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ABSTRACT
We present our design and deployment experiences with
LiveSky, a commercially deployed hybrid CDN-P2P live stream-
ing system. CDNs and P2P systems are the common tech-
niques used for live streaming, each having its own set of
advantages and disadvantages. LiveSky inherits the best of
both worlds: the quality control and reliability of a CDN
and the inherent scalability of a P2P system. We address
several key challenges in the system design and implemen-
tation including (a) dynamic resource scaling while guaran-
teeing stream quality, (b) providing low startup latency, (c)
ease of integration with existing CDN infrastructure, and
(d) ensuring network-friendliness and upload fairness in the
P2P operation. LiveSky has been commercially deployed
and used for several large-scale live streaming events serv-
ing more than ten million users in China. We evaluate the
performance of LiveSky using data from these real-world
deployments. Our results indicate that such a hybrid CDN-
P2P system provides quality and user performance compa-
rable to a CDN and effectively scales the system capacity
when the user volume exceeds the CDN capacity.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Design, Measurement, Performance

Keywords
Content Delivery Networks, Peer-to-Peer, Live Streaming

1. INTRODUCTION
Live video streaming has long been projected as the“killer-

app” for the Internet. While this expectation has been in
effect for several years now, only in recent years with the
deployment of increased bandwidth in the last-mile has this
promise finally turned into reality (e.g., [6, 12, 13]).

There are two alternative (and competing) technologies
for delivering live video streaming to end-users: Content
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Delivery Networks (CDN) and Peer-to-Peer (P2P) systems.
CDNs such as Akamai [1] and Limelight [5] deploy servers
in multiple geographically diverse locations, distributed over
multiple ISPs. User requests are redirected to the best
available server based on proximity, server load etc. CDNs
provide end-users with the appearance of traditional client-
server approaches, but enable content providers to handle
much larger request volumes. Thus, end-users observe higher
quality experience and content providers can offer more re-
liable service. At the same time, ISPs can also benefit from
deploying CDN servers in their networks as it reduces the
total amount of upstream and transit traffic.

P2P systems solve the scalability issue by leveraging the
resources of the participating peers. P2P video streaming
systems have attracted a large number of Internet viewers,
as demonstrated by the huge popularity of applications such
as PPLive [9], Joost [4], CoolStreaming [42]. For example,
PPLive uses < 10 Mbps of server bandwidth to serve a 400
kbps video stream to roughly 1.5 million users [23].

Both approaches have their advantages and disadvantages.
CDNs provide excellent quality to end-users when the work-
load is within the provisioning limits. CDNs typically have
to provision servers and bandwidth in advance using esti-
mates of the expected workload and are thus inherently con-
strained by the specifics of their operating regime. Anecdo-
tal evidence, for example, during the recent US presiden-
tial inauguration [7], suggests that even popular sites and
providers can be overwhelmed by unexpected surges in de-
mand and thus have to deny service to end-users. This scal-
ing constraint becomes especially relevant as users and con-
tent providers demand higher quality video, i.e., implying
higher operating costs for the CDN.

P2P systems achieve high scalability while keeping the
server requirements low. However, the decentralized, un-
coordinated operation implies that this scaling comes with
undesirable side effects. Typical problems: (1) low stream
quality with undesirable disruptions [38], (2) unfairness in
the face of heterogeneous peer resources (e.g., high-bandwidth
peers become loaded, peers behind NATs do not contribute [14,
27]), and (3) network unfriendliness [14].

A natural question is if we can build a hybrid CDN-P2P
architecture that incorporates the best of both technolo-
gies and mutually offsets each others’ deficiencies. Several
researchers have hypothesized and analyzed the potential
benefits of such an approach [40, 22] via simulations and
trace-driven analysis. However, we are not aware of any real
implementation and deployment that actually demonstrates
the benefits of such a hybrid approach.



In this paper, we present the design, implementation, and
real-world deployment and evaluation of LiveSky, a hybrid
CDN-P2P live streaming system developed and deployed by
ChinaCache [2]. In designing and deploying LiveSky, we
have addressed several key challenges, including:

• A mechanism for dynamic resource scaling that guar-
antees adequate quality-of-service to end-users.

• Providing good end-user experience such as low startup
latency, low stream disruption rate, etc.

• Ease of integration of the hybrid P2P-CDN system
with the existing CDN infrastructure.

• Addressing the well-known shortcomings of P2P stream-
ing including high buffering requirement, low stream
quality, unfairness in upload contributions, and network-
unfriendliness.

An independent and equally valuable contribution of this
paper is our analysis of the performance of LiveSky “in the
wild”. To the best of our knowledge, this is the first study of
a widely deployed live streaming system using hybrid CDN-
P2P techniques. Several commercial providers have been
recently adopting hybrid P2P solutions to scale content dis-
tribution (e.g., RedSwoosh [10], Octoshape [8]). However,
real-world data on such deployments are hard to obtain. In
this light, our evaluation becomes especially valuable for the
future development of live streaming technologies and appli-
cations. Our measurement results indicate that:

• LiveSky works well even when the client upload band-
width is restricted and effectively leverages the resources
of both CDN and P2P nodes.

• Most clients obtain good quality service and suffer few
viewing disruptions, even with a small 15 second media
buffer.

