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Abstract— We present the design of a Network Forensic
Alliance (NFA), to allow multiple administrative domains (ADs)
to jointly locate the origin of epidemic spreading attacks.ADs in
the NFA collaborate in a distributed protocol for post-mortem
analysis of worm-like attacks. Information exchange between any
two participating ADs is limited to traffic records that are k nown
to both sides, maintaining the privacy of participants. Such
an architecture is incentive-compatible – participants benefit by
gaining better local investigative capabilities, even with partial
deployment. Further, we also show that by sharing local inves-
tigation results, ADs can achieve global investigative capabilities
that are comparable to a centralized implementation with access
to global traffic records. Our evaluations demonstrate thatit is
feasible for large-scale attack investigation to be incrementally
deployed in an Internet-like federation.

I. I NTRODUCTION

Attackers today can launch epidemic attacks (worms) of
dramatic intensity and reach. Much effort has been spent
on designing more effective detection mechanisms (e.g., [1]),
building better defense measures (e.g., [2]), and generating
vulnerability-specific remedies (e.g., [3]). While these ap-
proaches provide immediate benefit to operators and end users,
there is little ability to perform post-mortem diagnostic and
forensic investigation of these incidents. Specifically, aservice
provider or enterprise needs a means to determine the entry
point of a worm to its network so that the vulnerability it
initially exploited can be identified. In addition, the ability to
determine the true origin of a worm on a large network such
as the Internet could help to prosecute and, ultimately, deter
these attacks.

In this paper, we address the problem of providing forensic
capabilities for investigating large-scale attacks in distributed,
federated networks. A federated network is composed of multi-
ple independent Administrative Domains (ADs). Conceptually,
an AD is a network under a single administrative authority, and
a single AD may be composed of one or more Autonomous
Systems (ASes) in a BGP context. The most popular instance
of a federated network is the Internet as we know it today,
which is composed of multiple (possibly competing) ISPs,
with diverse economic and peering relationships.

We propose the concept of a Network Forensic Alliance
(NFA) 1—a collaborative effort involving multiple ADs to
provide network-wide and localized forensic capabilities, as

1The name is inspired by existing efforts at a Fingerprint Sharing Al-
liance [4], for generating and sharing attack signatures.

depicted in Figure I. Using the techniques we describe in this
paper, an NFA allows multiple ADs in a federated network to
jointly perform local attack investigation, with the additional
ability to diagnose attacks globally.
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Fig. 1. NFA: Architecture for federated forensics

Each participating AD in the NFA possesses an independent
traffic monitoring infrastructure. Traffic data (in the form
of flow records) are collected and saved for a period of
time during which an investigation can be launched using
them. Investigative capabilities are realized using a distributed
protocol which builds on, and enhances our earlier work [5]
on worm origin identification. To launch an investigation,
each AD feeds its local traffic records to its analysis engine
running the distributed operations (described in Section IV).
In the course of running the protocol, the analysis engine may
communicate intermediate results to other participating ADs.
Each analysis engine subsequently post-processes its results to
obtain a local view of the attack entry within its domain, or
shares the results with other domains to obtain a global view
of the attack.

To our knowledge, we are the first to formulate the problem
of forensic analysis for epidemic attacks in the context of
federated networks. Our design is not only attack-agnostic
(within the class of epidemic-spreading attacks), but also
addresses the real world deployment concerns of privacy,
participation incentives, and incremental deployment. The
NFA: (i) is privacy-preserving, in that each AD reveals to
another AD only records for traffic that each has already seen;
(ii) provides participation incentives for individual ADsto
collaborate with other ADs, i.e., each AD improves its own
local diagnosis by cooperating with others; and (iii) offers
strong incremental deployment properties, in that participants



benefit even in partial-deployment scenarios. We consider (i)-
(iii) to be essential to a viable federated approach, given the
reticence of competing ADs to cooperate except when it is in
their interests to do so.

We also present a methodology to address the fundamental
challenges of evaluating the effectiveness of worm forensics in
such a distributed setting, in the absence of multi-AD traffic
datasets. Our framework permits us to specify well-defined
measures of incentives that any solution in this domain needto
address. Our evaluation includes two sets of experiments: one
uses simulation on a network topology defined by the Internet
AS-level topology, and another uses traffic collected from the
Internet2 [6] educational backbone. These experiments show
that our approach realizes investigative capabilities comparable
to an ideal unified network administrative model, while operat-
ing in a federated setting. The evaluations also validate that our
approach greatly increases the local investigative capabilities
of participating ADs; enables ADs to generate a network-wide
reconstruction of the epidemic attack; and degrades gracefully
with only partial deployment.

II. BACKGROUND

Early work in network forensics focused on stepping-
stone detection and IP traceback. Stepping-stone detection
attempts to bridge sources of attack indirection, in attacks that
are launched through a series of intermediate machines.The
existing techniques (e.g., [7], [8]) typically require packet-
level analysis, and in some cases require the analysis to be
applied close to the compromised machines. Both of these
would be obstacles in applying these techniques to trace the
origin of a large-scale worm after the fact, and our approach
requires neither. IP traceback focuses on identifying the true
sources of packets with spoofed source addresses (e.g., [9],
[10], [11]). With respect to large-scale epidemic attacks,
traceback techniques typically are not needed since source
addresses are seldom spoofed. However, even in epidemic
attacks with spoofing, these techniques would simply identify
another victim in the vast majority of cases. It is this last
obstacle that we seek to overcome here.

