
Testing Stateful and Dynamic Data Planes with FlowTest

Seyed K. Fayaz, Vyas Sekar
Carnegie Mellon University

ABSTRACT
Many recent efforts have leveraged Software-Defined Networking
(SDN) capabilities to enable new and more efficient ways of test-
ing the correctness of a network’s forwarding behaviors. However,
realistic network settings induce two additional sources of com-
plexity that fall outside the scope of existing SDN testing frame-
works: (1) complex nature of real-world data planes (e.g., stateful
firewalls, dynamic behaviors of proxy caches), and (2) complexity
of intended network policies (e.g., service chaining). In this paper,
we outline FlowTest, a high-level vision for testing such stateful
and dynamic network policies. FlowTest systematically explores
the state space of the network data plane to verify its behavior w.r.t.
policy goals. We show the early promise of our approach and dis-
cuss open challenges in realizing this vision in practice.

Categories and Subject Descriptors: C.2.3
[Computer-Communication Networks]: Network Management

Keywords: Network test, stateful data plane, policy enforcement

1. INTRODUCTION
Software-Defined Networking (SDN) has been instrumental in

enabling new testing and verification capabilities. Specifically,
we have seen many frameworks to ensure that the network meets
specific reachability properties (e.g., no black holes, no perma-
nent loops, and no access control violations). These include work
on static and runtime checking of network configurations (e.g.,
HSA [17], VeriFlow [18]), programming languages for control ap-
plications (e.g., Frenetic [11]), test packet generation tools (e.g.,
ATPG [29]), and tools to test control programs (e.g., NICE [8],
VeriCon [6]).

While the aforementioned efforts have taken significant strides,
they still fall short of capturing realistic network settings on two
key dimensions. (We elaborate on these in §2.)
• Complex data plane elements: Studies have shown that

there are a range of advanced data plane functions (DPF)1

including firewalls, load balancers, NATs, proxies, intrusion
detection and prevention systems, and application-level gate-
ways [15, 25, 26]. Unlike routers and switches, such DPFs are
stateful. This stateful behavior manifests in different forms: (1)
DPFs maintain connection- and application-level context; e.g.,

1We use the term DPF to encompass both hardware middleboxes
and virtualized instances.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620751.

a stateful firewall allows responses on connections established
from inside a secure network; (2) DPFs track state across con-
nections depending on the history of observed traffic; e.g., a
rate limiter may count the number of active sessions, or an IDS
may keep track of recent failed connections [16], or a proxy
may store responses in its cache.
• Complex policy requirements: While reachability is neces-

sary, it does not capture the full spectrum of requirements
that network administrators may want to verify. Administra-
tors may want to ensure that service chaining policies are im-
plemented correctly [22]. Other kinds of policies may focus
on dynamic dataflow properties in that the intended policy de-
pends on the specific “states” of the network. For example, we
may want to ensure that traffic from suspicious hosts be routed
through deep packet inspection filters [4].

Such complex DPF behaviors, unfortunately, fall outside the
scope of existing test and verification tools in the SDN literature.
For instance, while verification tools can account for simple “way-
pointing” policies, they cannot capture hidden actions of non-L2/3
data plane elements; e.g., a proxy sending a cached response or a
NAT rewriting headers. Our overarching vision in this work is to
bridge this gap between the promise of “CAD for networks” vi-
sion [19] and the capabilities offered by today’s SDN tools (§2).

In this paper, we focus on sketching the conceptual foundations
for a practical data plane testing framework called FlowTest to sys-
tematically test such stateful behaviors and policy requirements.
We believe data plane testing is a more practical approach com-
pared to configuration testing or static verification on three fronts.
First, stateful behaviors of proprietary DPFs may be hidden and
non-deterministic. For instance, we may not know the current set
of cached objects in a proprietary proxy. Similarly, with load bal-
ancers or NATs, we may not know the internal mappings between
the incoming/outgoing connections. Second, these behaviors may
have subtle temporal effects; e.g., the “counting” behavior of a rate
limiter or the “eviction” behavior of a cache may depend on internal
timers. Third, it might be difficult to precisely model the complex
control logic that administrators want atop DPFs; e.g., distributed
middlebox load balancing [21] or elastic middlebox scaling or mi-
gration [12, 13, 23], or how they react to network dynamics (e.g.,
link congestion or server load).