• Users see more than 2× shorter startup latency com-
pared to pure P2P approaches.

• LiveSky provides good performance even when the churn
–the fraction of peers that join or leave in a specific in-
terval (e.g., 1 minute)–is as high as 10%, effectively in-
sulating most clients from churn-induced disruptions.

• LiveSky effectively offsets the deficiencies of P2P sys-
tems. Specifically, LiveSky leverages CDN redirections
to make P2P transfers “network-friendly”. Also, the
presence of a publicly addressable and available CDN
node enables NAT traversal, thereby better utilizing
the available upload capacity of NAT-ed hosts.

To summarize, the key contributions of this paper are,

• Design and implementation of LiveSky – a hybrid CDN-
P2P system for effectively scaling the capacity of a
CDN without compromising the reliability and user
experience (Section 2).

• Addressing key challenges in integrating the P2P com-
ponent into the CDN, overcoming the shortcomings of
traditional P2P systems for live streaming, and design-
ing an adaptive scaling mechanism to guide the hybrid
CDN-P2P operation (Section 3).

• Measurements and analysis of real-world deployments
that validate the benefits of a hybrid CDN-P2P archi-
tecture (Section 4).
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Figure 1: System Architecture

In this section, we describe the general architecture of the
LiveSky system. As shown in Figure 1, there are three ma-
jor components: (1) Management Center (MC) comprising
the DNS-based Global Server Load Balance (GSLB) system,
content management and configuration system, and moni-
toring and billing systems; (2) cache servers, referred to as
Service Nodes (SN) that deliver video contents from con-
tent providers to end users; (c) end hosts which may either
be legacy clients, which directly obtain the stream from the
edge servers or LiveSky-enabled clients, which can addition-
ally engage in P2P transfers.
System Management: The Management Center (MC)
is responsible for efficient control and monitoring of the
LiveSky system. The DNS-based GSLB system in the MC
redirects user requests to the nearest, lightly loaded server [3].
The MC distributes configurations to the SNs using XML
messages; these messages use incremental updates to reduce
the communication overhead. The configuration parameters
include channel information, source information, operating
strategies etc.

2.1 CDN Overlay
The SNs are organized into several tiers, with Tier0 being

closest to the content source and Tiern−1 closest to the end
users as shown in Figure 1. We refer to the SNs in Tiern−1

as edge SNs since they are directly responsible for serving
end users. The SNs in the remaining tiers are core SNs
since their primary responsibility is to act as a distribution
overlay to deliver the content to the edge SNs. This hierar-
chical arrangement is typical of many CDN infrastructures
to effectively magnify the total system capacity, reduce the
load at the content source, and also leverage the benefits of
caching requested contents in higher layers.

Each SN is allocated a unique ID. When SNi boots up, it
sends a “alive”message to the MC. The MC then broadcasts
the alive message to other SNs. A different SNj can obtain
the attributes of SNi (e.g., IP address and TCP port infor-
mation) from the MC to establish a TCP connection with
SNi if necessary.

The server-side distribution mechanism is largely tree-
based. However, in order to provide greater reliability in



the presence of node or network failures, we allow each SN
to retrieve the content either from SNs higher up in the hi-
erarchy (i.e., a lower numbered tier) or from peer SNs in the
same tier. Since the edge SNs are responsible for serving
end users, they are typically heavily loaded and we disable
peering between SNs in the edge tier.

Edge SNs handle client requests and obtain the required
contents from the core SNs. Requests from edge SNs are
forwarded up the hierarchy until they find a node that has
the desired content. To minimize the load at the content
source, only Tier0 SNs retrieve content directly from it.

The goal of the server-side overlay is efficient data dis-
tribution with some measures to guard against some node
failures and network delays. As the CDN nodes have high
availability and are stable, a tree-based overlay with addi-
tional peer edges satisfies the goals of providing reliable, yet
efficient data transmission.

2.2 System Operation
A client first obtains the URL for the live stream from the

content source (e.g., livesky://domainname/live1). The
GSLB component of the CDN takes into account the client
location, the edge SN location, and the edge SN loads to
find a suitable edge SN for this client. The client is then
redirected to this edge SN using traditional DNS-based redi-
rection techniques [3].

Each edge SN serves multiple roles. First, it acts as a reg-
ular server for legacy clients. Second, it serves as a tracker

for the P2P operation to bootstrap new clients with candi-
date peers. Third, it acts as a seed for the P2P operation for
the LiveSky-enabled clients assigned to it. The edge SNs are
pre-configured with some decision logic that decides if a new
LiveSky-enabled client should be served in CDN-mode or if
they should be redirected to the P2P overlay. Finally, the
edge SN is used for some optimizations in the P2P opera-
tion. Note that the P2P overlays are localized on a per-edge
SN basis; i.e., the peers with which a LiveSky enabled node
communicates in the P2P mechanism are also assigned to
the same edge SN as this node. We discuss these last two
roles in more detail in the next section.