Network telescopes have been suggested as an alternative
approach to reconstruct worm attacks [12], [13]. Kumar et
al. [12] present an approach for reconstructing the spread of
the Witty worm by using scan traffic collected by network
telescopes to reverse engineer the pseudorandom number
sequences used. Rajab et al. [13] use the telescope-observed
scan traffic to infer infection times by studying the inter-arrival
times between successful scans. Both approaches tackle the
problem of worm forensics, but are targeted toward specific
types of random-scanning attacks. Furthermore, the robustness
of using network telescopes for forensic analysis is a topicof
ongoing research [14].

Our earlier work has proposed a random moonwalk algo-
rithm to identify the origin of an epidemic attack [5]. The
algorithm takes traffic flow-records as inputs, and generates as
output a set of “high-ranking” flows. The algorithm works by
repeatedly performing random “moonwalks” on the graph and

correlating the set of flows traversed by the walks. Each moon-
walk starts from an arbitrarily chosen flow. The algorithm then
randomly picks a next step backward in time from the set of
flows that arrived at the source host of the current flow, within
the previous∆t seconds. For each next step, the above process
repeats until there are no candidate flows to continue the path,
or the walk has traversed a maximum ofd hops. Our earlier
analysis and empirical evaluation [5] suggest techniques for
selecting the sampling window size∆t and the maximum path
lengthd, using a trace-driven adaptive approach. After many
such walks, the algorithm returns a set of flows that are most
frequently traversed by the walks. Due to the tree-structured
nature of epidemic attacks, the initial causal flows of the attack
emerge among the highly ranked flows returned.

The random moonwalk algorithm assumes a unified net-
work administrative model. In large federations such as the
Internet, establishing a centralized traffic repository ishardly
feasible due to privacy and economic considerations of mul-
tiple competing ADs. The approach we propose here builds
from the random moonwalk algorithm, but overcomes the
shortcomings for deploying this algorithm in Internet-like
federated environments. While each AD can performisolated
attack investigation using the centralized algorithm, this does
not achieve global forensics goals. In addition, as we will
show, isolated forensics provides weaker local investigation
capabilities than the distributed protocol we propose here,
since each AD observes only a small portion of a large-scale,
distributed attack.

III. SYSTEM DESIGN

In this section, we motivate the key component of our de-
sign, and outline the three stages that comprise the distributed
operation of an NFA.

A. Why Random Moonwalks

The key insight behind our design decision of adopting the
random moonwalk algorithm is an alternative interpretation of
it as a Monte-Carlo simulation method to compute the largest
eigenvector of a network flow graph. In this light, known
results suggest that this algorithm should be relatively resilient
to missing data, and so could form the basis of a solution
offering good partial deployment properties.

To make this alternative interpretation more concrete, con-
sider a directedflow-graphGf , where each node represents
a flow. Given a sampling window size∆t for random moon-
walks, we insert a directed edge from noden2 to noden1, if
the flow n1 arrived at the source of the flown2 at most∆t

time units before that machine initiatedn2. That is, there is a
directed edge from noden2 to noden1 if a random moonwalk
could (single-) step from the flown2 to the flow n1. After
inserting all such edges, we then insert an edge from each
sink n2 (i.e., with zero out-degree) to every other node inGf .
A random moonwalk then corresponds to a Markov random
walk on Gf , where at each noden2, the distribution of the
next node is uniform over all nodes to whichn2 has an edge.
With this Markov random walk interpretation, the normalized



adjacency matrixAf defined byGf is a stochastic matrix
whose row sums are all1. We consider the spectral analysis
of matrix Af , namely (non-trivial) solutions to the equation:

Afx = λx

The stationary distributionπ0 of Af , computed as the largest
eigenvector ofAf , represents the probability of reaching every
node in a global stable state. The highest probability flows
being traversed in a random moonwalk therefore correspond
to those nodes with largest numerical values in the largest
eigenvector. These flows, with high probability, are the initial
causal flows. We can therefore view random moonwalks
as a Monte Carlo sampling method to compute the largest
eigenvector of the flow graphGf .

Such a spectral analysis view suggests that random moon-
walks can be robust to missing traffic, as previous studies
have shown that spectral techniques are effective in identifying
the underlying structure of graphs even with partial data
available [15], [16]. For this reason, we choose to build
the NFA from this random moonwalk algorithm, extending
it into a distributed version that can operate in a federated
environment.

B. Federated Forensics

In the NFA, multiple ADs independently collect traffic data,
and jointly perform attack investigation to identify both the
local attack entry points and the global attack source. The
high-level idea is that multiple domains can perform loosely
coordinated random moonwalks inside their own domains, so
that when these walks are viewed together, they achieve the
same effect as performing random moonwalks on a unified
network. More precisely, this process involves the following
three stages:

1. Distributed traffic monitoring:Each participating AD logs
flow-level traffic records. Prior work on hash-based traceback
has demonstrated that it is feasible to build such fine-grained
traffic logging capabilities [11]. As shown in Figure I, each
AD deploys traffic collectors (e.g., routers) to log networkflow
records, which will then be accessed or queried by an analysis
engine.

2. Collaborative random moonwalks:Federated domains per-
form joint attack investigation via a distributed protocol. The
analysis engines interact with each other to launch coordinated
local random moonwalks on the traffic collected within their
own domains. The shared intermediate results will be used to
guide new local random moonwalks in an iterative fashion.
These intermediate results should not release data that are
proprietary to an AD or that should otherwise be protected.

3. Post-processing for attacker identification:After perform-
ing the collaborative random moonwalks, each participating
domain obtains a set of suspicious flows. Each participant can
either choose to use the flows independently for local attack
investigation, or to further share information to achieve global
investigative capabilities.

