
The Middlebox Manifesto:
Enabling Innovation in Middlebox Deployment

Vyas Sekar∗, Sylvia Ratnasamy†, Michael K. Reiter?, Norbert Egi††, Guangyu Shi ††
∗ Intel Labs, † UC Berkeley, ? UNC Chapel Hill, †† Huawei

ABSTRACT
Most network deployments respond to changing application,
workload, and policy requirements via the deployment of
specialized network appliances or “middleboxes”. Despite
the critical role that middleboxes play in introducing new
network functionality, they have been surprisingly ignored
in recent efforts for designing networks that are amenable
to innovation. We make the case that enabling innovation
in middleboxes is at least as important, if not more impor-
tant, as that for traditional switches and routers. To this end,
our vision is a world with software-centric middlebox imple-
mentations running on general-purpose hardware platforms
that are managed via open and extensible management APIs.
While these principles have been applied in other contexts,
they introduce unique opportunities and challenges in the
context of middleboxes that we highlight in this paper.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; C.2.1
[Network Architecture and Design]: Centralized networks

General Terms
Design, Measurement, Management

Keywords
Middlebox, consolidation, network management

1. INTRODUCTION
A growing body of research focuses on designing net-

works that are amenable to innovation. Broadly, these pur-
sue two complementary approaches. The first tackles the
high cost, limited flexibility, and long development cycles
typically associated with routers and switches. They propose
alternative programmable device architectures using low-cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

hardware such as x86 CPUs [20, 22, 10], GPUs [15], FP-
GAs [13] and merchant switch silicon [14]. The second tack-
les the limited flexibility caused by the narrow or closed in-
terfaces found in network devices. These focus not so much
on the internals of a device but on the abstractions that de-
vices expose to management applications [24, 9, 23].

Together these efforts offer promising approaches to im-
prove network extensibility and have received widespread
attention. To date, however, the focus has been almost exclu-
sively on traditional Layer 2/3 functions such as forwarding
and routing. While these are no doubt fundamental tasks
that merit attention, we argue that this focus overlooks a
key reality in how network deployments evolve in response
to changing application, workload, and policy requirements.
In current networks, the de-facto approach to introduce new
functionality is often not through modification to switches
and routers, but rather is through the deployment of special-
ized network appliances or “middleboxes”.

Modern networks deploy a range of middleboxes such as
WAN optimizers, proxies, intrusion detection and preven-
tion systems, network- and application-level firewalls, and
application-specific gateways. Several studies report on the
rapid growth of this market; the market for network secu-
rity appliances alone was estimated to be 6 billion dollars in
2010 and expected to rise to 10 billion in 2016 [8]. In other
words, middleboxes are critical part of today’s networks and
it is reasonable to expect that they will remain so for the
foreseeable future.

It is troubling then that current middlebox architectures
suffer to an equal degree from the same barriers to innova-
tion as switches and routers. Today’s middleboxes are typ-
ically expensive and closed systems, with little or no hooks
and APIs for extension or experimentation. Each middle-
box typically supports a narrow specialized function (e.g.,
IDS, WAN optimization) and is built on a particular choice
of hardware platform. A further exacerbation is that middle-
boxes are acquired from independent vendors and deployed
as standalone devices with little uniformity in their manage-
ment APIs, or cohesiveness in how the ensemble of middle-
boxes is managed.

Given the above, we argue that the case for enabling inno-
vation in middleboxes is just as important as that for switches

1

and routers. Rather than take a philosophical stance on the
merits of middleboxes, we propose to embrace deployment
realities and focus instead on how we can architect middle-
boxes for extensibility. To this end, we present a research
agenda that targets extensibility both at the level of a single
middlebox, and the management of an ensemble of middle-
boxes. Specifically, we explore an approach that seeks ex-
tensibility through three strategies:

• software-centric implementations of middlebox applica-
tions that decouple middlebox hardware and software.
• the consolidation of multiple (software-based) middle-

box applications on a shared hardware platform, and,
• logically centralized management with common APIs for

a unified network-wide view in provisioning and manag-
ing middlebox deployments.