In conjunction, these stateful and dynamic effects require us
to think beyond individual packets in designing test traffic [29].
Rather, what we need is a trace or a specifically interleaved se-
quence of packets that logically triggers a chain of specific state
transitions in the data plane. To this end, FlowTest models DPFs as
state machines where each state represents a state of the DPF (e.g.,
per-connection state for each session or the objects in the proxy
cache). Given these models, test trace generation can be formu-
lated as a problem of identifying a sequence of transition events or
a plan, that causes the set of network DPFs to transition from their
current states to a desired goal state.

As an early attempt, we cast the trace generation problem within
the framework of planning tools from the AI literature [24] and

S1#
H2#

H1#

H3#

S2#
Internet#

1)#Block#suspicious#TCP#traffic.#
2)#Block#certain#hosts’#access#to#certain#websites.#

Proxy##
#

Stateful#
Firewall#

Figure 1: The stateful firewall maintains a state per TCP con-
nection. The proxy’s state (i.e., cache contents) is determined
by the history of observed traffic.

demonstrate the preliminary promise of using existing planning
tools like GraphPlan [3] to generate test scenarios. That said, how-
ever, we do not claim that this is necessary or optimal—we choose
it simply because it gives us a natural “language” to express our re-
quirements. We are also exploring techniques from software testing
including fuzzing [28] and symbolic checking [7].

In the rest of the paper, we begin by motivating the problem of
stateful data plane testing in §2. We give an overview of FlowTest
in §3 and show the preliminary promise in leveraging AI planning
tools to help generate a test traffic sequence in §4 and §5. We con-
clude with a discussion of open questions and challenges in §6. We
discuss related work inline throughout the paper.

2. MOTIVATION
In this section, we use simple examples to highlight the chal-

lenges of verifying complex policies with stateful DPFs. Even
though these examples are highly simplified, they are useful to
highlight key aspects that any candidate solution in this problem
space would likely face: (1) the need to use testing rather than static
verification, (2) the need to look beyond generating individual test
packets, and (3) the need to capture the state semantics of DPFs.
Table 1 summarizes the key aspects of these examples.

2.1 Example Scenarios
Example 1: In Figure 1, our policy goal is to (1) block unsolicited
connections from the Internet, and (2) block a subset of users from
accessing specific sites. The firewall and the proxy are stateful,
operating above L2/3. The stateful firewall operates based on a
model of TCP connections and maintains a state per connection
(e.g., SYN observed, connection established, or invalid connection
attempt). The proxy operates at the session level and responds to
HTTP requests directly if it has the object cached; otherwise, it
retrieves the object from the remote server. Note that the proxy’s
state (i.e., the current cache contents) and firewall’s state (i.e., cur-
rent connections status) at any given time might be hidden if these
are proprietary DPFs (either hardware or virtual appliances), and
depends on the recent history. Even in case of open source DPFs,
these states may not be readily visible given the complexity of the
DPF’s internal logic.

In this network, we may want to test that the firewall is correctly
implementing the stateful semantics; i.e., it only allows reverse traf-
fic for previously established connections. Similarly, we want to
systematically explore different possible behaviors; e.g., do cached
responses violate the “chaining” policies?

Example 2: In Figure 2, we want to use the “light” IPS (L-IPS)
to flag hosts as suspicious and then subject traffic from the suspi-
cious hosts to deeper inspection at the “heavy” IPS (H-IPS). For

S1# S2#
H3#

H1#
Light#
IPS#

Heavy#
IPS#

H2# Internet#

1)#Keep#the#count#of#ac;ve#TCP#connec;ons#per#host.#
2)#Perform#deep#packet#inspec;on#if#a#host#has#made##
#####too#many#TCP#connec;ons.#

Figure 2: The test scheme needs to be cognizant of both IPSes
states and their event-driven logical connection.