Since the NFA would be deployed incrementally, one major
challenge throughout the above process is to gracefully handle
missing information, so that the NFA utilizes all available
traffic records even when certain ADs do not participate.
Next, we first describe how multiple ADs jointly perform
collaborative random moonwalks and perform post-processing.
We then discuss strategies to deal with missing traffic records
in partial deployment scenarios.

IV. PROTOCOL FORDISTRIBUTED RANDOM MOONWALKS

In this section, we present a distributed protocol for multiple
domains to jointly perform attack investigation in a federated
network. In the distributed protocol, each AD participating
in the NFA performs two operations: (1) it runs local ran-
dom moonwalks on flow-records it has collected, and (2)
it exchanges intermediate results with other collaborating
ADs. These intermediate results will ensure that moonwalks
continue even when they cross the network boundaries of
ADs which originated them. When these local moonwalks
are “stitched” together (via the inter-AD exchanges), they
approximate random moonwalks on a global traffic trace (i.e.,
the union of the traffic observed at all the participating ADs).
Throughout the protocol, each AD independently keeps a
count of the number of times each flow has been traversed
in the local random moonwalks. The output of the protocol at
each domain will be a set ofZ top frequency flows, which
are returned as candidate flows for further investigation. To
simplify the description of the protocol, we assume that all
ADs in the network collaborate in the distributed operation,
and defer a discussion of partial deployment until Section VI.

The protocol begins with a relatively lightweight bootstrap
phase to initialize parameters. Participating ADs first decide
on the time boundary for investigating the attack. Next, they
selectH, the maximum number of AD hops each distributed
moonwalk can traverse, and the sampling window size∆t.
∆t specifies the maximum look-back window within which
candidate flows can be selected for continuing moonwalks.
Each domain could also independently specify a maximum
local walk-lengthd(i) for walks it performs inside its own
domain. ADs also agree on a traffic normalization factor,η,
which determines the number of moonwalks that each AD
launches initially.

After the initialization, each ADi participates in the dis-
tributed random moonwalk protocol, and its operation in the
protocol is as defined by Figure 2. Using the notation in
Table I, the protocol works as follows:

1. Initial launch: Each ADi initially launches ran-
dom moonwalks from within its domain. The number of
walks W(i) launched by ADi, is calculated asW(i) =
η× |FlowSet(i)|. ADi then selectsW(i) flows from
FlowSet(i), uniformly at random with replacement. For
each selected flowF, ADi sets its AD hop counth= 0, con-
structs the tuple<F,h>, and inserts it intoInitSet(i) 2.

2We use multisets for keeping tuples of flow records and their AD hop
counts. Each tuple can occur multiple times in a multiset.



Notation Description
Flow(i,j) A flow record with the source-host in domain ADi and the destination-host in domain ADj .
FlowSet(i) The set of network flow records whose sources belong to ADi

InitSet(i) A multiset of flow records and their AD hop counts that ADi uses to start local moonwalks.
W(i) The number of walks initially started by ADi.
d(i) The maximum length of a local random moonwalk within ADi.
H The maximum number of AD hops a distributed moonwalk can traverse.
∆t The sampling window size, defined as the maximum time window to look back for continuing a moonwalk.

TABLE I

NOTATION USED IN THE DISTRIBUTED OPERATIONS.W(i) AND d(i) ARE LOCAL PARAMETERS DEFINED BYADi. H AND ∆t ARE GLOBAL

PARAMETERS AGREED BY ALL PARTICIPATINGADS BEFORE THE OPERATION.

// delta_t denotes the sampling window size,
// H is the maximum AD hop count
// TSet is a data-structure implementing a set
TSet distributed_moonwalk(TSet FlowSet(i), int W(i),

int d(i),int H,int delta_t){
// Select W(i) flows to initialize InitSet(i)
for (int j = 1 to W(i)){
Select a flow F randomly from FlowSet(i)
Insert <F,0> into InitSet(i);

}
// Perform local moonwalks
while (InitSet(i) not empty){
foreach tuple <F,h> in InitSet(i) {

// Perform a random moonwalk starting at F
// Let endflow be the last step of a local walk
endflow = random_moonwalk(F, d(i), delta_t);

delete <F,h> from InitSet(i)

// Check if the walk reached the max. AD hopcount
h = h + 1;
if (h >= H)

continue;

// If the source host of endflow is in AD(j),
// Send the tuple <endflow,h> to AD(j) so that
// AD(j) will continue the walk from endflow
int j = find_source_domain(endflow);
if (j != i){

send <endflow,h> to AD(j);
}

} // end foreach
} // end while
Return a set of flows with highest traversal counts;

}

// tuple <F,h> is the message received from another AD
void received_flow_record(Tuple <F,h>){

insert <F,h> into InitSet(i)
}

Fig. 2. Pseudocode for the operations each ADi executes in the protocol.
Each analysis engine performs two operations of running distributed random
moonwalks and updating its InitSet(i).

In our two-domain example (Figure 3), both AD1 and AD2

use W(i) = 2. During this initial step, AD1 selects flow
A(1,1) twice and inserts two entries intoInitSet(1),
both with hop count set to zero. AD2 similarly inserts two
entries intoInitSet(2).

2. Local random moonwalks:For every entry<F,h> in
InitSet(i), ADi will launch a random moonwalk, with
F as the initial step. After performing the local moonwalk
from F, ADi deletes the corresponding tuple<F,h> from
InitSet(i). A walk will stop within domain ADi if it
meets any of the following criteria.