In a general context, the above strategies are not new. In
fact, the first and last are inspired by the above-cited work on
enabling innovation in switches and routers, building on sim-
ilar reasoning regarding the benefits of standardized APIs,
software-centric implementations and commodity hardware.
Similarly, consolidation is commonly used to reduce cost
and device sprawl in data centers.

However, applying these ideas to middleboxes raises unique
challenges and opportunities because middleboxes differ from
routers and switches on three fronts:

• Heterogeneity: Middleboxes cater to a wide range of re-
quirements including security (e.g., IDS, firewall), per-
formance acceleration (e.g., WAN optimizer), and sup-
porting new applications (e.g., media gateways).
• Deeper processing: Middleboxes embed application-specific

semantics and perform more complex per-packet process-
ing (e.g., deep packet inspection, maintaining per-flow or
per-session state).
• Loose physical coupling: Routers/switches process ev-

ery packet they see, and each packet is processed at ev-
ery hop. A middlebox, however, processes only a subset
of packets pertinent to its application. Further, each mid-
dlebox function occurs at a small set (1 or 2) of the hops
that a packet traverses.

For example, consolidating heterogeneous workloads on
a shared platform raises new challenges for resource alloca-
tion and scheduling to retain the performance of standalone
devices. At the same time, heterogeneity offers the oppor-
tunity to reduce hardware costs by leveraging multiplexing
benefits arising from variability in the workload across dif-
ferent applications. Deeper processing raises the concern
whether a general-purpose solution can provide high per-
formance. Here, a software-centric solution also offers the
possibility of reuse to avoid duplicating expensive lower-
layer tasks such as session reconstruction or protocol pars-
ing. Similarly, loosely coupled computation implies that
configuring middleboxes to enforce high-level policies (e.g.,
all port 80 traffic goes through an IDS) requires more expres-
sive interfaces compared to routing. But, loose coupling also

Inter-site WAN Internet

Network Core

LAN

Mail Web VPN IDS

Proxy

WAN
optimizer

Data Center

DMZ

Load Balancers

Firewall

LAN

Figure 1: A typical site in the enterprise network

provides an opportunity to spatially distribute middlebox ap-
plications to use spare resources elsewhere in the network.

Our focus in this paper is on highlighting these challenges
and opportunities and we leave it to future work to fully
weigh the pros and cons of this vision.

Roadmap: We present evidence from a real enterprise net-
work that motivates our proposed middlebox architecture in
§2. We describe new opportunities for resource savings this
architecture enables in §3; system challenges in §4 and fi-
nally conclude in §5. We discuss open questions and related
work inline throughout the paper.

2. MOTIVATION
We begin with anecdotal evidence in support of our claim

that middlebox deployments constitute a vital component in
modern networks and the challenges that arise therein. Our
observations are based on a study of middlebox deployment
in a large enterprise network and discussions with the enter-
prise’s network administrators.

The enterprise spans tens of sites across several geograph-
ical regions and serves more than 80K users. Each major
site has a typical structure shown in Figure 1 with end hosts
connected by a simple hierarchy of switches to a load bal-
anced core of routers. Traffic to/from end-hosts leads to one
of three destinations: enterprise hosts in other sites (WAN),
external hosts on the public (Internet), or servers in local dat-
acenters. Middleboxes are deployed along the path to each
of these destinations; the figure shows the types of middle-
boxes in each segment. For example, we see that all inter-site
traffic goes through a WAN optimizer and all public Internet
traffic goes via a proxy. We also see many application gate-
ways (e.g., mail, web, VPN) in the DMZ connected to the
public Internet.

Table 1 summarizes the types and numbers of different
middleboxes in the enterprise. We see that the total num-
ber of middleboxes, is comparable to the number of routers!
Middleboxes are thus a vital portion of the enterprise’s net-
work infrastructure. We further see a large diversity in the
type of middleboxes; recent studies suggest similar diversity
is found in ISP and datacenter networks as well [28, 30, 17].