2.3 Client Side Distribution
Legacy Clients: As discussed earlier, there are two types
of clients: legacy clients which receive contents directly from
the edge SNs and LiveSky enabled clients which can either
receive contents from the edge SNs or additionally use P2P
mechanisms. An important distinction between the legacy
and LiveSky clients is that the LiveSky clients can access a
higher quality video stream whereas the legacy clients may
only be able to access a lower quality stream. This incen-
tivizes users to install the LiveSky client software and en-
courages widespread adoption. In our experience, we find
that typically more than 50% of users have adopted LiveSky.
LiveSky’s P2P Mechanism: Recent proposals [41, 39]
demonstrate that a hybrid approach combining the multi-
tree [36, 16] and mesh [42, 9] schemes achieves both efficient
delivery and robustness to churn. We adopt a similar scheme
in LiveSky. The video stream is a single bit-rate encoding
(i.e., we do not use any layered coding) and is separated
into several substreams according to the stream frame id.
For example, if the video is divided into six substreams,
substream0 consists of frames 0, 6, 12, 18, . . . , substream1

consists of frames 1, 7, 13, 19, . . . and so on. Peers are or-

ganized in a tree-based overlay on a per-substream basis.
This ensures that all nodes contribute some upload band-
width. Additionally, in order to be robust to network or
node failures, peers also use a mesh-style pull mechanism to
retrieve missing frames for continuous playback.

3. ADAPTATION AND OPTIMIZATIONS
In this section, we present a more detailed discussion of

two key aspects of the LiveSky system: (1) system adapta-
tion in the presence of unexpected load to achieve an efficient
tradeoff between user quality, CDN cost, and system scala-
bility, and (2) optimizations to address some of the short-
comings of P2P for effective live video delivery.

3.1 Adaptive Scaling
There are natural tradeoffs in a hybrid CDN-P2P environ-

ment between the operating cost of the CDN, the perceived
user quality (e.g., media rate, delay between the video source
and the end user), and the overall number of end-users that
can be supported by the system at a given time.

The key challenge is to adapt the hybrid CDN-P2P op-
eration depending on the working environment so that the
users observe good performance and at the same time the
operating costs of the CDN are not too high. To this end,
we present an analytical model to understand the tradeoffs
involved. The objective of the analysis is to guide the opera-
tion of the LiveSky system, especially to control the number
of end-users served directly by the CDN.

The working environment for a hybrid CDN-P2P system
is defined by several important parameters such as (1) the
media playback rate, (2) the total number of end-users, (3)
the bandwidth capacity of the edge SNs, (4) bounds on user
quality defined as the delay between the video source and
the end user, and (5) characteristics of end-users such as
their upload bandwidth capacity and churn rates. Given the
working environment, the control parameter is the number
of end-users that are served directly by the edge SNs. Our
analysis models the relationships between these parameters
in order to derive guidelines for system operation.
Assumptions: In order to make the analysis tractable, we
make four simplifying assumptions.

• First, we model the P2P overlay as a single tree, to
avoid the complexity of modeling the hybrid mesh-
multitree mechanism. Since our actual overlay is more
efficient than a tree, this is a conservative assumption
that underestimates the system performance. Conse-
quently, we model the delay between the source and a
user in terms of the level of that user in the tree.

• Second, we imagine that the stream is divided into
multiple equal-length segments, and consider this seg-
ment as a basic unit of operation. All clients at the
same level in the P2P tree receive a specific segment
at the same time.

• Third, we assume that the total upload bandwidth of
clients in level k of the P2P tree is always larger than
the download bandwidth requirement of clients in level
k +1. This means that clients in this analytical model
never need to rebuffer. In other words, they do not
experience buffer underflows, where the media buffer
does not have any content for the higher-layer appli-
cation to render.



Notation Definition

ρ The average fraction of full streaming rate that
each supplying peer contributes during a session

k Level in the P2P overlay; peers in lower num-
bered levels receive the content earlier and serve
it to peers in the succeeding level. Especially,
peers in level 1 directly receive the content from
the CDN server

K0 Maximum number of levels
Nc CDN server capacity
P0 Total number of clients for this media
N(k) Upload capacity of clients in level k , N(0) = Nc

P(k) Number of clients in levels (k + 1) . . . K0,
P(0)=P0

σ Leave rate expressed as a fraction of peers that
leave in a specific interval

λ Join rate expressed as a fraction of peers that
join in a specific interval

Table 1: Notation used in our analytical model

• Finally, we only consider aggregate measures (i.e., pop-
ulation and time averages) to model the end-user prop-
erties such as upload capacities and churn rates.

Since our goal is to provide an approximate guideline for
operation, we believe that these simplifying assumptions are
reasonable. In the following discussion, we adopt and extend
the analysis framework of Xu et al. [40].1

In LiveSky, each edge SN independently decides whether
to serve a new client directly or redirect it to a peer which
has already joined the system. We make this explicit design
choice to have each edge SN operate independently to min-
imize the changes to the existing CDN infrastructure and
ensure ease of integration of the P2P component into the
CDN. In addition, this also implicitly ensures some form of
“fate isolation” across edge SNs in localizing the effects of
network or node failures and thus improving the overall ro-
bustness of the system (e.g., avoiding global oscillations or
cascading effects). Thus, for the following analysis, we focus
on the properties of a single edge SN.
Basic Analysis with No Churn: Suppose the edge SN
has sufficient capacity to serve only Nc concurrent streaming
sessions. Let P0 be the total number of clients assigned to
this SN that wish to receive this live video stream.