• There is no flow to continue the walk, within the previous

AD1
AD2

2. InitSet(2) = { <C(2,1), 0>, <C(2,1), 1> }

C(1,2)
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2. InitSet(1) = { <A(1,1), 0> }

3. InitSet(1) = { }, Stop 

1. InitSet(2) = { <A(2,2), 0>, <C(2,1), 0> }
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1. InitSet(1) = { <A(1,1), 0>, <A(1,1), 0> }

4. InitSet(2) = { }, Stop

3. InitSet(2) = { <C(2,1), 1> }

Fig. 3. A simple example with two domains collaborating in the distributed
protocol. Solid arrows represent the direction of network flows, and dashed
arrows represent the direction of random moonwalks (reversed with respect
to the flow directionality).

∆t seconds.
• The walk has traversed the maximum number of local-

hopsd(i), within ADi.
• The walk has reached a cross-domain flow whose source

host is located in a different AD.

The first two stopping criteria are the same as in the
centralized algorithm. The third condition arises due to the
distributed setting. Since each AD has only a local view of
the global traffic, it lacks sufficient information to selecta
next step to continue the moonwalk. Specifically, for flows
originating from foreign hosts that belong to other ADs, ADi

cannot observe all possible incoming flows at such hosts. In
the example, a random moonwalk starting from flowA(1,1)
stopped within AD1 because it reached flowC(2,1), whose
source is inside AD2.

3. Cross-domain exchanges:If a local random moonwalk
starting fromF reaches a cross-domain flowFlow(j,i) 3,
ADi increases the corresponding AD hop counth by one. If
the newh is smaller than the maximum AD hop countH, ADi

sends the tuple<Flow(j,i), h> to ADj .
On reception of the tuple<Flow(j,i), h>, ADj inserts

it into InitSet(j). ADj will subsequently launch a local
random moonwalk starting fromFlow(j,i), to continue the

3We assume that the source-AD information for each flow can be obtained
from whois lookups or data from public routeservers, or using specialized
tools [17]



distributed random moonwalk.
For example, AD1 sends<C(2,1), 1> to AD2, which

then inserts the tuple intoInitSet(2). AD2 does not send
any flow record to AD1 because the local moonwalk starting
from flow A(2,2) does not reach a cross domain flow.

4: Termination condition:If InitSet(i) becomes empty,
ADi terminates its operation, and returns the set ofZ flows
with the highest counts (i.e., the sum of counts across all of
its local random moonwalks).

The inter-AD exchanges have two important properties: (1)
minimal information disclosure, and (2) low overhead. The
flow records that can be exchanged between a pair of ADs
can only be among the set of inter-domain flows between
them. These cross-domain flows can be independently logged
by both ADs, and thus exchanging these flow records does not
reveal internal traffic information that is not already available
to either AD.

The worst case communication overhead occurs when every
step along the walk triggers a message to be sent across a
pair of ADs, resulting

∑n

1
W(i) × H flow records to be

exchanged in the federation.
∑n

1
W(i) will typically be a

small fraction of traffic, depending on the traffic normalization
factor η (typically of the order of 0.1-1%). So the number of
records that need to be exchanged will be a very small fraction
of total unique flow records. However each flow-record that
needs to be exchanged, incurs a per-record communication
overhead between the pair of ADs. To reduce the number
of communication events, ADs can choose to aggregate the
set of cross-domain flows at which local walks terminate, and
exchange these flow-records in a single exchange with another
collaborating AD.

V. POST-PROCESSING FORINVESTIGATION

After performing the distributed random moonwalks, each
participating domain obtains a set of top frequency flows,
to serve as starting points of further attack investigation.
Participating ADs can either choose to use these flows for
independent local attack investigation, or further share infor-
mation to achieve global investigative capabilities.

A. Local View

ADs can use the flow counts obtained after the distributed
moonwalks on the set of flows collected within their network
boundaries, and return the set ofZ top frequency flows for
local diagnosis. The locally observed top frequency flows can
then be used to diagnose the initial attack entry points, or
initial infected hosts within a domain. Identifying the attack
entry points can help detect configuration or firewall rule
errors that may have allowed the attack to enter the network
perimeter in the first place.

With such aLocal View option, ADs realize benefits of
collaboration by just participating in the distributed protocol.
No additional information will be shared after the distributed
protocol has been executed. Section VII-A.2 will quantitatively
evaluate the participation benefit in terms of improved quality

of local attack investigation compared with isolated forensics
using various measures.

B. Global Merge

ADs can choose to share selected suspicious flow records
from within each domain for the NFA as a whole to realize
global benefits. This functionality is comparable to operation
under a unified network model to reconstruct the initial stages
of the attack, providing diagnostic aids to pinpoint the origin
of the attack.

In such aGlobal Mergestrategy, each AD provides a set
of locally identified top frequency flows that originate from
its own domain, together with their counts, after executing
the distributed protocol. Each ADi identifiesZ top frequency
flows from FlowSet(i), and broadcast the counts of local
flows to every other participating domain. On reception of
all other domains’ top frequency flow counts, each AD can
identify theZ flows with the highest global counts.

We note that to compute global flow ranks, each ADi

contributesZ flows from FlowSet(i), instead of all col-
lected flows that are used in Local View. Since fori 6= j,
FlowSet(i) andFlowSet(j) do not overlap, flows will
not be double counted by different domains. For each flow in
FlowSet(i), ADi is the only domain to select its next step
in the distributed random moonwalks; thus the frequency count
that ADi maintains for that flow is the flow’s global frequency
count. Therefore, the computed global flow ranks will be
equivalent to the ranks computed by an ideal centralized
moonwalk algorithm, assuming the entire federated network
is a large unified network.