Example1 Example2

Data plane Stateful Firewall only al-
lows valid con-
nections

Light IPS counts
number of con-
nections

Hidden Proxy cache state Counters/timers

Policy Service chaining Per-user class
service chains

Only suspicious
hosts routed
through heavy
IPS

Dynamic Proxy cached re-
sponses

Triggered action
when connection
count exceeds
threshold

Table 1: Summary of the motivating examples.

instance, L-IPS may check if a host has k consecutive failed con-
nections [16], and H-IPS should apply known botnet payload sig-
natures to such flagged hosts.

Testing whether the above network configuration behaves as ex-
pected will need some way to explore different data plane states:
(1) a host having less than k TCP connections established; (2) k
TCP connections from this failed and a botnet payload was ob-
served; and (3) k TCP connections failed but no botnet payloads
were observed. Exploring these different states requires taking into
account the state semantics and configurations of L- and H-IPS.
Again, the counting state maintained by L-IPS may be hidden and
depend on its internal timeout logic.

2.2 Current Solutions
At a high-level, prior work in the SDN testing/verification space

has largely focused on stateless reachability properties, and they do
not capture such stateful DPFs or dynamic data flow behaviors.2

Static verification: These methods (e.g., HSA [17]) take the
data plane configuration and infer whether certain properties hold.
However, they cannot be used to capture runtime data plane issues;
e.g., they cannot capture the hidden and dynamic states of DPFs.

Test packet generation: ATPG [29] generates test packets to effi-
ciently explore data plane reachability. However, it cannot be used
to test stateful data planes; e.g., it does not capture the semantics of
TCP sessions or track history of previous packets to trigger cache
evictions.

Controller tools: NICE [8] and VeriCon [6] model SDN control
applications as state machines and use model checking to find hid-
den logic bugs; they do not capture data plane effects. Other lan-
guage frameworks (e.g., Pyretic [20]) simplify SDN programming,
but do not capture semantics of stateful DPFs.

Middlebox orchestration: Prior work provides mechanisms to
ensure correct forwarding even in the presence of hidden DPF ac-
2To be fair, they do explicitly mention that such stateful DPFs are
outside their intended scope.

	
	
	
	
	

Test	 traffic	 planner	

Monitoring	 Engine	
e.g.,	 NetSight	 Valida9on	 Engine	 test results

test setup feedback current
state poll/pull

network
state

Test traffic
Injectors
e.g., Bit-Twist

“test manifest”

Regular traffic

Test
traffic

Hosts

Control Plane

Data Plane

Figure 3: High-level architecture of FlowTest.

tions. FlowTags requires new APIs for DPFs to expose information
to SDN controllers [10]. Stratos explicitly replicates virtual mid-
dleboxes to avoid such issues [12]. While these provide concrete
realizations, they cannot guarantee correctness; e.g., in the pres-
ence of failures. In fact, this paper is motivated by the inability to
systematically test our implementations in this previous work.

3. FlowTest OVERVIEW
In this section, we begin with the overall vision of the FlowTest

framework to address the challenges in tackling stateful and dy-
namic DPFs and policy requirements. Figure 3 shows a high-level
overview of FlowTest with three logical components:
1. Test traffic planner, which generates a test traffic plan or mani-

fest and coordinates the actions of the injectors to generate traf-
fic traces that test desired properties.

2. Injectors are regular hosts or servers running test traffic gener-
ators or trace injection software and run the commands issued
by the planner.

3. The monitoring and validation engines passively monitor the
status of the SDN controller and the data plane. This serves two
purposes. First, the current state can inform the actions of the
planner; e.g., which are the reachable prefixes. Second, moni-
toring reports help us validate if a test succeeded or help diag-
nose why a test may have failed; e.g., is it a legitimate failure
or caused by interference from background traffic? (See §6.)

Our focus in this paper is on designing the test traffic planner,
and we plan to integrate tools from prior work for the other compo-
nents. For example, we can use existing injection tools (e.g., Bit-
Twist [1] or pytbull [5]) or request generators (e.g., Harpoon [27]).
Similarly, for the monitoring engine, we can use a combination of
controller checkpoints and data plane logging mechanisms enabled
by SDN [14].

