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ABSTRACT
Entropy-based approaches for anomaly detection are appeal-
ing since they provide more fine-grained insights than tra-
ditional traffic volume analysis. While previous work has
demonstrated the benefits of entropy-based anomaly detec-
tion, there has been little effort to comprehensively under-
stand the detection power of using entropy-based analysis of
multiple traffic distributions in conjunction with each other.
We consider two classes of distributions: flow-header fea-
tures (IP addresses, ports, and flow-sizes), and behavioral
features (degree distributions measuring the number of dis-
tinct destination/source IPs that each host communicates
with). We observe that the timeseries of entropy values of
the address and port distributions are strongly correlated
with each other and provide very similar anomaly detec-
tion capabilities. The behavioral and flow size distributions
are less correlated and detect incidents that do not show
up as anomalies in the port and address distributions. Fur-
ther analysis using synthetically generated anomalies also
suggests that the port and address distributions have lim-
ited utility in detecting scan and bandwidth flood anomalies.
Based on our analysis, we discuss important implications for
entropy-based anomaly detection.

Categories and Subject Descriptors
C.2.3 [Computer-Communication-Networks]: Network
Operations—network management, network monitoring

General Terms
Management, Measurement

Keywords
Entropy, Anomaly Detection

1. INTRODUCTION
There has been recent interest in the use of entropy-based

metrics for traffic analysis [20] and anomaly detection [10,
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4, 7, 5, 12, 18]. The goal of such analysis is to capture fine-
grained patterns in traffic distributions that simple volume
based metrics cannot identify [10].

Several traffic features (e.g., flow size, ports, addresses)
have been suggested as candidates for entropy based anomaly
detection. However, there has been little work in under-
standing the analysis capabilities provided by a set of en-
tropy metrics used in conjunction with one another. For
example, it is unknown whether the different features com-
plement each other, or if they detect the same anomalies
and are redundant.

The goal of this paper is to provide a better understanding
of the use of entropy-based methods in anomaly detection.
We consider two types of distributions based on flow-header

features and behavioral features. The flow-header features
are addresses (source and destination), ports (source and
destination), and the flow size distribution (FSD) [10, 5, 9].
The behavioral features are the in and out-degree distribu-
tions (degree of an end-host X is the number of distinct
IP addresses that X communicates with) that capture the
structure of end-host communication patterns.

The key results from our measurement study are:

• Port and address distributions are highly correlated, with
pairwise correlation scores greater than 0.95. The degree
distributions and FSD are weakly correlated with each other
and with the port/address distributions.

• The correlation between the source (destination) port and
source (destination) address distribution arises due to the
nature of the underlying traffic patterns. However, the cor-
relations across the source and destination distributions stem
from the uni-directional nature of flow-level measurements
available today.

• The anomalies detected by the port and address distri-
butions overlap significantly. In our dataset, almost all the
anomalies detected by these distributions are alpha flows [10].
In contrast, host degree distributions and FSD identify anoma-
lous scan, DoS, and P2P activity that are not detected by
the port and address distributions.

• Experiments with synthetically generated anomalies show
that FSD and the degree distributions detect scanning events
that cannot be detected by the port and address distribu-
tions. For DDoS-style events, port and degree distribu-
tions detect only high-magnitude events that would have
appeared as traffic volume anomalies.

These observations have important implications for entropy-
based analysis. First, we should select candidate distribu-
tions with care. While ports and addresses have been com-
monly suggested [10] as good candidates for entropy-based



anomaly detection, our measurements question this ratio-
nale. Our results also suggest a natural approach: select
traffic distributions that inherently complement one another
and thus provide different views into the underlying traffic
structure. Second, we need to move beyond the traditional
uni-directional flow semantics available today (e.g., [14, 16]),
since they can artificially skew the properties of the under-
lying distributions. Thus, it is prudent for administrators
to use bi-directional flow collection tools whenever possible.
Finally, we discuss how to use the correlations to design a
better anomaly detection system. Our preliminary results
show that using time-series anomaly detection on the corre-
lation scores can expose new anomalies that do not manifest
in the raw time-series.