ADs need not reveal internal traffic records that are iden-
tified, and can share only high frequency cross-domain flow
records by broadcasting these flow records and their counts
to other participants. This can provide sufficient information
to understand how the attack propagated across domains.
Participating ADs can also choose to reveal these selected flow
records using different degrees of source-address anonymiza-
tion. The extent to which the globally reconstructed initial
attack graph aids further diagnosis, depends on the degree
of anonymization that the participating ADs engage in. At
one end of the spectrum, ADs can choose to construct the
graph at the granularity of actual end-hosts, providing themost
fine-grained diagnosis possible. At the other end, ADs can
choose to construct the graph at the AD granularity. In the
intermediate space, ADs can reconstruct the attack graph at
the granularity of coarse-grained network prefix ranges (e.g.,
using /8 or /16 masks).

VI. H ANDLING PARTIAL DEPLOYMENT

So far, we assumed that all the ADs in a federated network
participate in the NFA. In reality, such an NFA will be
deployed in an incremental fashion. Even though the NFA may
continue to observe a significant fraction of traffic, we needto
extend the protocol for the ADs to utilize all available traffic
records in partial deployment scenarios. Specifically, during
the distributed random moonwalks, it may not be possible
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Fig. 4. An example partial deployment scenario.W, X, Y are three ADs that
are in the federation, and ADZ does not participate.F1, F2, andF3 represent
three network flows to or from hostu in AD Z.

to continue the walk from flows whose source-ADs do not
participate in the NFA.

Figure 4 shows an example partial deployment scenario,
where ADs W, X, Y participate in the federated network,
while AD Z does not. In the distributed moonwalks, suppose
X performs a local moonwalk that reaches flowF2, whose
source hostu is located inside domainZ, then none of the
participating ADs will be able to observe all the incoming
flows to u to continue this walk across domains.

A naive discard solution is to assume a closed world
environment where ADs simply discard flows originating at
non-participating domains. This solution is sub-optimal,as
it does not utilize all the observed traffic data among all
collaborating ADs, and interesting traffic flow records may
end up being discarded in the process. A better solution is to
try and perform a best-effort next step selection based on the
data available to the participants in the federation. We consider
the following strategies to enhance the distributed random
moonwalks for continuing a walk once some participating AD
reaches a flow originated from a non-participating domain.

Random selection:The simplest strategy is to randomly pick
a participating AD and request it to continue the walk. In our
example,X could randomly pickW or Y to continue the walk
from F2, based on their local views of the incoming flows to
hostu.
Routing-path based selection:The second option for the AD is
to use routing information and select the participating AD that
is closest to the source host on the AD-path. The assumption
here is that this selected AD will have the best available partial
view to continue the walk. In our example scenario, flowF2 is
routed through ADY to X. Hence with routing-based selection,
X would send a message toY, requesting it to continue the
walk, instead of choosing ADW.
Routing-horizon based selection:A generalization of the
routing-based selection is to identify a set of participating
ADs, defined as arouting horizon, that provide the greatest
coverage over routing paths from the non-participating AD.
Given the routing horizon, the AD that reaches a cross-
domain flow in the random moonwalks can broadcast the flow
record among the participating ADs on the routing horizon,
for selecting candidate next step flows. Recall that given the
current stepf of the walk, candidate flows are those whose
destination is the source off , and which occur within previous
∆t seconds off . From the set of candidate flows, the AD can

randomly select a flow to continue the walk, and hands off
the current flow to the source AD of the selected flow. In our
example, when ADX reaches flowF2, it could query bothW
andY for their observed incoming flows to hostu within the
previous∆t seconds toF2. Suppose bothF1 andF3 are such
candidate flows,X could then randomly pick one, sayF1 as
the next moonwalk step.

VII. E VALUATION

Our primary results are drawn from a simulation study, with
synthetically generated traffic traces mapped into an Internet
AS-level topology with over 16,000 ASes (Section VII-A).
We also independently validate our findings using data de-
rived from theInternet2educational backbone (Section VII-
B). Broadly, our evaluate attempts to answer the following
questions:

• How does the forensics performance achieved in a fed-
erated setting compare with similar analysis in a unified
network model? What is the overhead of message ex-
changes in the distributed protocol? (Section VII-A.1)

• Is the architecture incentive-compatible, i.e, what are the
benefits an AD can gain by collaborating with other ADs?
(Section VII-A.2)

• How does the performance degrade under different partial
deployment scenarios? Is the architecture incrementally
deployable, and in particular do participants realize ben-
efits even under partial deployment? (Section VII-A.3)

A. Simulation Study

We use a simulated trace-driven study to evaluate the de-
ployability of an NFA in an Internet-scale large federation. The
network topology for our study is defined by the Internet AS-
level topology, obtained from Routeviews [18]. Each AS in the
AS-level topology is mapped into a single AD in our federated
network. We model the address-space ownership distribution
across different ADs using prefix-ownership advertisements
observed from Routeviews, proportionally scaling them down
to a smaller address space of107 hosts. Routing in our
federated network is modeled using hop-count based shortest-
path routing.

We use an event-driven simulator to generate synthetic flow-
level traffic traces in our simulated network topology. Each
of the 107 end-hosts in the address space is associated with
a working-setof destination end-hosts that it talks to. The
working-set size distribution across the hosts is capturedusing
a discretized power-law distribution, with working-set sizes
ranging between 10 and 1000 (the power-law ensures that most
of the hosts have small working-sets and a small number of
hosts have large working-sets). To initiate a flow, a host picks a
destination from its designated working set using a preferential
selection policy (also modeled with a discretized power-law
distribution over the working-set size).

