
Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the Internet-of-Things

Tianlong Yu†, Vyas Sekar†, Srinivasan Seshan†, Yuvraj Agarwal†, Chenren Xu‡

†Carnegie Mellon University, ‡CECA Peking University

ABSTRACT
The Internet-of-Things (IoT) has quickly moved from the
realm of hype to reality with estimates of over 25 billion
devices deployed by 2020. While IoT has huge potential
for societal impact, it comes with a number of key security
challenges—IoT devices can become the entry points into
critical infrastructures and can be exploited to leak sensitive
information. Traditional host-centric security solutions in
today’s IT ecosystems (e.g., antivirus, software patches) are
fundamentally at odds with the realities of IoT (e.g., poor
vendor security practices and constrained hardware). We ar-
gue that the network will have to play a critical role in se-
curing IoT deployments. However, the scale, diversity, cy-
berphysical coupling, and cross-device use cases inherent to
IoT require us to rethink network security along three key
dimensions: (1) abstractions for security policies; (2) mech-
anisms to learn attack and normal profiles; and (3) dynamic
and context-aware enforcement capabilities. Our goal in this
paper is to highlight these challenges and sketch a roadmap
to avoid this impending security disaster.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design-distributed
networks

General Terms
Security, Design

1 Introduction
The Internet-of-Things (IoT) has quickly moved from hype
to reality; Gartner, Inc. estimates that the number of de-
ployed IoT devices will grow from 5 Billion in 2015 to 25
Billion in 2020 [4]. Like other disruptive technologies, such
as smartphones and cloud computing, IoT holds the potential
for societal scale impact by transforming many industries as
well as our daily lives.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotNets ’15 November 16–17 2015, Philadelphia, PA USA
Copyright 2015 ACM 978-1-4503-4047-2 ...$15.00.

!
!
!
!
!

Privacy!leaks!

Interac0on/control!over!
physical!environment!

Launchpad!for!deep!and!
scalable!a;acks!

Policies!

Learning!

Enforcement!

Tradi0onal!IT! IoT!Challenges!

Sta0c,!PerBhost!

Simple!honeypots!
Few!configura0ons!

Device/Vendor!diversity!
CrossBdevice!interac0ons!

ContextBdependence!
CrossBdevice!interac0ons!!

Host!Patch/An0virus!
Perimeter!Appliances!

Device!constraints!
Deep!access!to!a;acker!

Figure 1: IoT security challenges and how/why conven-
tional IT security approaches are found wanting

While IoT has huge potential, it also comes with its share
of challenges. Most vendors only deal with parts of the IoT
ecosystem and, typically, their priorities have been providing
novel functionality, getting their products to market soon,
and making them easy to use. Unfortunately, security and
privacy risks have not received as much attention. Since IoT
devices will typically be embedded deep inside networks,
they are attractive attack targets and may become the “weak-
est link” for breaking into a secure IT infrastructure [17], or
for leaking sensitive information about users and their be-
haviors [18]. These are not hypothetical concerns as several
actual attacks have already been reported. For example, IoT
devices were used as bots to launch DDoS or spam [3], smart
meters were hacked to lower utility bills [15], and handheld
scanners were compromised to enter logistics firms [6].

Today’s IT security ecosystem, which relies on a combi-
nation of static perimeter network defenses (e.g., firewalls
and intrusion detection/prevention systems), ubiquitous use
of end-host based defenses (e.g, antivirus), and software
patches from vendors (e.g., Patch Tuesday), is fundamen-
tally ill-equipped to handle IoT deployments (Figure 1).
Specifically, the scale, heterogeneity, use cases, and device
and vendor constraints of IoT means that traditional ap-
proaches fall short along three key dimensions:

• Types of policies: IoT devices can interact with other de-
vices via explicit channels (e.g. a single app may use mul-
tiple IoT devices) or implicitly by affecting the physical
world around them (e.g., an IoT light bulb may trigger
an IoT light sensor). Thus, compromised IoT devices can
affect both applications that use them explicitly as well
as applications with implicit or indirect cross-device de-



Row Device Device Num. Vulnerability
1. Avtech Cam 130k exposed account/password
2. TV Set-top box 61k exposed access
3. Smart Refrigerator 146 exposed access
4. CCTV Cam 30k (by IP) unprotected RSA key pairs
5. Traffic Light 219 no credentials
6. Belkin Wemo >500k (estimated) open DNS resolver, use for DDoS
7. Belkin Wemo >500k (estimated) exposed access, bypass app