2. PRELIMINARIES
Datasets: Our primary dataset uses (bi-directional) flow
data [2] captured in February 2005 at Carnegie Mellon Uni-
versity. 1 The dataset contains traffic to and from tens of
thousands of active IP addresses involving roughly 92 TB of
total traffic over 2.5 billion flows. IP addresses in the dataset
were anonymized preserving a one-to-one mapping between
actual and anonymized IP addresses [19]. Application ports
were not anonymized. The traffic feature distributions we
study are unchanged by the anonymization.

The dataset is split into five minute non-overlapping epochs
consisting of flows that completed within the epoch. Each
(bi-directional) flow record consists of source/destination pairs
for the IP address, port, packet count, and byte count. It
also includes the connection time, protocol used, connection
state, and flow direction. However, in some cases the direc-
tionality is not evident from the flow record (e.g., UDP flows,
long-lived TCP flows that extend beyond the flow timeout).
In such cases, we use application port numbers to infer flow
direction.2

We also corroborate specific parts of our analysis with
Netflow [14] data from Internet2, GÈANT, and a (different)
university department.
Approach: The entropy of a random variable X is H(X) =

−
PN

i=1 p(xi) log (p(xi)), where x1, . . . , xN is the range of
values for X, and p(xi) represents the probability that X
takes the value xi.

3 We compute the normalized entropy
(between zero and one) as H

log(N0)
, where N0 is the number

of distinct xi values present in a given measurement epoch.
We study seven empirical traffic distributions. Five of

these are obtained from flow-headers: source address, desti-
nation address, source port, destination port, and flow size
distribution measured in packets per flow (FSD). Prior work
on using flow-header features in entropy-based analysis uses
uni-directional flow information (e.g., [14, 16]). Hence, we
explicitly convert each bi-directional flow record [2] into two
uni-directional flows for computing the distributions over the
flow-header features. For each source (destination) address

1The router observes all traffic between university hosts and
external Internet hosts. It also observes a significant fraction
of internal inter-departmental traffic
2Rationale: If a host is running a well-known application
service, then it is likely to be the server. Since the client ini-
tiates a connection in client-server transactions, we assume
that the host that does not use the well-known port is the
connection initiator.
3All logarithms are base 2 and 0 log 0 = 0.

(port) xi, we calculate the probability

p(xi) =
Number of pkts with xi as src (dst) address (port)

Total number of pkts

The normalization factor is log(N0), where N0 is the num-
ber of active source (destination) addresses (ports) observed
during the measurement epoch.

The remaining two distributions are based on inter-host
communication behavior. We consider the in- and out-degree
of each active internal IP address inside the network under
consideration (e.g., in our dataset we only consider hosts in-
side the university): these are the only hosts for which we
have a complete view of both incoming and outgoing traffic.
For a host X, the out-degree is the number of distinct IP ad-
dresses that X contacts, and the in-degree is the number of
distinct IP addresses that contact X. The degree distribu-
tions are computed using bi-directional flows. For each value
of out-degree (in-degree) xi, we calculate the probability

p(xi) =
Number of hosts with out-degree xi

Total number of hosts

The normalization factor is log(D), where D is the number
of distinct out-degree (in-degree) values observed during the
measurement epoch.

For each measurement epoch, we compute the normalized
entropy for the seven distributions. Let Yij denote the nor-
malized entropy of distribution i (e.g., source address) ob-
served in epoch j, and Yi denote the timeseries of normalized
entropy values for distribution i. Given the Yis, we compute
the pairwise correlation coefficients between every pair of

timeseries vectors Yi and Yi′ , γ(Yi, Yi′) =
P

j YijYi′j−nYiYi′

(n−1)σYi
σY

i′
,

where Yi and Yi′ are the sample means of Yi and Yi′ , σYi
and

σYi′
are the sample standard deviations of Yi and Yi′ , and n

is the number of epochs. We also apply timeseries anomaly
detection on each Yi using the wavelet analysis technique
proposed by Barford et al [3].4

3. MEASUREMENT RESULTS

3.1 Correlations in Entropy Timeseries
Table 1 shows the pairwise correlation scores between the

entropy timeseries of different distributions. We find strong
correlations (> 0.95) between the address and port distri-
butions. The remaining metrics show low or no correlation.
Figure 1 shows the entropy timeseries values over the entire
month-long trace. The visual confirmation of the correla-
tions is just as striking as the values themselves. Addition-
ally, we observe that many of the spikes and deviations in the
timeseries plots are also highly correlated. We will revisit
these anomalies in the subsequent discussions.