The administrators indicated that middleboxes represent a
significant fraction of their (network) capital expenses and
expressed the belief that processing complexity necessitates
expensive hardware capabilities which contributes to the high

2

Appliance type Number
Firewalls 166

NIDS 127
Conferencing/Media gateways 110

Load balancers 67
Proxy caches 66
VPN devices 45

WAN optimizers 44
Voice gateways 11

Middleboxes total 636
Routers ≈ 900

Table 1: Devices in the enterprise network

Centralized Middlebox Management

Network-wide
configuration

Figure 2: Each middlebox application runs as a software
module on a consolidated platform with the ensemble
managed by a central controller.

capital costs associated with such appliances. Two further
nuggets emerged from these discussions. First, they revealed
that each class of middleboxes is currently managed by a
dedicated team of administrators; e.g., 2-3 administrators
are assigned to manage just the WAN optimizer deployment,
while a separate set manages all application gateways. This
is in part because the enterprise uses different vendors for
each application in Table 1; the vendor interaction and un-
derstanding required to manage and configure each class of
middlebox leads to inefficient use of administrator exper-
tise and significant operational expense. The lack of high-
level network-wide management APIs further exacerbates
the problem. For example, one administrator described how
significant effort was required to manually tune what sub-
set of traffic should be directed to the WAN optimizer to
optimize the tradeoff between the bandwidth savings and
appliance load. The second nugget of interest: several ad-
ministrators voiced concern that market trends towards the
“consumerization” of computing devices (e.g., smartphones,
tablets) stands to increase the need for in-network capabili-
ties [8]. Because middleboxes today lack extensibility, this
would inevitably lead to further appliance sprawl, with a cor-
responding increase in capital and operating expenses.

Despite these concerns, the administrators reiterated the
value they find in such appliances, particularly in support-
ing new applications (e.g., teleconferencing), increasing se-
curity (e.g., IDS), and improving performance (e.g., WAN
optimizers).
An alternative architecture: We see that although middle-
boxes are a critical part of the network infrastructure, they
are expensive, closed platforms that are difficult to extend,
and difficult to manage. This motivates us to rethink how
middleboxes are designed and managed. We envision an
architecture in Figure 2 where software-centric implemen-

tations of middlebox applications are consolidated to run
on a general-purpose shared hardware platform, managed
in a logically centralized manner with uniform APIs for a
network-wide view.

Software-based solutions reduce the cost and development
cycles to build and deploy new middlebox applications (and
independently argued in parallel work [12]); consolidating
multiple applications on a single physical platform reduces
device sprawl (with some early commercial offerings already
emerging [7, 3]); and centralized management with uniform
APIs simplify network-wide management (as has long been
argued for routing and access control [19, 18, 9]).

We proceed to explore the unique opportunities and chal-
lenges that arise in combining these strategies and applying
them in the context of middleboxes.

3. OPPORTUNITIES
While recent work shows that software implementations

of network elements can deliver high performance (e.g., [20,
15, 14]), there is a concern that the extensible solutions we
envision may be less resource efficient than today’s special-
ized solutions. However, as we discuss next, our proposal
introduces new efficiency opportunities that do not arise with
today’s middlebox deployments.

3.1 Application multiplexing
Consider the WAN optimizer and the IDS from Figure 1.

The former optimizes file transfers between two enterprise
sites and may see peak load at night when system backups
are run. In contrast, the IDS may see peak load during the
day because it monitors users’ web traffic.

Suppose the volumes of traffic processed by the WAN op-
timizer and IDS at two time instants t1, t2 are 10, 50 packets
and 50, 10 packets respectively. Today each application runs
on separate hardware and each device must be provisioned
to handle a peak load of max{10, 50} = 50 packets. A con-
solidated middlebox with each application in software can
flexibly allocate resources as the load varies. Thus, it needs
to be provisioned to handle the peak total load of 60 packets
or 40% fewer resources.
Measurement: Figure 3 shows a timeseries of the utiliza-
tions of four middleboxes at one enterprise site, each nor-
malized by its maximum observed value. We see that the de-
vices reach peak utilization at different times. If NormUtil tapp
is the normalized utilization of the device app at time t, we
compare the sum of the peak

∑
app maxt{NormUtil tapp} =

4, and the peak total maxt{
∑

app NormUtil tapp} = 2.86.
Thus, in Figure 3, multiplexing will reduce the resource re-
quirement 4−2.86

4 = 28%.