Table 1: Examples of Known IoT Vulnerabilities.
pendencies. The result is that the security for an IoT de-
ployment are likely to be complex and dynamic since they
depend on both physical (e.g. environmental parameters)
and computational (e.g., the state of other related devices)
contexts.
• Learning signatures and anomalous behaviors: The di-

versity of IoT devices and vendors inevitably means that
traditional approaches of discovering attack signatures
(e.g., honeypots) will be insufficient and/or non-scalable.
Furthermore, there might be implicit dependencies where
device interactions are indirectly coupled through the en-
vironment. Thus, we need new mechanisms to learn sig-
natures and infer such cross-device dependencies to in-
form security policies.
• Enforcement mechanisms: Since IoT devices operate

deep inside the network, traditional perimeter defenses
are ineffective. At the same time, IoT devices typically
do not run full-fledged operating systems, require low-
power consumption and are resource constrained. More-
over, the longevity of these devices means that vulnerable
devices (e.g., default passwords, unpatched bugs) remain
deployed long after vendors cease to produce or support
them. Thus, traditional host- or device-centric mecha-
nisms (e.g., antivirus, patches) are impractical to expect
in an IoT world. Finally, given that the environment and
device behaviors can change rapidly, we need to rapidly
reassess and update the system’s security posture. Unfor-
tunately, today’s security enforcement schemes stem from
a static mindset and cannot handle such dynamics.

Rather than chase the hopeless goal of IoT devices that
are secure-by-construction, we need pragmatic “bolt-on” so-
lutions for securing IoT that acknowledge the realities of
marketplace (e.g., existing devices, poor software practices,
patch unavailability) and the practical challenges associated
with IoT (e.g., resource or software constraints). Unlike
traditional IT ecosystems where host-based detection and
prevention are prevalent, we believe that the device and
ecosystem limitations of IoT will need the the network to
(re)emerge as the key vantage point for enforcing security
policies. In the rest of the paper, we elaborate on the chal-
lenges with respect to policies, policy learning, and enforce-
ment and discuss preliminary ideas for rethinking network
security for IoT.

2 Motivation and Overview
To highlight some of the security challenges in IoT, we first
present a number of reported IoT vulnerabilities, and the
number of devices affected, from known public databases.
Next, we describe the challenges with cross IoT device in-

Device Cross-device policies Typical Example

NEST Protect 188 If Nest Protect detects smoke,
then turn Philips hue lights on.

Wemo Plugin 227 Turn of WeMo Insight if SmartThing
shows no body is at home.

Scout Alarm 63 Activate your Manythings Camera
if Alarm is Triggered.

Table 2: Cross device policy examples.

teractions. Finally, we present the issues in using current
enforcement mechanisms and highlight the requirements for
IoT security.

2.1 Motivating Scenarios
IoT Vulnerability Cases: Table 1 lists a small subset of
IoT device vulnerabilities found from SHODAN [14] and
other sources. The examples come from different types of
IoT devices, including: cameras (Row 1 and 4), Set-top box
(Row 2), Smart Appliance (Row 3), Traffic light (Row 5)
and Smart Plugs (Row 6 and 7). The first three cases are
examples where the devices have hardcoded default user-
name/passwords (“admin/admin” for Avtech cameras) or de-
vices with open IPs, ports and protocols that can be accessed
(Row 2 and 3). The fourth example is a CCTV setup with
unprotected RSA key pairs in the firmware image for ≈30K
devices [20]. Here, an attacker can gain access to the devices
and mount more complex attacks on the internal networks,
turn on/off devices, or compromise the privacy of individ-
uals. To date, these vulnerabilities remain unpatched. The
traffic light vulnerability (Row 5) allows unfettered access of
219 traffic lights, enabling an attacker to change traffic lights
and even cause accidents [14]. The last two examples (Row
6,7) are vulnerabilities in the popular Belkin Wemo line of
smart home products. The Wemo devices run a open DNS
resolver which was used to mount a DDoS attack. The sec-
ond vulnerability allows open access to the devices across
the Internet (not just on the LAN), which means that their
data (power usage) be accessed and they can even be turned
ON/OFF remotely. In summary, these anecdotes suggest that
vulnerable IoT devices can create a significant threat to the
security of our networked infrastructures and compromise
the privacy of individuals.