Figure 4 shows the modules within the test traffic planner com-
ponent. The output of the planner is a test manifest for the various
injectors, indicating the sequence of test traces to inject, the time to
inject, and the set of locations at which to inject these packets. The
main inputs to the test traffic planner are:
• Models of data plane elements: First, we need abstract models

to capture different DPFs. While stateless DPFs (i.e., switches
and routers) can be modeled using transfer functions [17], we
need new models for stateful DPFs such as proxies and stateful
firewalls.
• Network model: We need to model the network topology (i.e.,

how the DPFs are connected) and the forwarding strategy. This
is essential to test service chaining policies and dynamic data
flows.

Data	 plane	 	
elements	 models	

Network	 Model	 	
(from	 Monitoring	 Engine)	

Trace	 Planning	

Policy	 	
Requirements	

Test	 manifest	 generator	

e.g., check that L-IPSàH-IPS
triggers are correct

e.g., stateful firewall,
proxy cache

“High-level” plan

To test traffic generator

Admin

Figure 4: Design of the test traffic planner in FlowTest.

• Policy requirements: In addition to traditional network reacha-
bility properties (e.g., loop-freeness or black holes), the power
of advanced data planes coupled with new SDN control planes
will likely lead to more complex policies. We already saw
some examples with the service chaining policy in Figure 1
and the dynamic data flow in Figure 2. We may also want to
verify other consistency properties; e.g., whether a NAT maps
all packets in a flow consistently; whether a stateful firewall
blocks reverse-direction traffic for unestablished connections;
and whether a rate limiter honors the configured thresholds.

Given these inputs, we envision a trace planner algorithm that
generates a “high-level” test plan; e.g., “inject flow f into the net-
work from host/server I at time t”. Essentially, this involves some
mechanism to systematically explore different states of the data
plane and test its behavior in these states. For instance, in the ex-
ample of Figure 2, to ensure that L-IPS triggers a suspicious flag,
we need a host to generate three consecutive failed connections.

The test manifest generator translates the output of the planner
into a concrete traffic trace, which can be injected into the net-
work. We assume that the test manifest has a repository of test
traffic traces that it can choose from to generate this concrete trace.
While one could conceptually unify the functions of test planning
and test manifest generation, we take a pragmatic decision to de-
couple them to enable a more modular design so that we can inde-
pendently incorporate better versions of the individual algorithms
for test planning and manifest generation as they become available.

4. GENERATING TEST PLANS
In this section, we discuss our initial approach in designing the

test traffic planner. We begin by discussing how we model DPFs
as state machines.3 Then, we show how we can compose DPFs to
build a model of the entire network. Finally, we show how we can
cast test trace generation in the language of planning tools from the
AI literature.

4.1 DPFs as State Machines
As illustrative examples, Figure 5 highlights how the different

DPFs from the previous examples can be naturally modeled as state
machines.
1. Stateful firewall: Each observed packet belongs to a connec-

tion that is in one of the four shown states: NULL, NEW,
ESTABLISHED, or INVALID. Each connection starts in the
NULL state. Receiving a packet that corresponds to an outgo-
ing edge of the current state takes the connection to the next
state.

2. Proxy: The state of a proxy is expressed w.r.t. the HTTP object
X (e.g., an image on a web page). The behavior of the proxy

3While the set of states could be infinite w.r.t. future traffic patterns
(e.g., all HTTP objects), at any given instant, there are a finite set
of states.

EST."

{*}"&"SYN/ACK"

TIME"OUT"

INVALID* NEW*

NULL*

{*
}"&
"S
YN

"

FINISHED"

SYN
/ACK

"TI
M
E"
O
U
T "

Hit*HTTP*
Req.*for*X"Evict"X"

HTTP"Response"for"X"
Miss*HTTP*
Req.*for*X"

Stateful*Firewall*

Proxy*

(a) Example in Figure 1.

count=0(count=1(count=2(count≥3(

conn$fail$

refresh$

OK(

Alarm(

se
en

$n
on

-b
ot
$tr
affi

c$

conn$fail$ conn$fail$

refresh$ refresh$

seenbottraffi
c$

Light(IPS(

Heavy(IPS(

(b) Example in Figure 2.