Let ρ denote the average fraction of full streaming rate
that each supplying peer contributes during a session. Let
N(k) represent the total P2P streaming capacity of peers in
level k. Note that as a specific case, N(0) = Nc. Since we
have a total capacity of N(k − 1) at level k − 1 and peers
can support ρ sessions on average, we have

N(k) = ρN(k − 1) (1)

Let P (k) be the number of clients in levels (k + 1) . . . K0.
Then,

P (k) = P (k − 1) − N(k − 1) (2)

1There are a few differences between the analysis of Xu
et al. [40] and that presented here. First, we explicitly model
the upload bandwidth restrictions on peers and the down-
load streaming requirement at each level. Second, our model
of node joins/leaves is more suited to our operational envi-
ronment. In their framework, peers leave the P2P system
once they have contributed some threshold capacity; in our
case, peers leave at random.
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Figure 2: Relationship between the scaling factor S

(fraction of nodes served directly by the CDN node)
and ρ (average client upload capacity relative to me-
dia rate) and K0 (number of levels in the P2P tree)

Combining the two above equations we have,

P (k) =

(

P0 −
Nc(1−ρk)

1−ρ
if ρ 6= 1

P0 − k × Nc if ρ = 1

Let K0 denote the maximum level in the P2P overlay; i.e.,
a parameter to capture the maximum acceptable source to
user delay. Then, by definition P (K0) = 0; i.e., it is not
acceptable to have clients more than K0 levels away from
the CDN node. This means that,

P (K0) = 0 =

(

P0 −
Nc(1−ρK0 )

1−ρ
if ρ 6= 1

P0 − K0 × Nc if ρ = 1
(3)

We define the scaling factor, S = Nc

P0
, the fraction of the

clients directly served by the CDN. Then, from (3) we have,

S =
Nc

P0
=

(

1−ρ

1−ρK0
if ρ 6= 1

1
K0

if ρ = 1
(4)

Analysis with Node Churn: We model the node churn
using two parameters: the average leave rate σ and the av-
erage join rate λ. σ and λ are expressed as a fraction of the
total number of current peers. We can modify (1) and (2)
to include node churn as:

N(k) = N(k − 1) × (1 − σ) × ρ (5)

P (k) = P (k−1)−N(k−1)−P (k−1)×σ+P0(1+λ−σ)k−1
λ

(6)
Proceeding along similar lines, we can show that

S =
Nc

P0
=

8

<

:

(1−ρ)(1+λ−σ)K0

(1−ρK0 )(1−σ)K0−1
if ρ 6= 1

(1+λ−σ)K0

K0(1−σ)K0−1
if ρ = 1

(7)

Examples for illustration: Figures 2(a) and 2(b) show
how the scaling factor S varies as a function of ρ and K0

respectively based on the analysis above. We use a constant
peer arrival rate λ = 3.6% and a constant peer leave rate σ =
2.4%. As expected, when the available P2P bandwidth ρ

increases, the system scaling improves and a smaller fraction
of the users need to be served by the CDN in Figure 2(a).
When ρ > 1, by relaxing the delay constraint, i.e., increasing
K0, we can reduce the CDN contribution. When ρ = 1, the
system cannot be scaled arbitrarily, and the scale levels off
as a function of K0. For ρ < 1, as the delay bound K0

is increased, the CDN contribution initially decreases, but
subsequently increases beyond a certain critical value.
Using the analysis to guide LiveSky operation: We
use the above analysis in conjunction with experiences gained
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from trial deployments to derive configuration parameters
to aid the decision process of each SN. The key is to con-
trol Nc, the number of nodes directly served by the edge
node, depending on the current load P0. Each edge SN is
pre-configured with the decision logic to determine Nc de-
pending on P0. We briefly describe the decision logic below.

Suppose, we have estimates of ρ, λ, and σ. These can be
obtained from understanding user behaviors and available
bandwidth characteristics from earlier test deployments and
other studies. We also choose a suitable value of K0, the
maximum number of levels in the client-side P2P based on
an upper bound on the acceptable source-to-user latency
and also on observed performance in field trials. In our
deployment, we use K0 = 2.

Each edge SN can be in four stages (Figure 3):

• Stage 1, P0 ≤ N1
c : All clients retrieve the content

directly from edge server.

• Stage 2, N1
c ≤ P0 ≤

N1

c

S
: New clients are served by one

of the first N1
c peers, i.e., we switch from the K0 = 1

mode to the K0 = 2 mode.

• Stage 3,
N1

c

S
≤ P0 ≤

N∗

c

S
: Half the new clients are

served directly, rest are redirected to peers.

• Stage 4, P0 ≥
N∗

c

S
: The edge SN hits its capacity limit

N∗

c . New clients have to be redirected to existing peers.
Since K0 = 2, we have S ≈ 0.5 this means that when
P0 ≥ 2 × N∗

c , new clients are redirected to other less
loaded edge SNs.

The specific thresholds (N1
c and

N1

c

S
) when the edge SN

transitions between stages are based on the bounds sug-
gested by (7). N∗

c is simply the total bandwidth capacity
of the edge SN divided by the media rate. Since the bound
does not account for extra load due to rebuffering events
(discussed next in stability under dynamics), we make sure

that the actual values of N1
c ,

N1

c

S
are slightly higher than

these analytical bounds. While our current deployment uses
K0 = 2, we can extend our system to use larger K0 values
as workloads become even larger and client-side P2P tech-
nologies evolve over time.