Cross-device dependencies: Like typical network de-
vices, IoT devices can communicate explicitly with each
other. For example, a networked thermostat (e.g., NEST)
can control the air-conditioning system in a smart home.
However, unlike traditional devices, IoT devices can also
be coupled through the physical environment leading to
implicit dependencies. For instance, a temperature sen-
sor can be connected to a service like IF-This-Then-That
(IFTTT) [7] to open windows to cool down a space when
the air-conditioning is not active. Thus, an attacker could
compromise the smart plug (e.g., Belkin Wemo) to turn off
the air-conditioner in a room and trigger a temperature in-
crease, which would, in turn, cause the the windows to open
and create a physical security breach. Such cross-device de-
pendencies are quite common. Table 2 shows the number
of cross-device dependencies [7] and typical cases for three
widely used IoT devices: NEST Protect [9], Wemo Insight



!
!
!
!
!

IotSec!Control!Pla.orm!

Tunnel!traffic!!
to/from!devices! Customized!

μmbox!

Dynamically!!
launch!μmbox!!

Events!from!
devices!and!μmbox!!

Admin!

Challenge!3:!!
Scalable,!responsive,!and!
efficient!enforcement!

Challenge!1:!!
Expressive!way!to!specify!policy!

Challenge!2:!!
Learning!signatures/interacKons!

Figure 2: High-level vision of IoTSec
Switch [1] and Scout Alarm [13].1 To mitigate potential at-
tacks, we need to reason about normal behaviors, and, thus,
need systematic mechanisms to discover and express such
dependencies.

Broken Enforcement Mechanisms: Traditional enforce-
ment mechanisms are unlikely to be effective in IoT deploy-
ments for a number of reasons. First, there are no host-
based defenses (e.g., antivirus) solutions due to resource
constraints on these devices and the lack of a common pro-
gramming environment or operating systems. For exam-
ple, even antivirus systems for embedded systems, such as
Commtouch Antivirus [2], require 128 MB RAM, while
most IoT devices use single-thread microcontroller (8051,
MSP430, ATMEL series) with ≤ 2 MB RAM. Second, un-
like traditional IT devices, IoT devices lack effective auto-
mated software updates. The current process of patching
IoT vulnerabilities is via manual firmware updates, and that
too per device/vendor. Unfortunately, due to the longevity
of IoT devices, software updates will likely be unavailable
(e.g., vendor may not support updates or no longer exist) or
be too late to prevent early exploits. Third, existing network
security mechanisms largely stem from a static perimeter-
defense mindset (e.g., IDS and firewall at the gateways).
With vulnerable IoT devices embedded deep inside networks
and dynamic behaviors that change with operating context,
such classical approaches quickly become ineffective.

2.2 System Overview
From the examples in the previous section, we can general-
ize two key observations for securing IoT: (1) host-based ap-
proaches are ineffective and we need to depend on network-
based solutions, since IoT devices contain significant num-
bers of unpatched vulnerabilities and have limited resources;
(2) traditional static perimeter defenses are unable to secure
IoT devices, since these devices are deployed deep inside the
network, with their physical and computational context con-
stantly changing. To enforce security policies based on the
dynamic context, we envision a new software-defined ap-
proach to IoT security, where we can: (a) rapidly develop
and deploy novel network defenses tailored to IoT use cases
and (b) dynamically customize the network’s security pos-
1NEST Protect is a smoke and carbon monoxide alarm. Wemo
Insight Switch is a smart plug that monitors energy usage. Scout is
a next-generation home alarm.

ture to the current operating context of different devices and
the environment.

Figure 2 shows a high-level vision of our IoT security ar-
chitecture called IoTSec. While our approach and ideas are
quite general, we focus on residential and commercial IoT
deployments.2 IoTSec envisions customized µmboxes (mi-
cro network-security functions) that act as security gateways
for each IoT device. A logically centralized IoTSec con-
troller monitors the contexts of different devices and the op-
erating environment and generates a global view for cross-
device policy enforcement. Based on this view, it instanti-
ates and configures individual µmboxes and the necessary
forwarding mechanisms to route packets to these µmboxes .
This vision is quite general and can naturally support a range
of IoT management models; e.g., directly connected devices
vs. IoT hubs [12] vs. smartphone-controlled [7]. To enable
immediate deployment, we assume the enterprise has a well-
provisioned on-premise cluster with a pool of commodity
server machines. In a home scenario, we envision an up-
graded version of an IoT router (e.g., Google OnHub [5])
with compute capabilities. Each IoT device’s first-hop edge
router or wireless access point (AP) is configured to tunnel
packets to/from the device to the cluster or an IoT router.