Figure 5: Modeling DPFs as state machines and service chain-
ing or composition as special conditional transitions between
individual state machines.

will differ depending on whether X is in the cache at a given
instant.

3. Light IPS: The light IPS (L-IPS) maintains a counter for each
source host, tracking the number of recent failed connections.
It increases the counter when failed connections recur and pe-
riodically decrements the counter to avoid false positives.

4. Heavy IPS: The heavy IPS (H-IPS) just maintains two states
tracking if a host is sending malicious traffic or not.

Conceptually, there is a separate state machine per some atomic
unit of traffic relevant for each DPF. For example, each observed
connection in the stateful firewall will have the state machine in the
left-hand side of Figure 5a, as each connection can be in a different
state of connection establishment.

We currently assume that the DPF vendor or domain experts pro-
vide these models as inputs to FlowTest. Automatically synthe-
sizing models from the source code or black-box behaviors is an
interesting direction for future work (see §6).

4.2 Modeling the Network
Having modeled individual DPFs, we need to put them together

to create a network-wide model of the data plane (the “network
model module” in Figure 4). Suppose our chaining policy is to
ensure that DPF A processes the traffic before DPF B. Then, we
embed the prerequisite of traffic being processed by A as a pre-
condition to enter the state machine model of B (shown by dashed
arrows in Figure 5). Note that not all transitions across the state
machines of individual DPFs may be meaningful; e.g., a proxy may
not respond unless the connection is already established.

Since some DPFs may modify packet headers, setting up for-
warding entries to compose DPFs might be challenging as observed
in prior work [10, 21]. Our goal in this paper is not to mandate a
specific data plane realization for service chaining, and we can use
a combination of existing approaches [10, 12, 21]. Rather, our goal
in FlowTest is to test whether such implementations are correct,
and the design of FlowTest is agnostic to this implementation.

We also envision including models of stateless DPFs (i.e.,
switches and routers) as part of this network-wide model. We can
leverage existing work on reachability testing to model the forward-
ing behaviors [17, 29].

4.3 State-Space Exploration
Given the DPF and network state models and some “initial” net-

work state, we can formulate our testing requirement in terms of
creating a sequence of events/transitions to move the network to
some intended “goal” state. For instance, to check whether H-IPS
will block hosts sending three failed connections with a botnet pay-
load, we need to ensure that the network transitions to H-IPS Alarm
state.

Based on this intuition, we found that AI planning tools offer a
“natural language” in which to formulate this problem [24]. That
said, we do not claim that planning is an optimal or the only possi-
ble approach and we are also exploring other more traditional soft-
ware testing approaches (see §6).

We make two other observations here. First, not all states may be
relevant or important to explore; e.g., if the alarm count threshold
of L-IPS=3, we may not care about the case of having 100 failed
connections, but focus instead on values close to the threshold. Sec-
ond, there might be multiple candidate plans to reach our goal state;
we defer the issue of coverage to future work (see §6).

5. EARLY PROMISE
Next, we describe the initial promise of implementing the test

traffic planner using an AI planning tool called GraphPlan [3].

5.1 Implementation in GraphPlan
GraphPlan provides a natural way to encode the state machines

and DPF composition we saw earlier in §4. Figure 6 shows the
corresponding GraphPlan code snippets for the state machines of
Figures 1 and 2.