3.2 Improvements in the P2P layer
Locality: Each edge SN keeps track of clients currently
assigned to it (and none others). Each client learns about
other peers assigned to its designated edge SN. Since the
CDN redirection already takes into account the client and
SN locations when assigning a client to an edge SN, this
automatically ensures that clients mostly peer with other

clients in the same region. This can be viewed as a more
direct implementation of a recent proposal for localizing P2P
transfers [17].2

Upload fairness and NAT handling: A host behind a
NAT can receive data but often cannot serve other hosts.
Thus, NAT-ed hosts may not contribute any capacity to
the system. For example, measurements from CoolStream-
ing [27] show that users behind NATs contribute less than
one-sixth of the stream rate. This is a serious concern–in
many real deployments, a significant fraction of the hosts
are behind NATs. Measurements from PPLive [24] show
that 60%-80% of hosts in China are behind some kind of
NAT; our measurements (Section 4.6) reveal that more than
90% of the peers in LiveSky are behind NATs.3 Thus, it is
necessary to incorporate NAT traversal mechanisms for the
system to scale to a large user population.

We adopt well-known techniques such as STUN [34] to
deal with such connectivity restrictions. In doing so, we
leverage the edge SN to serve as an intermediary to facil-
itate NAT traversal. STUN uses UDP to achieve efficient
transmission between clients that behind NATs. We add
application-layer ACKs to ensure reliable data delivery over
UDP. We also adopt upload bandwidth restriction mecha-
nisms to balance the upload contribution across hosts. For
example, in our implementation, we limit the upload band-
width of each peer to be 150% of the stream bitrate.
Stability under dynamics: Node churn can cause inter-
mittent disruptions in data delivery. This can cause fre-
quent interruptions, i.e., the media player starts to rebuffer

because it is waiting for video segments to render, and af-
fect the user viewing performance. However, since LiveSky
is a hybrid CDN-P2P system, it can leverage the edge SNs
to minimize the impact of such disruptions without requir-
ing heavy-weight mechanism or using large buffers. The key
idea is that peers who suffer performance degradation due
to churn (e.g., a parent leaves or the connection is poor)
can retrieve data directly from the edge SN until the over-
lay adapts to the churn and these peers can find suitable
parent nodes. This ensures continuous video playback with
minimal overhead.
Fast startup: Another common problem in P2P systems
is the startup delay incurred by new clients. Many P2P
streaming systems take at least 30 seconds before the video
playback starts [26]. There are two optimizations in LiveSky
to reduce the startup delay. First, we reduce the client buffer
size to 15 seconds. Second, LiveSky leverages the edge SNs
to provide fast startup. When a client first sends a request
to a edge SN, the SN responds immediately reply it with a
pre-specified number of video segments. As the client video
buffer is filled with this content, it starts to play the video.
At the same time, it joins the P2P overlay. Once this is
done, it no longer needs the data coming directly from the
SN. Thus, the client has fast startup and at the same time
can transition into P2P mode smoothly.

4. DEPLOYMENT AND EVALUATION
2Ono [17] indirectly infers locality information based on
“black-box” observations of CDN redirections. Since we al-
ready have this information, our approach is more direct.
Alternatively, we can use network coordinates (e.g., [19]) for
localizing P2P transfers; we leave this for future work.
3LiveSky only served the users in China and PPLive is
mainly used in China.



There has been considerable interest from researchers and
industry alike on deploying hybrid CDN-P2P services [40,
22]. While there have been several measurement studies an-
alyzing pure P2P and pure CDN systems for live streaming
and VoD services [20, 21, 24], there is little understanding
of how a hybrid P2P-CDN performs in the wild. We believe
that this is the first analysis of a commercially deployed hy-
brid CDN-P2P system for live streaming.

We answer the following questions in this evaluation:

• How does the adaptive scaling work in practice? (Sec-
tion 4.3)

• What is the performance seen by end-users in terms
of the rebuffering rate and startup delay? How are
these performance metrics affected by churn? Do the
stability control measures work well in practice? (Sec-
tion 4.4)

• How effectively can we localize P2P transfers? (Sec-
tion 4.5)

• Do clients behind NATs contribute adequately? (Sec-
tion 4.6)

4.1 Deployment
The growth in number of users has been quite rapid since

LiveSky has been built and deployed. Figure 4 shows the
scale of the system in terms of the peak number of users
served over several different events. For the purposes of this
study, we focus on the largest event (in terms of total number
of users), the 17th CPC National Congress [11] on Oct 22,
2007.4 During this event, ChinaCache deployed about 500
edge servers in 8 districts each for China NetCom and China
TeleCom, the two largest commercial ISPs in China. There
were 50 core SNs distributed throughout the districts. These
retrieve the content from the source and other core SNs in
nearby districts using the server-side distribution discussed
in Section 2. Around the core SNs, there are over 400 SNs
in the edge layer, scattered within each district. Figure 5
shows the actual location of the core and edge SNs for the
event.