Given this high level vision, there are three key outstand-
ing challenges: (1) An expressive way to specify the types
of policies to enforce (Section 3); (2) How can we learn sig-
natures of malicious attacks and patterns of normal (cross-
device) behavior to inform these policies (Section 4); and
(3) How to implement scalable, responsive, and efficient en-
forcement mechanisms (Section 5).

3 Policy Abstractions
In this section, we discuss why existing policy abstractions,
e.g. firewall rules or IoT management protocols, are not ex-
pressive enough to handle the types of security and safety
properties for the scenarios described in Section 2. Then,
we present an expressive-but-inefficient finite state machine
(FSM) policy abstraction that captures key environmental,
cross-device, and security contexts. We end with open chal-
lenges.

3.1 Strawman solutions
To motivate the problem, consider two natural strawman
solutions, one each from the traditional (IT) network and
the IoT domains. In traditional IT security, a simple pol-
icy abstraction used by firewalls and IDSes, is a set of
Match → Action pairs, where the Match predicate is typ-
ically specified in terms of packet headers (L3-L4 ACLs) or
payloads (e.g., IDS). More advanced policies also include
connection state State,Match → Action; e.g., a stateful
firewall allows incoming traffic if an outgoing connection
was established earlier. These abstractions do not work in
the IoT context because: (a) the security-relevant behavior
2Other settings (e.g. drones, automotive IoT, autonomous vehicles,
process control systems) are outside the deployment scope we con-
sider here as they entail different connectivity infrastructures.



for IoT depends on environmental context which is missing
(e.g., a thermostat controlling the HVAC system is normal if
the user is present and anomalous otherwise); and (b) there
are potential cross-device interactions that impact security
(e.g., policy for the smart oven depends on the state of the
fire alarm).

In the IoT domain, IF-This-Then-That (IFTTT) [7] is a
popular abstraction, supporting recipes such as “If smoke
emergency, set lights to red color” or “If Sighthound de-
tects a person at home when I’m away set light to red
color” [7]. While these capture cross-device interactions,
they have three fundamental security limitations. First, they
do not capture the security-relevant context of devices (e.g.,
are these unpatched). Second, they assume recipes are in-
dependent, which can either lead to conflicts or safety viola-
tions. For instance, in our example both the smoke alarm and
the Sighthound rules could be active simultaneously leading
to ambiguity. Third, it is tedious for users to reason about
possible device interactions and their effects, leading to in-
complete specifications that can be exploited by an attacker.

3.2 Proposed approach
To address the limitations of the strawman solutions, we now
sketch an expressive albeit “brute force” solution to capture
the relevant environmental context, security-relevant con-
text, and cross-device interactions. First, suppose we haveD
networked IoT devices, and eachDi ∈ D has a security con-
textCi, which can take one or more values (e.g., “normal” or
“suspicious” or “unpatched”). Second, suppose we have E
environmental variables (e.g., temperature, smoke, window),
and each variable Ej ∈ E can take one or more discrete val-
ues (e.g., Temperature=High/Low, Window=Open/Closed,
Smoke=Yes/No). Now, we can represent the set of possible
states S of the system in terms of these device contexts and
environmental variables. In the limiting case, the total num-
ber of states is combinatorial; i.e., |S| =

∏
i,j |Ci| × |Ej |.

FireAlarm:*<normal,*ok>*
Window:*<normal,*close>*

FireAlarm:*<normal,*ok>*
Window:*<suspicious,*close>*

FireAlarm:*<suspicious,*alarm>*
Window:*<normal,*close>*

FireAlarm*backdoor*
accessed*

Window*password*
brute:forced**

Window�Robot**
Check*

*
*FW� Window�Block*

“open”*
*
*FW�

Window�
*
*FW�

state*

security*posture*

Figure 3: Policy abstraction illustration for IoT network
with fire alarm and window actuator.

Given these preliminaries, we can define our security ab-
straction as follows. For each state Sk ∈ S, we define the
security posture for each device PostureSk,Di . This secu-
rity posture specifies the set of security modules through
which the traffic for the device needs to be subjected (e.g.,
“proxy”-ing capabilities) as well as the set of anomaly de-

tection and signature detection rules that need to be applied
in this specific case. By construction, this policy abstraction
is expressive and can capture the necessary environmental
context and security-relevant context of the device, as well
as cross-device interactions.