Here, we have a logical universe of possible traffic events, which
are modeled as parameters within the GraphPlan language. In
FlowTest, parameters are network packets or flows with specific
attributes; e.g., a port-80 HTTP connection. Each logical state in
a DPF state machine is represented as a specific predicate. Some
predicates may be additionally associated with a given parameter;
e.g., for a stateful firewall new〈x〉 indicates that the flow 〈x〉 is
logically in state new , whereas for an L-IPS the counting state is
not parameterized by a specific flow 〈x〉. Each “transition” in the
state machine is represented as an “operator” in the GraphPlan lan-
guage. Each operator takes as input one or more parameters and
gets triggered if its associated preconditions hold true. Once an op-
erator has completed its execution (i.e., a state transition occurs),
it has certain effects, wherein predicates involving x becoming true
or false. As discussed in the previous section, composition of DPFs
can be modeled as logical preconditions that carry over from one
DPF model to the next.4

To make this concrete, let us walk through the L-IPS–H-IPS ex-
ample in Figure 6b. For brevity, we only show a subset of the
possible transitions here. Here, the states for L-IPS are of the form
count-*. The code shows that in the state count-2, L-IPS will
transition to the state count-3 if it sees a new failed connection. It
marks this flow as seen using an auxiliary predicate as shown. It
also triggers another predicate caused-lips-alarm which is used in
the composition. H-IPS is much simpler and the only states are
HIPS-OK and HIPS-ALARM; its precondition is that the process-
ing is triggered only if the caused-lips-alarm is true and it transi-
tions to the HIPS-Alarm state if it observes bot signatures in flow
〈x〉. Similarly, Figure 6a shows the code snippet for the FW-proxy
example. While not shown here for brevity, we can also refine the

4We also have models to capture network-level state such as flow
creation; we do not show these for brevity.

/*Param. Values*/
(website1)
(website2)
(website3)
(website4)
(website5)
(website6)
(website7)
...

/*Initial State*/
(PRECONDS(fw_null website1)
 (proxy_null website1))

...

/*Goal State*/
(EFFECTS (fw_est website1)
 (proxy_cached
 website1))

...

/*Stateful Firewall*/
OPERATOR1 GET-SYN PARAMS(<x>)
PRECONDS: (null <x>)
EFFECT: (DEL fw-null <x>) (fw-new <x>)
OPERATOR 2 GET-SYNACK PARAMS(<x>)
PRECONDS: (new <x>)
EFFECT: (DEL fw-new <x>) (fw-est <x>)
...

/*Proxy*/
OPERATOR GET-HTTP-RESP PARAMS(<x>)
PRECONDS: (miss <x>) (fw_established <x>)
EFFECT: (DEL proxy_miss <x>) (proxy_hit <x>)
...

(a) Firewall-Proxy example (see Figures 1 and 5a).

/*Param. Values*/
(flow1)
(flow2)
(flow3)
(flow4)
(flow5)
(flow6)
...

/*Initial State*/
(PRECONDS(count0)
(HIPS-OK)
(LIPS-OK)
(botnet flow2))

/*Goal State*/
(EFFECTS (HIPS-Alarm))

/*Light IPS*/
OPERATOR1 LIPS-Process PARAMS(<x>)
PRECONDS: (count2)(new-flow <x>)
EFFECT: (DEL count2) (count3) (DEL new-flow <x>
 (old-flow <x>) (counted <x>)
 (DEL LIPS-OK) (LIPS-Alarm)
 (alarmed-at-lips <x>))

...

/*Heavy IPS*/
OPERATOR1 HIPS-Process PARAMS(<x>)
PRECONDS: (alarmed-at-lips <x>) (bot-traffic <x>)
EFFECT: (DEL HIPS-OK) (HIPS-Alarm)
...

(b) L-IPS-H-IPS example (see Figures 2 and 5b).

Figure 6: Code snippets for the two example scenarios of §2 in the GraphPlan language. Keywords are shown in Uppercase while
predicates are italicized. Each network input (i.e., a packet or a flow) is a parameter. Each state is captured by a predicate with
(possibly empty) parameters. Each “operator” models a state transition with (possibly empty) parameters. We input the initial state
and the desired goal state.

/*row format: <ACTION, TIME STAMP>. (t1<t2<t3)*/
<attempt a failed tcp connection to server1 from H1, t1>
<attempt a failed tcp connection to server2 from H1, t2>
<attempt sending botnet traffic to server2 from H1, t3>

Figure 7: The test manifest to take the network of Figure 2 to
the goal state that the heavy IPS generates an alarm. The three
rows in the figure correspond to flow1, flow3, and flow2 of
Figure 6b, respectively.

evict operator in the proxy model to distinguish different eviction
reasons such timeout vs. cache being full.