To confirm that these results are not an artifact of our
dataset, we perform similar analysis using data from other
networks and time periods: Internet2, GÈANT, Georgia
Tech, and CMU-2008. All the datasets are large; consist-
ing of over a hundred thousand flows per 5-minute bin, and
span multiple weeks. The Internet2 and GÈANT traces con-
sist of flow data from each of the vantage points (11 and 22
respectively). Table 2 summarizes the average and stan-
dard deviation of the correlation scores among the ports

4We also use a heuristic anomaly detection approach to rule
out biases due to the wavelet analysis [15].
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Figure 1: Time series of entropy data for CMU, February 2005, with anomalous event labels.

Out Src Dst Src Dst FSD
Deg Addr Addr Port Port

InDeg 0.102 0.100 0.097 0.000 0.007 0.414
OutDeg - -0.034 -0.033 -0.054 -0.015 -0.018
SrcAddr - - 0.994 0.962 0.956 0.307
DstAddr - - - 0.966 0.969 0.286
SrcPort - - - - 0.989 0.171
DstPort - - - - - 0.181

Table 1: Correlation of entropy timeseries on CMU-

2005 dataset.

Trace (#routers) Date Avg SDev Min Max
CMU (1) 3/1/08–3/31/08 0.98 0.01 0.96 0.99
GA Tech (1) 2/12/08–3/22/08 0.94 0.020 0.91 0.96
Internet2 (11) 12/1/06–12/14/06 0.84 0.07 0.76 0.98

GÈANT (22) 11/1/05–11/31/05 0.89 0.07 0.81 0.98

Table 2: Correlation from other traces.

and addresses.5 The strong correlations we observe are not
unique to one dataset. Further, the correlations on the CMU
dataset are stable across the 2005 and 2008 datasets. For
the remainder of the paper, we focus on results using the
CMU 2005 dataset.

3.2 Correlations in Anomaly Deviation Scores
Next, we explore if the correlations in the entropy time-

series values also extend to anomalies. We compute the
anomaly deviation score of each epoch as the magnitude of
normalized local variance computed over a sliding window
of size six representing a half-hour interval [3].

5Internet2, GEANT, and Georgia Tech only provide uni-
directional Netflow [14] style flow records. Thus, we cannot
repeat the degree analysis on these.

Out Src Dst Src Dst FSD
Deg Addr Addr Port Port

InDeg 0.248 0.199 0.188 0.185 0.156 0.507
OutDeg - 0.179 0.165 0.143 0.122 0.396
SrcAddr - - 0.991 0.971 0.964 0.319
DstAddr - - - 0.970 0.971 0.300
SrcPort - - - - 0.986 0.256
DstPort - - - - - 0.220

Table 3: Correlations of wavelet deviation scores.

Table 3 shows that the port and address distributions are
as strongly correlated in deviation scores as they are in terms
of the entropy values. Interestingly, the behavioral features
become slightly more correlated to the other metrics. For
example, the correlation between out-degree and FSD in-
creases by 0.414 from their correlation in entropy to their
correlation in deviation scores. We hypothesize the reason
for this increase is that the in and out-degree distributions
show more stochastic variations than the other distributions.
Thus, they tend to be uncorrelated in terms of the timeseries
values. However, the wavelet analysis removes the noisy
variations and the deviation scores become more correlated.

3.3 Understanding the correlation in port and
address distributions

First, we rule out that the correlations arise as an ar-
tifact of factors such as entropy normalization, packet vs.
byte counts, and time scale of computing correlation values
(hour vs. day. vs. week). Once we eliminate these factors,
we posit that the correlations are due to (a) a fundamen-
tal property of the underlying traffic patterns and/or (b)
the unidirectional flow accounting model. For (b), note that
this is not specific to our analysis and data. Uni-directional



Anomaly Type Affected Metrics Labels
Alpha Flows (Botnet activity) Addresses, Ports B, F-H, K-N, P

Scans FSD A, D
P2P Supernode Activity FSD O

Spoofed DoS Degree C, E, I
Measurement Outage Inconsistent J, Q, R

Table 4: Labeled traffic anomalies.

flow measurements are often the only type of measurements
available to network operators today.

