Although our main focus in this paper is
on the link-flooding attacks that target the Internet core, here
we list some other DDoS attacks and discuss why SPIFFY
is not appropriate for defending against these attacks. First,
opt-ack attacks [49] send TCP Ack packets with the sequence
numbers that the receiver (attacker) has not yet received (i.e.,
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optimistic Acks) to servers to cause servers to send at a high
rate without noticing the congestion in the network. Such high-
rate flows would be considered as protocol non-conforming
at the bottlenecked link and thus could be detected by ex-
isting “elephant” detection mechanisms [34]. Second, TCP
amplification attacks [35] exploit protocol and implementation
vulnerabilities in the TCP connection setup and amplify the
attack traffic volume. Since this attacks also generate high-
rate attack flows, they can be detected in a similar way
the opt-ack attacks are detected. Third, shrew attacks [36]
and its variants (e.g., CXPST [46]) create low-rate flows
with bursts of packets that can cause the synchronized TCP
timeouts at a targeted link. These attacks are very different
from other volumetric DDoS attacks (including our persistent
the link-flooding attacks) and therefore could be handled by
other existing dedicated countermeasures [56]. Lastly, denial-
of-service attacks targeting SDN data-control channels have
different goals from the link-flooding attacks we consider here
and thus need to be addressed independently [50].

X. CONCLUSION

Handling Internet link-flooding attacks is an extremely
challenging problem because adversaries (1) can generate
attacks flows that are indistinguishable from legitimate flows;
and (2) incur a much lower cost for attacks than the defense
for countermeasures. We propose a system called SPIFFY
that forces an adversary to choose between two unpleasant
alternatives, namely either allow bot detection or accept an
increase in attack cost. SPIFFY removes the key enabler of
link-flooding attacks, namely undetectable attacks at low cost,
and provides an effective first-line of defense for the common
case; i.e., for attacks by the cost-sensitive adversaries who wish
to remain undetected. Hence, more complex and expensive
collaborative defenses among ISPs are required only for the
far fewer, cost-insensitive or irrational adversaries.
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