3.2 Reusing software elements
Each middlebox needs to implement modules for packet

capture, parsing headers, reconstructing flow/session state,
and parsing application protocols. If the same traffic is pro-
cessed by many applications (e.g., HTTP traffic is processed

3

 0

 0.2

 0.4

 0.6

 0.8

 1

07-09,06:00 07-09,17:00 07-10,04:00 07-10,15:00 07-11,02:00

N
or

m
al

iz
ed

 u
til

iz
at

io
n

(%
)

Time (mm-dd,hr)

WAN optimizer
Proxy

Load Balancer
Firewall

Figure 3: Middleboxes reach peak utilization levels at
different times

Session	
 Management	

Protocol	
 Parsers	

 VPN WanOpt IDS Proxy

Firewall

Figure 4: Reusing modules across applications

by the IDS, proxy, and a web firewall in Figure 1) each ap-
pliance repeats these common actions. Alternatively, we can
reuse these building blocks across the middlebox applica-
tions as in Figure 4. That is, the processing logic and data
structures for session reconstruction and HTTP parsing are
shared across the IDS, proxy, and the web firewall. Note
that this complements application multiplexing; multiplex-
ing exploits temporal variability, whereas reuse helps when
different applications act on the same packets.

Consider the IDS and proxy from Figure 1. Both recon-
struct the session- and application-level state before running
higher-level actions. Suppose each device needs 1 unit of
processing per packet and that the common tasks contribute
50% of the processing. While both appliances process HTTP
traffic, they may also process traffic unique to each context;
e.g., IDS processes UDP traffic which the proxy ignores.
Suppose there are 10 UDP packets and 45 HTTP packets.
The total resource requirement in Figure 1 is (IDS = 10 +
45) + (Proxy = 45) = 100 units. The setup in Figure 4
avoids duplicating the common tasks for HTTP traffic and
needs 45 ∗ 0.5 = 22.5 units or 22.5% fewer resources.

Measurement: The example shows we need to quantify: (1)
the overlap in traffic processed by middleboxes and (2) the
relative contribution of the reusable actions. First, to mea-
sure the traffic overlap, we obtain (public) configurations for
Bro [26] and Snort [1] and the (private) configuration for a
WAN optimizer. From these, we extract the port numbers of
traffic that each processes. Then, we quantify the pairwise
overlap between middleboxes using flow-level traces from
Internet2. The overlap between M1 and M2 is the ratio of
the volume of common traffic they process to the volume of
traffic that at least one processes, i.e., |M1∩M2|

|M1∪M2| . Across all
pairs of middleboxes and traces, this overlap is 64− 99%.

Next, to quantify the relative contribution of the common

Figure 5: Distributing responsibilities as the spatial
structure of the traffic changes over time

primitives, we use trace-driven benchmarks with Bro [26].1

Bro uses a common session management layer and application-
specific modules are built atop this layer. For HTTP traffic,
this common layer contributes 18% and 54% of the CPU and
memory footprint.

3.3 Spatial distribution
Centralizing middlebox management also provides a network-

wide view to spatially distribute middlebox tasks to further
reduce resource costs. Consider the topology in Figure 5
with three nodes N1–N3 and three end-to-end paths P1–P3.
The traffic on these paths peaks to 30 packets at different
times as shown.

Suppose we want all traffic to be monitored by IDSes. The
default deployment is an IDS at each ingress N1, N2, and N3
for monitoring traffic on P1, P2, and P3 respectively. Each
such IDS needs to be provisioned to handle the peak volume
of 30 units with a total network-wide cost of 90 units. With
a network-wide view, however, we can potentially distribute
the IDS responsibilities by allowing each IDS at N1–N3 to
monitor some fraction of the traffic on the paths traversing
it (e.g., [29]). (Here, we assume that IDSes are “on-path”
or their upstream routers redirect packets to them [11].) In
this case, we can provision each IDS to handle 20 packets
and yet provide full monitoring coverage. For example, at
time T1, N1 uses 15 units for P1 and 5 for P3; N2 uses 15
units for P2 and 5 P3; and N3 devotes all 20 units to P3.
(We can generate similar configurations for the other times
as shown.) Thus, distribution reduces the total provisioning
cost 90−60