In addition to the DPF and composition models, we also specify
the initial state and our intended goal state. Figure 6b shows these
initial conditions as facts describing our “world” where both L-IPS
and H-IPS start in their default states (i.e., OK). The goal state is to
make H-IPS raise an alarm.

We use GraphPlan’s built-in solver to generate a plan that will
take us from the initial state to the goal state. Figure 7 shows the
solution generated by GraphPlan showing the sequence of actions
to take to reach the goal state for the L-IPS–H-IPS example. Given
this high-level sequence of operators, we use a translation script
that uses a test traffic library to produce the test manifest. We cur-
rently manually populate this traffic library with different template
traces; e.g., failed connections, web requests, etc.

5.2 Preliminary Results
Validation: To validate our test manifest, we instantiate the net-
work topology using MiniNet. We use Snort with different configu-
rations to realize the L-IPS and H-IPS functions, suitably extended
to support FlowTags [10] so that we can dynamically reroute traffic
depending on the L-IPS output. We use a custom version of POX
to set up forwarding rules.

We examine two scenarios. In the first scenario, we set up the
network elements correctly and run the test manifest of Figure 7.
H-IPS generates an alarm as expected and blocks the malicious
payload. In the second scenario, we (mis-)configure L-IPS such
that it alarms upon seeing the fourth connection attempt (not the
third one as mandated by the policy goal). In this case, we observe

that injecting the test manifest does not trigger an alarm at H-IPS
and the flow (i.e., the last row of Figure 7) passes through, violating
the intended policy.

Scalability: Each of the examples of Figures 1 and 2 takes about
3 ms to be solved using GraphPlan. To evaluate the scalability,
we setup synthetic larger “chains” with 6 DPFs and 100 concurrent
flows, where each DPF can be in one of four states similar to the
stateful firewall. In this case, the solver takes around 1 minute,
which is reasonable, as we do not intend the test traffic planner
component of FlowTest to be real-time. We found that the time to
generate a plan grows roughly linearly as a function of the number
of operators in the model (not shown).

6. DISCUSSION
Other approaches: We do not claim that the AI planning-
based approach is either necessary or optimal. Our choice was
pragmatic—we tried a range of DPF models using datalog, propo-
sitional logic, and first order logic, but our initial attempts could
not model DPFs as compactly as the language of planning. As an
alternative to planning, we also tried bounded model checkers to
generate test plans. Here, we wrote DPF state machine models as
simple C programs and used CBMC [2] to generate counterexam-
ples. A counterexample indicates the values of variables that lead
to the violation of a specific policy. We use these counterexamples
as the input to the trace generator. We can also use symbolic ex-
ecution approaches for test plan generation. That is, we can think
of state graph exploration as the symbolic execution of a program
that encodes this graph. The leaves of the symbolic execution tree
are reachable states from the initial state and each edge indicates
a state transition. The counterexample-based approach above, in
effect, helps us explore the desired leaves of the tree. As ongoing
work, we are evaluating the expressivity and efficiency of different
approaches.

Synthesizing middlebox models: We currently model the DPF
state machines manually based on our domain knowledge. A natu-
ral research direction is to automatically extract such models given
the implementation of various middleboxes, either from source

code (e.g., [9]) or even from blackbox traces (e.g., [30]). One inter-
esting question is balancing model tractability vs. fidelity; e.g., we
can trivially take all variables in the code as a high-fidelity model,
but it may needlessly increase model complexity.

Coverage and efficiency: In general, we want to exhaustively
test the policy in all possible network states. However, this may
be inefficient in very large DPF state machines and large networks.
Thus, we need mechanisms to make this state space exploration
more efficient; e.g., identify equivalence classes of states where the
behaviors might be identical. There might also be many possible
test plans that essentially reach the same goal state, in which case
we prefer more efficient plans. On a related note, when there are
multiple goal states, we may prefer action plans with higher overlap
to minimize duplicate efforts. We can also explore opportunities to
improve test efficiency by explicitly forcing DPFs into particular
configurations; e.g., choosing a different rate limit or failed con-
nection threshold.