To decouple (a) and (b), we consider the CMU-2005 dataset
since it has additional bi-directional annotations allowing us
to eliminate effects from the uni-directional model. Under
a bidirectional flow model, we find that the source (desti-
nation) port and source (destination) address distributions
are structurally similar due to inherent properties of end-
host behavior. However, the correlations between the source
and destination entities arise due to the uni-directional na-
ture of the flow measurements – each packet contributes to
both source and destination pairs. This causes the uni-
directional distributions to be approximately the union of
their bi-directional pairs.

3.4 Understanding Anomalies In Depth
Why do the anomalies detected by the port and address

distributions overlap and why do FSD and degree distri-
butions provide unique detection capabilities? To answer
this, we use a heuristic approach to identify eighteen ma-
jor events, indicated by alphabetical labels in Figure 1, and
summarized in Table 4. (Anomalies spanning multiple epochs
are clustered into a single event.) In the absence of ground
truth for our data, we develop a semi-automated anomaly
labeling approach that explains the observed anomalies.

The labeling technique consists of the following steps. First,
we analyze the top-k contributors within each distribution
(e.g., top 50 destination address receiving the most num-
ber packets) and check if the top-k set changes during the
anomaly. The rationale behind this approach is that the
top few contributors to the distributions are relatively sta-
ble during normal operation but may change significantly
during the anomalies (e.g., if a new host/port entry enters
the top-k). Next, we identify the flows corresponding to
these new entries in the top-k set. Finally, we remove these
flows and recompute the entropy and wavelet scores over
the remaining flows. If the anomaly subsides (i.e., the new
anomaly score computed over the residual data is lower than
the anomaly threshold), we attribute the anomaly event to
these new top-k entries.

Events J , Q, and R are measurement anomalies, charac-
terized by few or no flow records in our dataset which show
no consistent behavior across the different traffic features.
In alpha flows (events F − H and L − N), a few ports and
addresses (both source and destination) dominate the total
traffic volume [10], decreasing entropy. The events contain
a large volume of UDP traffic destined to a single external
host on popular application ports (80,53), which seem to be
triggered after a small amount of TCP traffic is transferred
on port 6667 (IRC botnet control). The alpha flows are de-
tected by all the port and address distributions. Further, al-
pha flows are the only type of anomaly detected by the port
and address distributions. This suggests that in our trace,
using all four port and address distributions provides no ad-
ditional detection capabilities compared with using only one
of the port or address distributions.

The series of anomalies collectively labeled O are caused
by an internal host being recruited as a P2P “supernode”
in the Kazaa network [8]. During the event, many hosts
connect to this supernode creating a significant number of
small flows causing a sharp decrease in the entropy of the
FSD. In event A, a single internal host scanned more than
350,000 unique external hosts, using a fixed source port of
666. As there are a large number of small flows, FSD detects
the scan. Event D is an outbound scan with a single internal
host scanning numerous external hosts on multiple ports.
Only FSD detects the scan. In anomalies C, E, and I ,
a large number of spoofed “hosts” send attack traffic to a
single destination on port 6667. The set of source addresses
in these flows spans the entire /16 of the university address
space using a small range of port numbers. This leads us to
believe that an internal host may be sending attack traffic
with spoofed source addresses (within the same subnet) to
avoid egress filtering.6

Events O and H are particularly interesting with respect
to the anomaly labeling heuristic. When removing the ini-
tial alpha flow event (N), we found that the anomaly O per-
sisted, which ports and addresses alone cannot detect. Event
H consisted of two independent alpha flows from which our
initial analysis revealed one, and after discovering that an
anomaly persisted we discovered the second event. Contrary
to conventional wisdom, port and address distributions do
not show significant deviations for the scanning anomalies
in our data. However, FSD detects such abnormal scanning
activity.

4. USING SYNTHETIC ANOMALIES
We use synthetically generated anomaly events to comple-

ment our measurement results. Table 5 presents a taxonomy
of the five synthetic anomalies we evaluate. For each type
of anomaly, we want to identify the traffic distribution(s)
that provide the most effective detection capability. To un-
derstand the detection sensitivity, we vary the scale of the
anomaly using an anomaly-specific control parameter (e.g.,
number of sources involved in a DDoS or scan attack). We
insert the anomaly at 50 random locations in the month-
long trace, and report the average to ensure that the results
are not biased by time-of-day and day-of-week effects. In
the case of the DDoS and bandwidth floods, we are also
interested in comparing entropy-based detection to simple
volume based detection.