The peak number of clients for this event was more than
145,000 with an aggregate bandwidth contribution of roughly
34 Gbps (58.6% of the users) from the CDN nodes and
roughly 17 Gbps from the P2P nodes. This event exhibited
a flash-crowd like effect around 11am within a few minutes
of the beginning of the stream (Figure 6). The average view-
ing time of the users in the event was 13.5 minutes. Since
the event itself only spanned a few minutes, this means that
many users stayed and watched a significant portion of the
stream. This also suggests that LiveSky was able to pro-
vide good user performance even with the sudden surge in
demand during the flash-crowd.

4.2 Measurement Methodology
Our measurements are collected from both edge SNs and

peers. Each peer reports aggregated statistics to its assigned
SN. The SN collects additional information on client arrival
and leave patterns. Each edge SN subsequently sends these
reports to a log server in the MC. To reduce the overhead of
the measurement traffic, each host (peer and edge SN) per-
forms local summarization where appropriate before sending
the data to the log server.
4The CPC National Congress is a high-impact event of
tremendous national interest within China comparable to
the US Presidential Inauguration.
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Figure 5: Deployment of the LiveSky CDN nodes in
China for the 17th CPC National Congress

There are three types of measurements collected:

1. Per-minute data on total number of active users, num-
ber of new users, and number of users leaving the sys-
tem collected at the edge SN.

2. Client join/leave information including the time a client
started, the first login response received, first data
packet received, time for the video buffer to fill up
initially, and time when the playback started etc.

3. Periodic per-minute reports from each client on the set
of peers it currently interacts with, the total number of
bytes uploaded and downloaded, playback quality etc.
Each client report contains both the global IP and a
private IP if the client is behind a NAT.

There are three potential sources of error. First, there
can be skews in the clocks across the different nodes in the
system. However, this is not a serious issue because we are
only interested in coarse-grained metrics rather than fine-
grained temporal analysis. Second, the log server may get
overloaded and thus some measurements may be lost. We
ensure that the clients and edge SNs store such unsuccess-
ful reports and send them at a later time. Third, some
clients may leave abruptly, without generating a leave mes-
sage. However, less than 5% of nodes showed such behavior
and this does not bias our results.

Each edge SN operates in isolation and clients in different
regions are naturally redirected to local edge SNs. Thus, we
can effectively study the system performance and dynamics
from the perspective of each SN in isolation. Due to skew in
the population and viewership, edge SNs see varying request
workloads. Some operate in pure CDN mode (i.e., Stage 1)



Figure 6: Flash crowd during the 17th CPC
Congress on Oct 22nd, 2007
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Figure 7: Adaptive scale control at a busy SN

while others switch to the mixed CDN-P2P operation (i.e.,
Stages 2–4). For the following analysis, we focus on the
interesting case: a typical “hotspot” edge region in Beijing
that received a sufficiently large request load to cause it
to transition into different operating modes. In fact, over
60% of the users in this region were served from the P2P
component of LiveSky, compared to the global average of
40%.

4.3 Adaptive Scaling
Figure 7 shows how the adaptive scale control discussed

in Section 3.1 works in practice at the Beijing hotspot. As
discussed earlier, the key parameter is Nc, the number of
push peers served directly by the SN. The adaptive control
decides a suitable value depending on the offered load (P0,
the x-axis). Here, we configured N1

c = 100. The bandwidth
capacity of the SN is 200Mbps, which at a media rate of
400Kbps translates into N∗

c = 500. For reference, we show
the expected Nc curves for different values of K0. We see
that the scale control closely follows the expected guidelines,
which restrict the minimal Nc suggested by the analysis.
(The minor glitches in the curve arise because of practical
issues in accurately estimating the total number of clients.
The total number of Push peers can be accurately estimated
as these clients maintain a persistent connection with the
edge SN. However, not all the clients in P2P mode main-
tain a connection with the edge SN. Some of these clients
may leave the system without notifying the edge SN, causing
some discrepancy in estimating the total number of clients.)

4.4 User experience
Startup Delay: Anecdotal evidence suggests that the startup
delay is a crucial factor in user quality – users are likely to
get frustrated and leave if they perceive high startup de-
lays [29]. In LiveSky, 85% of the clients wait less than 15s
(not shown) for playback to commence from the time the
user clicks on the stream hyperlink. Measurements from
P2P streaming systems like CoolStreaming show that most
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Figure 8: Rebuffering rate over time
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Figure 9: Correlation between join rate and re-
buffering rate for different classes of clients

clients observe startup delays greater than 30s [27]. Thus,
is clear that the hybrid system architecture provides signif-
icantly faster startup performance.
Rebuffering Dynamics: We define the rebuffering rate

as the number of clients that rebuffered for playback per
minute. We believe that this metric more accurately cap-
tures the quality of the user’s viewing experience compared
to metrics proposed in previous work. For example, previous
work on P2P streaming [27] primarily captures user experi-
ence through the failure rate, where a failure event is defined
as the inability of the user to start playing the video. Such
a coarse-grained measure only captures the user experience
during joins; it does not capture the quality when the user
is viewing the event.

In Figure 8, we show the rebuffering rate over time and
also correlate this with the number of users, the join rate,
and the leave rate. While there is a reasonably strong cor-
relation between the rebuffering rate and join rate, there is
little or no correlation with the remaining factors.