90 = 33% compared to an ingress-only deployment.
Again, note that this is orthogonal to application multiplex-
ing and software reuse.
Measurement: To quantify the benefit of spatial distribution,
we use the topology and two weeks of per-5-minute traffic
matrices from the enterprise network (site-level) and Inter-
net2 (PoP-level). Let Vi be the volume of traffic that each
IDS Ni is provisioned to handle, such that this configura-
tion can fully monitor the traffic for each 5-minute interval
over the two-week period. We find that spatial distribution
reduces the total provisioning cost,

∑
i Vi, 33% for Internet2

and 55% for the enterprise network.

4. DESIGN CHALLENGES
Next, we discuss the system challenges in realizing the

architecture and opportunities described in the previous sec-
1We are not aware of vendors with reusable software modules and
data on their software design is hard to obtain.

4

Network-wide
Controller

Local Coordinator

Session	

Protocol	

Extensible functions Standalone functions

Figure 6: The different components and interfaces in our
proposed middlebox architecture

tions. We envision the system architecture shown in Fig-
ure 6. A centralized controller determines how traffic should
be processed by each middlebox to achieve network-wide
objectives. Each middlebox implements a local coordina-
tor responsible for resource management and executing the
controller’s decisions.

4.1 Network-wide challenges
The controller takes as input: (i) the network topology,

(ii) the network-wide traffic workload in the form of a traffic
matrix for different classes of traffic, (iii) for each middle-
box, a description of its hardware resources such as CPU,
memory, presence/absence of specialized hardware (e.g., ac-
celerators for crypto or reg-ex operations [21, 4, 2]) and,
(iv) for each middlebox application Ai, a policy specifica-
tion that describes the application’s network-wide objectives
and constraints.

The controller solves an optimization problem that de-
termines how the processing should be split across middle-
boxes to minimize network-wide resource consumption, while
respecting resource limits and policy requirements. The con-
troller’s output is a set of per-middlebox configurations. This
raises three natural questions.

Q: What constitutes the policy specifications?

We envisage three high-level components here:
(1) A description of what traffic the application acts on—
e.g., ‘all port 80 traffic’, ‘all traffic between border routers A
and B’, ‘all traffic to prefix p’, and so forth.
(2) There are natural dependencies in the order in which
middlebox applications should be applied. For example, an
IDS must inspect payloads before they are modified by com-
pression or encryption. These can be expressed as pairwise
precedence constraints Ai ≺ Aj between the applications [16].
(3) The application should convey what specialized hard-
ware it requires. Some applications may be written to as-
sume an accelerator (e.g., a DPI ASIC for an exfiltration en-
gine [4]) while others may opportunistically use such capa-
bilities (e.g., special encryption instructions in some CPUs [21]).
Thus, each requirement also specifies if it is strict or loose.

Q: Is the optimization tractable?

Traditional optimization in monitoring and traffic engi-
neering treats different network functions in isolation (e.g., [27]).
In our context, reuse and policy dependencies between mid-
dlebox applications means that these models no longer ap-
ply. In theory, such dependencies can be captured with fine-
grained models that track each action on a packet as it tra-

verses the network; i.e., does middlebox Mk run application
Ai on packet p. However, such discrete models are computa-
tionally intractable. The challenge here is to find a practical
relaxation that it is both tractable and near-optimal.
Q: What is the controller→coordinator interface?

The controller communicates the per-middlebox configu-
ration output by the global optimization to each middlebox.
Conceptually, this is a set of rules, each mapping from a
packet filter to an ordering of middlebox functions. These
packet filters identify both a class of traffic (defined on packet
header fields as combinations of source/destination IP pre-
fixes and port ranges) and what fraction of this traffic class
this middlebox should process. Each middlebox can then
use techniques such as hash-based sampling to process the
appropriate fraction of traffic while still ensuring a particular
flow/session is pinned to the same node [29]. For example,
a configuration of the form:

SrcIP =∗,DstIP =∗,Port =80,Fraction ∈ [0, 0.5]

Firewall ≺ Proxy; IDS ≺ Proxy;Firewall ≺ FlowMon

specifies that packets on port 80 with the hash of the ses-
sion identifier in the range [0, 0.5] should be processed by
the firewall, IDS, proxy, and a flow-level monitor. Note that
ordering specifies a partial order as there are no dependen-
cies between firewall-IDS and IDS-Flowmon.