Attack traffic is specified using a worm scanning model,
a scanning rate, and the fraction of hosts vulnerable. In our
evaluation, the set of vulnerable hosts are selected uniformly
at random from within the address-space of107 hosts with



a total of 10% of hosts vulnerable to the attacks4. We
use two different worm scanning models: random and local-
preferential scanning. The random-scanning worm selects des-
tinations uniformly at random from the entire address-space.
The local-preferential scanning worm selects destinations to
infect based on topological locality. For example, an infected
host will try and infect hosts within the same source AD with a
higher probability, and this probability decreases as a function
of topological proximity (measured in terms of hop-count).

For each of the following experiments, we perform 5
independent runs and report the mean. The standard deviations
observed across the different runs were small and are not
reported for brevity. We set the traffic normalization factor
η in the distributed random moonwalks to10−3. For each
experiment, we use the methodology in [5] to select the
optimal sampling window size, and set the maximum path
lengthd(i) = 20 for each local moonwalk inside a domain.

1) Accuracy and Overhead:We first compare the perfor-
mance of the distributed random moonwalks with a centralized
approach, by varying the worm propagation rate with a random
scanning attack. The centralized approach [5] assumes access
to global traffic records from all ADs in the network. The col-
laborative, distributed protocol is as described in Section IV.
The performance of the centralized and distributed approaches
is measured in terms of the detection accuracy, defined as
the fraction of the topZ returned flows that are actually
causal flows. With the distributed operations, theseZ flows
are identified using theGlobal Mergeprocedure presented in
Section V-B.

Figure 5 shows that the detection performance achieved by
the distributed random moonwalks closely approximates that
of the centralized algorithm. The worm scanning rates are
presented relative to the mean of the normal per-host traffic
flow rates. Both the centralized algorithm and the collaborative
approach achieve high detection accuracy regardless of the
worm rates. For the rest of our evaluations, we only present
results from a single worm rate, with a scanning rate equal to
six times the mean normal traffic rate.

We show in Figure 6, the detection accuracy and commu-
nication overhead as a function ofH , the maximum num-
ber of AD-hops that moonwalks may traverse. Figure 6 (a)
shows how the performance approaches that achieved by the
centralized algorithm, asH increases. With a smallH , the
distributed version is less accurate in identifying causalflows.
The reason is that the initial steps of the moonwalks start at
random flows, and non-causal attack flows are inherently more
numerous than causal flows. As ADs exchange intermediate
results over time, the majority of the returned flows are causal
flows, and the detection accuracy converges after five or six
hops. The communication overhead (Figure 6 (b)), in terms of
the total number of flow records exchanged in the network, is
on the order of10−3 of the total traffic records in the network.
While the overhead is a monotonically increasing function

4The random moonwalk algorithm is robust to the fraction of vulnerable
host population, as suggested in [5]. We do not duplicate theresults here due
to space.

of the accuracy, it does not increase significantly beyond the
convergence limit of five or six hops.
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Fig. 5. Global causal flow detection accuracy with the distributed protocol in
the NFA compared with the centralized implementation in a unified network
model. We vary the worm rate (relative to the mean normal traffic rate), and
select the topZ = 100.
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Fig. 6. Accuracy and communication overhead increase as a function of the
maximum AD-hopsH a moonwalk can traverse, (Z = 100).

10
0

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

AD−index sorted in decreasing order

F
ra

ct
io

n 
of

 to
ta

l f
lo

w
−

re
co

rd
s 

ex
ch

an
ge

d

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

AD−index sorted in decreasing order

N
um

be
r 

of
 A

D
s 

co
nt

ac
te

d

(a) Flow records received (b) Number of ADs contacted

Fig. 7. Distribution of the communication overhead in termsof the fraction
of total exchanged flow records received and the number of ADscontacted.

We further examine how the communication overhead dis-
tributes across the participating ADs in this case. Figure 7
(a) shows the fraction of the total exchanged flow records
that each participating AD receives in the course of the
distributed protocol. The distribution is highly skewed, with
a small number of ADs receiving a large fraction of the total
flow records exchanged in the network. Figure 7 (b) shows
a similar trend in terms of the number of ADs that each
participating AD needs to communicate with in the protocol.
Further investigation shows that the ADs that receive a high
volume of flow-records and that need to communicate with a
large number of fellow participants are ADs that own large
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Fig. 8. Causal flow detection accuracy with and without collaboration for
each AS (Z = 100).

chunks of the overall address space (and also contain a large
fraction of infected hosts). Thus a lot of flows traversed by
random moonwalks originated from these domains.

2) Benefits of Participation:For a federated architecture to
be viable, each participating AD must benefit by collaborating
with other ADs. Here, we consider the case where ADs collab-
orate in the distributed random moonwalks, but subsequently
choose to perform only theLocal View(Section V-A) for post-
processing. This is compared against an isolated investigation
scenario, where each AD runs a centralized random moonwalk
algorithm on locally available traffic data, with optimally
chosen parameters.

We consider three measures to quantify the perceived lo-
cal benefit. The first metric is the (local) causal detection
accuracy. Figure 8 (a) compares the CDFs of the causal
flow detection accuracy across all the ADs with and without
collaboration, where each AD returns the topZ = 100 after
the protocol. With isolated forensics, only 40% of the ADs
are able to identify causal flows, while through collaboration
more than 80% of ASes can successfully identify causal
flows. Overall, we find that there is a substantial improvement
in the local detection accuracy through participation over
an isolated execution. Figure 8(b) correlates the improve-
ment in the local causal flow detection accuracy (defined as
AccuracyLocalView − AccuracyIsolated ) with the size of the
address-space owned by each AD. We observe the larger ADs
gain a lot more by collaboration than the smaller ADs.