Inbound DDoS Flood: Each DDoS event is charac-
terized by a single destination address receiving a large vol-
ume of single-packet flows (to overwhelm the bandwidth and
processing capacity of the server and routers). Figure 2(a)
shows the anomaly scores as a function of the percentage
of total DDoS traffic. Each attack source generates 10 kilo-
bits per second of attack traffic, using a fixed packet size
of 57 bytes and a single flow per packet. The attack flows
are destined to port 80 on a randomly chosen host inside
the university. We have repeated the experiments varying
the destination port and the choice of destination address
(picking a high-volume, random, and low-volume host) and
found similar results.

The change in the FSD can easily detect the anomaly even
at a low magnitude since a single flow is used per packet.
The destination port and destination address distributions

6Since we only have anonymized flow level traces, we could
not further validate this hypothesis.



Anomaly Type SrcAddr DstAddr SrcPort DstPort FlowSize
Inbound DDoS Flood Random Fixed Random Fixed Fixed (10 Kbps), 1 flow per packet

B/W Flood Random Fixed Random Fixed Random (300-400 Kbps), 1 flow per host
Single Scanner Fixed Random Random Fixed 1-3 packets (10% response rate)

Multiple Scanners Random Random Random Fixed 1-3 packets (10% response rate)
Port Scan Fixed/Random Fixed Random Sequential 1-3 packets (10% response rate)

Table 5: Taxonomy of synthetic anomalies used in our evaluation.
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Figure 2: Synthetic anomaly results.

detect the anomaly (i.e., the score is ≥ α = 2) only when
the anomaly has significantly increased in magnitude. The
degree distributions are unaffected by this anomaly.

Bandwidth Flood: In a bandwidth flood, a small num-
ber of hosts send large amounts of traffic to a single destina-
tion. The key differences with respect to the DDoS attack
are that the number of hosts involved is an order of mag-
nitude smaller than the DDoS, and that each attack flow
is a single high-volume flow. We vary the number of hosts
involved in flooding a single target IP address. The rate
of traffic from each host varies uniformly in the range of
300 to 400 Kilobits per second with a fixed packet size of
57 bytes. The target IP is chosen at random within the
university with a specific destination port (e.g., port 80 on
a webserver). Again, the results were independent of the
choice of port and destination host.

Figure 2(b) shows that the behavioral features, FSD, source
port, and source address are unaffected. Since each source
generates a single flow (and the size of each flow is random),
FSD is not effective at detecting this anomaly. As expected,
destination ports and addresses exhibit the greatest devia-
tion. However, traffic volume can detect this anomaly just
as well given that, at a detection threshold α = 2, the total
traffic has increased by 25%.

Network Scans: We consider two types of scanning ac-
tivity: a single host scanning the entire university address
space and distributed scanning activity from a set of random
source addresses. To model the properties of real scanning
activity (e.g., responses probability), we sample 10,000 in-
bound scan flows to port 445 (associated with many known
vulnerabilities [13]) from the traffic trace. We observe that
scans receive responses to probes approximately 10% of the
time for a flow size of 3 packets, else they are single-packet
flows (just a SYN packet). We find that no distribution is
able to detect a single scanner. Even with a host scanning
200 hosts per second, which is approximately 6% of total
traffic, no distribution is able to detect it. To detect such
isolated scan activity, more fine-grained per-host analysis
(e.g., flag any host contacting more than X unique desti-
nations in Y seconds [1]) and incorporating other aspects of
scanning behavior (e.g., failed connections [6]) are necessary.

In a coordinated scan, multiple hosts (e.g., part of a bot-
net) scan a particular network (e.g., worm or botnet activ-
ity). Each participating host scans at a low rate to avoid
detection.7 We fix the scan rate to 30 hosts per second, and
vary the number of hosts generating scanning activity. Fig-
ure 2(c) shows that we need to introduce an additional 10%
of the total flows before the wavelet score reaches α = 2.
This implies that even in coordinated scans, entropy-based
anomaly detection may not be sufficient.