Even this simple example highlights that middlebox man-
agement requires greater expressiveness compared to current
interfaces such as OpenFlow [24]. For example, the “action”
on a packet is not a simple forward/drop but specifies a par-
tial order of functions to be applied.

Different deployments (small vs. large enterprise, ISP, dat-
acenter) may also vary in what this management interface
needs to be. For example, spatial distribution may not apply
to a small enterprise with 1-2 locations. An open question in
this regard is whether our proposed configuration parameters
are either complete or minimal.

4.2 Middlebox architecture
Figure 6 shows the three components in each middlebox

platform. Between the hardware and the applications imple-
mented in software, we introduce a ‘local coordinator’ that
interacts with the network-wide controller and is responsi-
ble for two tasks. First, it steers packets between applica-
tions. Recall that each packet may be processed by multiple
applications with a partial precedence order between them.
Since the applications could be obtained from different ven-
dors and unaware of each other, the coordinator is responsi-
ble for steering a packet between applications and eventually
forwarding the packet. Second, the coordinator implements
the resource allocation and scheduling required to efficiently
multiplex different applications in a shared platform.
This raises many system implementation challenges:
Q: What is the appropriate hardware platform?

A platform of multiple general-purpose cores (x86+GPU)
is a good baseline since this offers portability, ease of de-
velopment, and is already a popular platform of choice [5].

5

At the same time, we do not want to mandate this choice
since it is unclear that general-purpose cores will suffice;
e.g. for DPI or encryption. Moreover, hardware vendors will
also want to offer innovative, differentiated solutions. Rather
than completely custom hardware platforms for complex ap-
plications, we aim for one in which the general-purpose cores
are augmented with a small set of specialized hardware func-
tions. This leads to many sub-questions, including: What is
a modular hardware design that allows us to incrementally
add accelerators? Is there a small set of accelerators that can
meet most application demands? How are these accelerators
best exposed to the higher-layer software?

A second form of specialized hardware is for high-speed
packet classification. Prior work [20] shows that achieving
high rate packet forwarding requires NIC support for packet
classification and multiple hardware queues. Again, hard-
ware vendors might choose to innovate here; e.g., offering
TCAM-based classification, or larger numbers of queues.
This again raises several sub-questions, including: Is spe-
cialized hardware for classification required? What is the
right hardware design that offers flexible classification at
high speed and low cost? What API should such classifi-
cation engines expose to the coordinator?

Q: How do we parallelize the coordinator?
The coordinator itself must be parallelized to run on multi-

ple cores so that it does not become a processing bottleneck.

Q: How are resources scheduled across applications?
Prior work [20, 15, 14] describes approaches to paralleliz-

ing traffic processing across multiple cores. However they
consider homogeneous workloads (e.g., routing) where the
per-packet resource consumption is uniform. These assump-
tions may not hold in a consolidated middlebox and hence
we need solutions to adaptively schedule resources across a
set of heterogeneous applications.

Q: How do we refactor middlebox applications for reuse?
Today vendors sell monolithic solutions that tightly cou-

ple both hardware and software. A first step toward extensi-
bility is to decouple the hardware and software; some ven-
dors already offer ‘unbundled’ software-only versions (e.g., [6]).
A further step is a modular software architecture, allowing
reuse of common low-level primitives as in §3.2. Vendors
may prefer to supply standalone or modular application im-
plementations, and hence we envision the platform support-
ing both. This also raises the question of identifying primi-
tives that simplify application development and provide suf-
ficient reuse. As a starting point, modules for a few common
tasks such as packet capture, session reconstruction, and ap-
plication protocol parsing will be useful; these occur in most
middleboxes and have non-trivial resource footprints, but are
hard to implement correctly and efficiently [25, 26].