The other two metrics quantify the ability of each AD to
identify the initial infected hosts and the initial attack entry
point within its network. Figure 9 (a) depicts the distribution
of the accuracy in identifying initial infected hosts. EachAD
selects the first 50 internal hosts from among the set of top-
frequency flows it has available to it after the distributed
protocol 5. The accuracy of initial host identification is then
defined as the fraction of these returned hosts that are among
the 50 hosts that are actually infected earliest in time within
the AD. And such detection accuracy is improved across ADs
in general when they participate the NFA.

ADs may also be interested in identifying the first few

5For many of the smaller ADs, there may not be 50 hosts available to
return. In such cases, these ADs simply return all internal hosts that appear
along moonwalks
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Fig. 9. The ability to identify the initial infected hosts and the attack entry
point with and without collaboration for each AD.

causal flows where the infection first entered its network.
Figure 9 plots the fraction of ADs that successfully identified
at least one of the first several entry points, by examining
various number of top frequency flows returned withLocal
View. The vast majority of ADs (more than 60%) need to
examine only a small number of flows (fewer than 20) before
they can detect the first one or two causal flows. These
results further corroborate the observations in Figure 8 (a)—
collaboration significantly boosts detection performance, and
this serves as a strong participation incentive for ADs.

3) Partial Deployment: There are two natural concerns
with incremental deployability: performance and participation
incentives. We would like the causal detection accuracy under
partial deployment to be comparable to that under com-
plete deployment. Similarly, ADs should be able to observe
participation benefits (as defined by the metrics discussed
above) even with partial deployment. We consider two partial
deployment scenarios, by varying the set of ADs that do not
participate based on AD degree and address space size. In each
scenario, we consider the case where the firstk large domains
collaborate and the case where the firstk large domains are
missing from the NFA, and vary the parameterk.

Global Accuracy: Figure 10 plots the global causal flow
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Fig. 10. Global detection accuracy under different missingscenarios, with
the random scanning worm. We use the best recovery strategy,i.e., routing
horizon-based recovery.

detection accuracy by varying the number of large ADs
participating/missing, with the random scanning worm model.
We find that when large ADs collaborate, the global causal



accuracy is high. In particular, when ADs with largest address
space participate in the NFA, the performance is comparableto
full deployment. However, when these large ADs are missing
from the NFA, the performance degrades significantly, with
the global accuracy going down from 80% to 30-40%, even
when the rest majority of small ADs collaborate.
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Fig. 11. Impact of worm scanning model on partial deploymentperformance.
We use the best recovery strategy, i.e.,routing horizon-based recovery.

To investigate the reason, we vary the worm model to
local preferential scanning attack, and show how the global
accuracy increases with the number of large ADs collaborating
(Figure 11 (a)). Under this worm model, the performance
is not as good as the random scanning attack, when the
ADs with largest address space participate. The moonwalk
algorithm suggests that the global accuracy is tightly coupled
with the initial causal flows in the attack. Hence, we examine
the correlation between the AD address-space size and the
fraction of initial infected hosts (defined as the 200 hosts that
are infected earliest in time in the network) that are actually
present within each AD (Figure 11 (b)). For the random
scanning worm, ADs with larger address space also observe
larger fractions of early infected hosts within their domains,
and thus a larger fraction of initial causal flows for the random
moonwalk to return successfully. With a local-preferential
attack, larger ADs do not necessarily observe many initial
infected hosts, hence the corresponding decrease in the number
of initial causal flows available to them.

Figure 12 studies the impact of different recovery strategies
(discussed in Section VI) on the global detection accuracy,
using the random scanning worm. Intuitively, we expect the
Discard strategy to have the worst performance, and the
Routing-horizonstrategy to have the best performance. How-
ever, we find in Figure 12 (a) that when the ADs with large
address-space ownership collaborate, the recovery strategies
have negligible impact on the overall performance, as these
ADs already observe the most number of initial infected hosts
and a large amount of attack traffic with the random scanning
worm model. With only a small number of large degree ADs
participating, the recovery strategies do have significantimpact
on performance (Figure 12 (b))6.

The above results suggest that both attack models and

6Our analysis using the Routeviews dataset suggests that thecorrelation
between the address-space ownership and AS-degree is not very pronounced

recovery strategies may have impact on performance with
partial deployment. Further understanding their implications
under more diverse partial deployment scenarios is a topic of
ongoing work.
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Fig. 12. Impact of recovery strategies on performance, withlarge ADs
participating

Participation Benefits: Next, we investigate the participa-
tion benefits of individual ADs under partial deployment,
once again using the random-scanning worm with normalized
attack-rate of six. Figures 13 (a) and (b) show how different
partial deployment scenarios affect the participation benefits.
We sort ADs based on address-space ownership and degree
(from large to small), respectively, and categorize ADs based
on their ranks in the sorted order. We then compute the
average local causal flow detection accuracy (Z = 100)
of ADs within each category, and compare the performance
achieved by varying the number of large ADs participating.
Overall, participation yields benefit for all categories ofADs.
Specifically, we find that the large ADs perceive similar
benefits to the full collaboration case, even when the rest of
the 90% of the ADs do not participate in the NFA. We also
observed earlier (Figure 8 (b)) that the perceived performance
benefit is greatest for the large ADs under the NFA. These
observations bode well for the deployability of the NFA, since
it suggests that, for the vast majority of attacks known today
which use random scanning for destination selection, domains
that have the greatest impact on global performance also have
very strong incentives to participate in the NFA.
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Fig. 14. Internet-2 study results. Each node in the federation corresponds to a
router in the Abilene network, denoted by a two-letter city code. We compare
the performance of a collaborative effort against investigation in isolation.