Given that the join rate is the dominant factor affecting
the rebuffering rate, we do a more fine-grained analysis of
the relationship between the rebuffering rate and the join
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Figure 10: Metrics to capture playback quality

rate. For this, we classify clients along two dimensions: (1)
how long they have been in the system (e.g., old vs. new),
and (2) whether they are being served by the CDN node or
by the P2P system (Push vs. P2P). Figure 9 correlates the
rebuffering rate for each of these 4 classes of clients to the
aggregate join rate. There is little or no correlation between
the rebuffering rate of old users, both Push and P2P, and the
join rate. There is a slight correlation between rebuffering
rate of the new Push clients and the join rate. There is
however, a stronger correlation between the rebuffering rate
of new P2P users and the join rate. Even this correlation is
substantially less than that observed in P2P-only streaming
systems [27]. This suggests that LiveSky is more effective
at insulating users from churn-induced effects compared to
pure-P2P systems.
Aggregate Quality Indices: We define two quality in-
dices to measure the users’ viewing quality in a given mea-
surement interval. The first index is Q1 = TP

TP +TB
, where TP

is the total (across all clients) time spent in media playback
and TB denotes the total time spent in buffering in this mea-
surement interval. The second index is Q2 = 1− NB

NT
, where

NT is the total number of clients and NB is the number of
clients that experienced some buffering in this measurement
interval. Ideally, we want these two quality indices to be as
close to 1 as possible, i.e., perfectly smooth playback for all
users.

Figure 10 shows the distribution of these two playback
quality indices over the entire duration of the live stream.
We see that even the worst case values of these quality mea-
sures are greater than 0.95 and that the median values for
Q2 and Q1 are 0.9998 and 0.99 respectively. These show
that LiveSky delivers high quality viewing experience.

We make three main inferences from the above results:
(1) the clients that have already joined the system are effec-
tively insulated against the dynamics of new joins, (2) the
impact of join dynamics on the user quality is significantly
lower compared to existing P2P alternatives, and (3) the
system provides high quality user viewing experience even
in a dynamic environment.
Effect of increasing buffer size: In our deployed system,
we use a 15 second long client buffer. We evaluated the
potential benefits of increasing the buffer size based on traces
collected from the event. Suppose the actual rebuffering
time for some client was X seconds. We assume that using
a buffer size corresponding to Y > X seconds will alleviate
this rebuffering event. Figure 11 shows how the number
of rebuffering events per client decreases as we increase the
buffer size. For example, when the buffer size is increased
from 15s to 30s, the clients percentage with no rebuffering
increases significantly from 17% to 82%. Beyond a buffer
size of 20-25 seconds, we observe that there is a diminishing
returns property.
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Figure 12: Leveraging the CDN node to minimize
disruptions caused when peers leave

Stability Measures: In Section 3.2 we discussed how LiveSky
can provide continuous playback by using the edge SN to
temporarily serve nodes that suffer disruptions in churn.
Figure 12 confirms that this optimization does help in prac-
tice. The figure shows a clear correlation between the num-
ber of clients that refocused on the edge SN to obtain the
media and the leave rate. Using the edge SN to temporarily
serve these affected nodes ensures continuous playback even
in the presence of node churn.

4.5 Locality Analysis
Since our P2P overlay is localized on a per-SN basis, we

can evaluate the locality-awareness of the P2P transmissions
in LiveSky by analyzing the effectiveness of the DNS-based
redirections used by the CDN. For example, if the CDN redi-
rection was accurate in assigning 90% of the clients located
in Shanghai to the edge SN located in Shanghai, then most
of the P2P transmissions associated with this edge SN will
be localized. The CDN redirection maps the IP address of
the local DNS server of the client to a geographic location
using a IP to location database and redirects the client to
a suitable edge SN. There are two potential sources of error
in this redirection: (1) clients may have misconfigured their
local DNS server (e.g., using a static DNS server instead of
using a DNS server provided by the upstream ISP) and (2)
the IP to location mapping might be out of date. We ana-
lyze the accuracy of the redirection by checking if a client’s
public IP address maps to the same region/ISP as the edge
SN assigned to it by the GSLB. In more than 80% of the
cases the client is assigned to an edge SN in the same ISP.
Thus, most of the P2P traffic in LiveSky is localized within
the ISP and this ensures a “network-friendly” operation.
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Figure 13: Contribution of NAT-ed clients

4.6 Contribution of NAT-ed clients
Each LiveSky P2P client reports both its private IP ad-

dress (e.g., 192.168.*) to the edge server and the edge server
can obtain its public IP address from the received packets,
we can determine if this client is behind a NAT. During
the Chinese Congress event, more than 90% of end hosts
are behind NATs. Figure 13 shows the distribution of up-
load bandwidth contribution of NAT-ed clients during this
event. While 37% clients behind NAT could not provide
upload capacity, the majority of NAT-ed clients contribute
significantly. For example, given a video bitrate of 400kbps,
nearly 30% of NAT-ed clients contribute 1× the video rate.
The CDF ends at 600kbps only because we manually lim-
ited the upload contribution to be 1.5× the media rate in
the client software. Compared to measurements from prior
P2P systems [27] this result suggests a greater contribution
from NAT-ed hosts.