Q: What are minimal APIs between the components?

We expect vendors for each component to innovate inde-
pendently and to differentiate. Thus, we need a careful de-
sign of inter-component APIs that are not overly restrictive

but also not complex. While we have discussed the informa-
tion needed across the boundaries, distilling it into a concrete
and minimal set of APIs remains open.

5. CONCLUSIONS
Middleboxes are a vital component of modern networks

but have been M.I.A in recent efforts on architecting net-
works for innovation. We propose tackling this elephant in
the room through a consolidated, software-centric architec-
ture and highlight the unique opportunities and challenges
that arise in a middlebox context. We are currently working
to implement and evaluate such an architecture.

Acknowledgments
We thank Neil Doran, Patrick Egan, Sridhar Mahankali, San-
jay Rungta, Daniel Tang, and Rob Wilson for sharing their
insights and feedback. This work was funded in part by
ONR grant N000141010155 and by NSF grants 0831245
and 1040626.

6. REFERENCES
[1] http://www.snort.org.
[2] Cavium networks. http://www.caviumnetworks.com/.
[3] Crossbeam network consolidation. http://bit.ly/qlotDK.
[4] Palo alto networks. http://www.paloaltonetworks.com/.
[5] Riverbed Networks: WAN Optimization.

http://www.riverbed.com/solutions/optimize/.
[6] Silver Peak software WAN optimization. http://bit.ly/nCBRst.
[7] Untangle. www.untangle.com.
[8] World enterprise network security markets. http://bit.ly/gYW4Us.
[9] A. Greenberg et al. A Clean Slate 4D Approach to Network Control and

Management. ACM SIGCOMM CCR, 35(5), Oct. 2005.
[10] A. Greenlagh et al. Flow Processing and the Rise of Commodity Network

Hardware. ACM CCR, Apr. 2009.
[11] A. Shieh et al. SideCar: Building Programmable Datacenter Networks without

Programmable Switches. In Proc. HotNets, 2010.
[12] J. Anderson and A. Vahdat. xOMB: eXtensible Open MiddleBoxes.

Unpublished Manuscript.
[13] B. Anwer et al. Switchblade: A platform for rapid deployment of network

protocols on programmable hardware. In SIGCOMM, 2010.
[14] G. Lu et al. ServerSwitch: A Programmable and High Performance Platform for

Data Center Networks. In Proc. NSDI, 2011.
[15] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-Accelerated

Software Router. In Proc. SIGCOMM, 2010.
[16] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 2008.
[17] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching Layer for

Data Centers. In Proc. SIGCOMM, 2008.
[18] M. Caesar et al. Design and implementation of a Routing Control Platform. In

Proc. of NSDI, 2005.
[19] M. Casado et al. SANE: A Protection Architecture for Enterprise Networks. In

USENIX Security, 2006.
[20] M. Dobrescu et al. RouteBricks: Exploiting Parallelism to Scale Software

Routers. In Proc. SOSP, 2009.
[21] M. Kounavis et al. Encrypting the Internet. In Proc. SIGCOMM, 2010.
[22] N. Egi et al. Towards high performance virtual routers on commodity hardware.

In Proc. CoNEXT, 2008.
[23] N. Gude et al. NOX: Towards an Operating System for Networks. ACM

SIGCOMM CCR, July 2008.
[24] N. McKeown et al. OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM CCR, 38(2), Apr. 2008.
[25] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A yacc for Writing

Application Protocol Parsers. In Proc. IMC, 2006.
[26] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In

Proc. USENIX Security Symposium, 1998.
[27] M. Roughan. Robust network planning. Chapter 5, Guide to Reliable Internet

Services and Applications.
[28] T. Benson et al. Demystifying configuration challenges and trade-offs in

network-based isp services. In Proc. SIGCOMM, 2011.
[29] V. Sekar et al. cSamp: A System for Network-Wide Flow Monitoring. In Proc.

of NSDI, 2008.
[30] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An Untold Story of

Middleboxes in Cellular Networks. In Proc. SIGCOMM, 2011.

6