B. Internet-2 Trace Study

We also independently validated our results over a one-hour
traffic snapshot from each of the 11 routers in the Abilene
backbone. The data set consists of sampled unidirectional
flow records (with 1 in 100 sampling). IP addresses in the
dataset were anonymized by zeroing out the last 11 bits of
the source and destination IP address fields. In our evaluation,
each of the 11 routers serves as an independent domain for
our 11-AD federation over the Abilene topology [6]. We map
each observed /21 prefix range to a unique end-host, and
subsequently assign the hosts as being “owned” by the router
that most frequently observes traffic to/from that prefix range.

We generate synthetic attack using a random-scanning
worm, with each infected host scanning at 0.5 scans per second
and 10% of the hosts being vulnerable. Given that our goal
is not to perform attack analysis over Internet2, but ratherto
validate our results using a more realistic workload of back-
ground traffic, we believe this dataset can serve this purpose,
and our results are not biased by these transformations.

We first examine the local causal flow detection accuracy,
shown in Figure 14 (a). For all the domains, we find that
there is a substantial improvement in the detection accuracy
through participation over an isolated execution. For example,
the performance of domainIP improves from around to 20%
to 80%. Even though the absolute accuracy is relatively low for
domainKS compared with other domains after collaboration,
the relative performance increase is at least 80%.

The second measure we have discussed is the ability to
identify the set of hosts that are infected earliest in time.Each
domain identifies the first 50 internal hosts by examining the
top frequency flows in order. Figure 14 (b) shows the fraction
of these 50 hosts which are among the 50 internal hosts that are
actually infected earliest in time for each AD. We observe that
compared with isolated execution of random moonwalks, the
ability to find the initial infected hosts increases significantly
with collaboration.

Our evaluations with both the simulation study, and the
Internet2 data suggest that each AD’s local investigation
capability can benefit significantly by collaborating with other
ADs in the network.

VIII. C ONCLUSIONS

We proposed a protocol for performing distributed random
moonwalks, which can enable participating ADs to identify
local attack entry points, and can provide additional function-
ality to pinpoint global attack origins. Our design is suitable
for deployment in an Internet-like federation for three reasons.
First, the protocol operates with limited information disclo-
sure, without requiring participants to reveal traffic records
to other participants that would otherwise not be available.
Second, participating domains realize enhanced local attack
investigation, and thus receive substantial incentives for coop-
eration. Third, the framework is incrementally deployableand
can handle non-participation and missing data gracefully.We
believe that our design and results provide a technical basis
of a Network Forensic Alliance (NFA), a collaborative effort
involving multiple ADs to provide network-wide and localized
forensic capabilities.

REFERENCES

[1] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast Portscan
Detection Using Sequential Hypothesis Testing,” inProc. of IEEE
Symposium on Security and Privacy, 2004.

[2] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet Quarantine:
Requirements for Containing Self-Propagating Code,” inProc. of IEEE
INFOCOM, Apr. 2003.

[3] H. A. Kim and B. Karp, “Autograph: Toward Automated, Distributed
Worm Signature Detection,” inProc. of 12th USENIX Security Sympo-
sium, 2004.

[4] “Fingerprint Sharing Alliance,” http://www.arbor.net/
fingerprint-sharing-alliance.php.

[5] Y. Xie, V. Sekar, D. Maltz, M. K. Reiter, and H. Zhang, “Worm Origin
Identification Using Random Moonwalks,” inProc. of IEEE Symposium
on Security and Privacy, 2005.

[6] “The Internet2 Ablilene Network,” http://abilene.internet2.edu.
[7] Y. Zhang and V. Paxson, “Detecting Stepping Stones,” inProc. of 9th

USENIX Security Symposium, 2001.
[8] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit,and

S. Staniford-Chen, “Multiscale Stepping-Stone Detection: Detecting
Pairs of Jittered Interactive Streams by Exploiting Maximum Tolerable
Delay,” in Proc. of The 5th International Symposium on Recent Advances
in Intrusion Detection (RAID), 2002.

[9] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Network
Support for IP Traceback,” inProc. of ACM SIGCOMM, 2000.

[10] H. Burch and B. Cheswick, “Tracing Anonymous Packets toTheir
Approximate Source,” inProc. of USENIX LISA Systems Administration
Conference, 2000.

[11] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-Based IP Traceback,” inProc. of
ACM SIGCOMM, 2001.

[12] A. Kumar, V. Paxson, and N. Weaver, “Exploiting Underlying Structure
for Detailed Reconstruction of an Internet-scale Event,” Proc. of Internet
Measurement Conference, 2005.

[13] M. A. Rajab, F. Monrose, and A. Terzis, “Worm Evolution Tracking via
Timing Analysis,” in Proc. of Workshop on Rapid Malcode (WORM),
2005.

[14] J. Bethencourt, J. Franklin, and M. Vernon, “Mapping Internet Sensors
with Probe Response Attacks,” inProc. of 14th USENIX Security
Symposium, 2005.

[15] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia, “Spectral Analysis
of Data,” in Symposium on Theory of Computing, 2001.

[16] S. Acharyya and J. Ghosh, “Outlink estimation for pagerank computation
under missing data,” inProc. of the 13th international World Wide Web
conference, 2004.

[17] Z. Mao, J. Rexford, J. Wang, and R. Katz, “Towards an Accurate AS-
Level Traceroute Tool,” inProc. of ACM SIGCOMM, 2003.

[18] “The Route Views Project,” http://www.routeviews.org.