5. RELATED WORK
Architectures for P2P streaming: There are two candi-
date P2P streaming technologies: tree-based (e.g., [18, 16])
and mesh-based (e.g., [42, 9]). The tree vs. mesh question
has been a long-standing debate in the research commu-
nity [36, 31]. Tree-based schemes follow a push model and
provide low source-to-user delay. However, they have poor
performance under churn and do not leverage the available
upload capacity effectively since majority of the peers are
leaf nodes [29]. Multi-tree constructions alleviate some of
these concerns [36, 16]. Mesh schemes [42, 28, 30] follow
a pull model. Peers typically exchange membership and
content information (i.e., the “chunks” each peer currently
has to offer) through gossip-like protocols [15]. Mesh ap-
proaches are inherently robust to churn and also result in a
more equitable use of the upload capacities of peers. How-
ever, mesh-based overlays may not deliver the relevant video
segments in time and/or have to typically use large buffers
to offset the effect of having to wait for video segments.

None of these approaches completely solve the problems
arising from the dynamic operating environment, motivat-
ing recent proposals for hybrid P2P approaches combining
multi-tree and mesh systems (e.g., [41, 39, 37, 36]). LiveSky
currently uses these techniques and we can leverage future
developments in this area for improving the client-side P2P
component.
Hybrid CDN-P2P systems: Xu et al. [40] presented
one of the early analysis on hybrid CDN-P2P architectures.
They perform an in-depth analysis of the system dynamics
which involves a transition between a CDN mode to a P2P
mode (similar to our multi-stage approach in Section 3.1)

and use simulations to demonstrate that such a hybrid ap-
proach is cost-effective. Huang et al. [22] present the poten-
tial savings in using hybrid CDN-P2P systems for two major
CDNs: Akamai and Limelight. Other researchers have also
recommended the use of hybrid CDN-P2P systems (e.g., [25,
32, 33]). Most of this work is based on the simulation or
traces collected from pure CDNs. While there are several
industry efforts toward implementing hybrid CDN-P2P ar-
chitectures (e.g., [10, 8]), we are not aware of any published
work with respect to the actual system design, implemen-
tation, and deployment aspects or real-world measurements
of such systems. Thus, we hope that our experiences with
LiveSky will serve as a valuable contribution to foster future
research in this area.
Measurements of deployed streaming systems: There
are many measurement studies of commercial P2P live stream-
ing systems. Hei et al [20] study PPLive using traces col-
lected both by active crawling and passive sniffing. Ali
et al. [14] study PPLive and SopCast by passively collect-
ing network traces from clients. Silverston et al. [35] com-
pare four popular P2P streaming applications: PPLive, PP-
Stream, SopCast, and TVAnts using passive sniffing dur-
ing the broadcast of the 2006 FIFA World Cup. These are
largely “black-box” measurements as they are constrained
by the inability to instrument the client software or reverse-
engineer the control protocols used by these systems. Li
et al. [27] analyze CoolStreaming and Wu et al. [38] study
UUSee using a more “white-box” approach similar to our
measurements by deploying an ActiveX component at peers,
which reports peer statistics periodically to a logging server.
Such measurement studies have provided valuable insights
into network properties, user behavior patterns, and system
dynamics to guide the future development of P2P streaming
systems. To the best of our knowledge, our work represents
the first extensive measurement study on a commercial hy-
brid CDN-P2P live streaming system, and we hope that our
analysis will also serve a similar role.

6. CONCLUSIONS
There has been tremendous interest in both academic

and industrial research communities on combining the ben-
efits of traditional CDN architectures and P2P systems for
live streaming. However, there have been few real systems
and deployments that validate the promise of such a hybrid
CDN-P2P architecture. Consequently, we do not have a
real understanding of how such an architecture performs “in
the wild”. The contribution of this paper is a practical one
– it presents our experiences in designing and deploying a
real-world hybrid CDN-P2P system for live streaming called
LiveSky that helps bridge this gap.

In designing LiveSky, we use existing P2P technologies
and integrate them with minimal changes to the existing
CDN infrastructure. In doing so, we make specific design
choices to ensure that the system scales with the number
of users, at the same time provides the users with a good
viewing experience, i.e., low startup delay and minimal dis-
ruptions due to rebuffering, even under churn. We leverage
the presence of the infrastructure nodes and the CDN redi-
rection mechanisms to address some well-known deficiencies
in P2P systems such as enabling users behind NATs to con-
tribute upload bandwidth and localizing P2P traffic to en-
hance the network-friendliness.

Our evaluations demonstrate that LiveSky can provide



users with good quality even with commodity P2P technolo-
gies. There are four natural directions for future work. First,
improving P2P technologies for live streaming and VoD like
applications is still an ongoing area of research. LiveSky
can leverage developments in this area for providing even
better performance at scale. For example, scalable coding
techniques (i.e., base layer + enhanced layer style codes),
can better adapt to node heterogeneity. Second, we can en-
hance our analysis framework for adaptive scaling to better
understand the tradeoffs between scale, quality of service,
and CDN operating costs in our analysis, and also extend
the analysis to mesh-style P2P overlays. Third, we plan to
incorporate better security features e.g., to only allow au-
thorized users to access the stream, ensuring that peers do
not intentionally deny service etc. Finally, we would like to
achieve more fine-grained instrumentation of clients to be
able to better diagnose the root causes of poor client perfor-
mance.
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