Interference and diagnosis: One natural concern is that our test
traffic may interfere with background (i.e., non-test) traffic. There
are two main concerns here. First, since the normal network traf-
fic changes the state of the data plane, it may impact the correct-
ness of our test scenario and our observations. Second, we need to
make sure the test traffic does not change the network state such
that adversely affects regular traffic (e.g., an IPS counter might
be increased beyond the alarm threshold by test traffic). To tackle
these challenge, we plan to use new middlebox APIs such as Flow-
Tags [10] or OpenNF [13] to query the DPF state and use new SDN
capabilities for ubiquitous control/data plane logging [14]. This
helps in two ways. First, knowledge of the current network state
can minimize interference during test generation. Second, given
that interference is unavoidable, we can use these status reports to
determine the root cause of a test failure.

Acknowledgments
This work was supported in part by grant number N00014-13-1-
0048 from the Office of Naval Research and NSF grants CNS-
1440056 and CNS-1440065.

7. REFERENCES
[1] Bit-Twist. http://bittwist.sourceforge.net/.
[2] CBMC. http://www.cprover.org/cbmc/.
[3] Graphplan. http:

//www.cs.cmu.edu/~avrim/graphplan.html.
[4] Prolexic. http://www.prolexic.com/.
[5] pytbull. http://pytbull.sourceforge.net/.
[6] T. Ball, N. Bjorner, A. Gember, S. Itzhaky, A. Karbyshev,

M. Sagiv, M. Schapira, and A. Valadarskyi. VeriCon:
Towards verifying controller programs in software-defined
networks. In Proc. PLDI, 2014.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proc. OSDI, 2008.

[8] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and
J. Rexford. A NICE way to test openflow applications. In
Proc. NSDI, 2012.

[9] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, volume 1855, pages 154–169. 2000.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of

dynamic middlebox actions using FlowTags. In Proc. NSDI,
2014.

[11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. SIGPLAN Not., 46(9):279–291,
Sept. 2011.

[12] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, V. Sekar, and A. Akella.
Stratos: A network-aware orchestration layer for
middleboxes in the cloud. CoRR, abs/1305.0209, 2013.

[13] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward
software-defined middlebox networking. In Proc.
HotNets-XI, 2012.

[14] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. I know what your packet did last hop: Using
packet histories to troubleshoot network. In Proc. NSDI,
2014.

[15] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend
TCP? In Proc. IMC, 2011.

[16] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In
Proc. IEEE Security and Privacy, 2004.

[17] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. In Proc. NSDI, 2012.

[18] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
Veriflow: verifying network-wide invariants in real time. In
Proc. NSDI, 2013.

[19] N. McKeown. Mind the Gap: SIGCOMM’12 Keynote.
https://www.youtube.com/watch?v=c9-
K5O_qYgA.

[20] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In Proc. NSDI, 2013.

[21] Z. Qazi, C. Tu, L. Chiang, R. Miao, and M. Yu.
SIMPLE-fying middlebox policy enforcement using sdn. In
Proc. SIGCOMM, 2013.

[22] P. Quinn et al. Network service chaining problem statement.
http://tools.ietf.org/html/draft-quinn-
nsc-problem-statement-03.

[23] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/merge: System support for elastic execution in virtual
middleboxes. In Proc. NSDI, 2013.

[24] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[25] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In Proc. NSDI, 2012.

[26] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud service. In
Proc. SIGCOMM, 2012.

[27] J. Sommers and P. Barford. Self-configuring network traffic
generation. In Proc. IMC, 2004.

[28] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling
black-box mutational fuzzing. In Proc. CCS, 2013.

[29] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In Proc. CoNEXT, 2012.

[30] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad,
I. Beschastnikh, and J. Cappos. NetCheck: Network
diagnoses from blackbox traces. In Proc. NSDI, 2014.