We also explored several synthetic port scans. The results
are similar to the network scans, except that the degree-
based metrics are ineffective. A single scanner with a mod-
erate scan rate (30 scans per second) is not detected by any
of the entropy metrics. With an increased scan rate (> 1000
scans per second), FSD is the only metric that detects the
port scan.

5. IMPLICATIONS
Choice of features: Our analysis suggests that the selec-
tion of traffic distributions in entropy-based anomaly detec-
tion should be made judiciously, and in particular we should
look beyond simple port and address based distributions.
The results also suggest a natural approach for choosing
traffic features: select traffic distributions that complement
one another and provide different views into the underlying
traffic structure. For example, the behavioral distributions
and the FSD, which are qualitatively different from the port
and address distributions, provide distinct and often bet-
ter anomaly detection capabilities. These complementary
distributions can also detect multiple anomalies that occur
simultaneously (Sections 3 & 4) .
Computing distributions: Section 3.3 shows that a uni-
directional traffic accounting can introduce biases in com-
puting traffic distributions. Obtaining bi-directional mea-
surements may involve additional overhead and instrumen-
tation of current traffic monitoring infrastructure, but recent
thrusts for bi-directional flow export [17] may help. This

7Worm outbreaks produce similar behavior. With a ran-
dom scanning worm, the number of incoming scans is
InfectedHosts ∗ ScanRate ∗

InternalAddressSpace
TotalIPAddressSpace

.



may be difficult in large networks when traffic monitors are
distributed across the network or when the traffic rates are
high enough that sampling is necessary. For enterprise net-
works, however, the monitor is often a single vantage point
co-located with the border router; in this case, bi-directional
semantics are easier to obtain and should be preferred.
Leveraging correlations for anomaly detection: The
stability of correlations in the entropy values during normal
time periods suggests a new anomaly detection technique.
We compute the correlations over a finite time window T
and detect anomalies over the timeseries of correlation val-
ues (computed over a sliding window of size T ). In the
CMU-2005 dataset, almost all non-trivial anomalies signifi-
cantly decrease the entropy correlations between source ad-
dress (port) and destination address (port) pairs. Addition-
ally, new events are introduced which do not manifest in
the wavelet deviation scores. Exploring this observation to
strengthen anomaly detection is an interesting avenue for
future work.

6. RELATED WORK
The use of entropy and distributions of traffic features

has recently received a lot of attention. Feinstein et al. [5]
consider the use of entropy of the distribution of source
addresses seen at a network ingress point for DDoS detec-
tion. Lakhina et al. [10] augment the PCA framework with
entropy based metrics and show that this detects anoma-
lies that cannot be identified using volume based analysis
alone. These approaches show the promise of entropy-based
anomaly detection. Our work studies the selection of traffic
feature distributions for entropy based anomaly detection.

Lee and Xiang [12] propose information-theoretic mea-
sures for intrusion detection. Entropy has also been to au-
tomatically cluster traffic patterns [20]. Wagner et al. [18]
use entropy for worm detection by evaluating the compress-
ibility of flow data during attacks.

There is a large body of work related to the accuracy of
estimating distributional properties. These include the work
on streaming algorithms for estimating the flow size distri-
bution [9] and distribution entropy [11]. Brauckhoff et al. [4]
evaluate how packet sampling affects the fidelity of entropy
based anomaly detection and show that sampling does not
affect the accuracy of detecting the Blaster worm [13].

7. CONCLUSIONS
Entropy-based methods have recently been suggested as

good candidates for fine-grained anomaly detection and traf-
fic classification. The goal of our measurement study is to
understand the analysis and detection capabilities provided
by different entropy based metrics.

We find that the port and address distributions are strongly
correlated both in their entropy timeseries and detection ca-
pabilities. The behavioral metrics (in- and out-degree) and
the flow size distribution provide detection abilities that are
distinct from other distributions. Using synthetic anoma-
lies, we further confirmed that the port and address distri-
butions have limited utility in anomaly detection: they are
ineffective for scanning attacks, and the flood anomalies they
detect are large enough to be volume anomalies.

Our results have two main implications. First, we should
look beyond port and address distributions for fine-grained
anomaly detection. In particular, we should consider dis-

tributions that complement each other in their detection
capabilities. Second, to avoid the biases arising from uni-
directional auditing, it is prudent to use bi-directional flow
abstractions for computing traffic distributions.
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