To see this policy abstraction in action, let us revisit
our example in Figure 3, and formally specify the policy
for each state. For instance, when the FireAlarm’s back-
door is accessed3, the state becomes S = {CFireAlarm =
suspicious, EFireAlarm , CWindow , EWindow}, then the pol-
icy enforcement is to block any “open” message sent to the
window actuator to stop potential break in.

While this is an expressive abstraction, there are two ob-
vious open questions. First, with respect to the enforcement
logic (Section 5), this brute-force enumeration may not be
practical as the number of devices and states scale. Second,
the state explosion makes it difficult to check for potential
policy conflicts or correctness issues [33]. We believe that
in practice it might be possible to prune and collapse this gi-
ant FSM by exploiting some domain-specific opportunities.
For example, if we know that two specific device types are
inherently independent, or if the intended security posture is
the same for a set of similar states, then we can potentially
prune the state space.

4 Learning Security Policies
At a high level, security detection and prevention systems
rely on two standard approaches: (1) detecting the signa-
tures of the attack and (2) detecting anomalous behaviors
that deviate from normal activity.

In case of IoT, learning signatures using simple honeypot-
like mechanisms will not scale with the diversity of devices
and deployments — we would need several thousand hon-
eypots to ensure coverage for every specific device “SKU”
as opposed to vendor or class of device (e.g., Google Nest
version XYZ rather than “thermostat”). One potential av-
enue is to extend prior work for decloaking environment-
specific malware that can support multiple modes of execu-
tion [23]. However, we expect the scale and diversity of IoT
to be much higher than the space of possible browser envi-
ronments, which these prior efforts targeted. Similarly, ap-
plying simple anomaly detection to IoT also does not scale
since the range of possible normal behaviors is large and po-
tentially very dynamic and taking cross device interactions is
further challenging. We discuss below a preliminary sketch
of solutions to each of these issues.

4.1 Learning signatures
To address the diversity challenge, we envision a crowd-
sourced repository that allows users who have deployed a
specific IoT device SKU to share attack signatures of interest
that they have observed with other users who have deployed
the same SKU. The repository would offer a simple publish-

3A suspicious event indicating an attacker is trying to compromise
the FireAlarm to open the window for break in.



subscribe interface, where users could publish traces or sig-
natures, expressed in a common format, which other users
could subscribe to.

There are several technical challenges to address to make
this crowdsourcing work: (1) Incentivizing reporting: Enter-
prises are often reluctant to acknowledge breaches for fear
of monetary impacts, or due to bad public relations, or for
the fear of being hacked; (2) Privacy: Sharing information
raises concerns about the potential for accidentally leaking
private information; and (3) Data Quality: With any crowd-
sourcing solution, there is the risk of noisy data (acciden-
tal or adversarial) which may inadvertently lead to a denial
of service (e.g., if a malicious or misconfigured signature
blocks all traffic).

While these are valid concerns, we believe that we can
build upon prior work to address them. For instance, to
address incentives (1), we envision an anonymous publish-
subscribe system [21] with a feature that give priority notifi-
cations to users who contribute signature data. To address
the privacy challenge (2), we can institute anonymization
routines or use other types of privacy-preserving techniques
to limit information leakage [28, 29]. Finally, to address
the data quality challenge we can borrow techniques from
the crowdsourcing literature; e.g., use reputation or voting
mechanisms [31, 37] to deal with incorrect reporting.

4.2 Learning cross-device interactions
While crowdsourcing could work for individual devices, it is
not practical to uncover combinations of device interactions,
especially as these interactions are coupled to the specific
operating environment. Since each deployment is likely to
be customized differently, covering all possible interaction
modalities by simply observing the behaviors in the wild is
unlikely to work.

To address this concern, our key insight is that we can ab-
stract the environment and different classes of IoT devices,
and use these abstract models to systematically reason about
the space of possible interactions. To this end, we envision
building a library containing abstract models of different
classes of devices (e.g., toaster, microwave, smart bulb rather
than specific instances) that capture key input-output behav-
iors and interactions with environment variables. In this re-
spect, we can build upon prior work in modeling cyberphysi-
cal systems as simple FSMs that have been traditionally used
for verification and vulnerability assessment [32].

We assume that there will be a broader community effort
to develop and refine such models. One potential approach
to build these abstract model of devices and their effect on
the environment is to observe deeply instrumented (con-
trolled) IoT testbeds with instances of different classes of
devices (e.g. a toaster, a bulb). Then using a combination of
actually actuating devices into different states and observing
their effects on the environment, we could build an empiri-
cal model of devices. Automatically extracting these model
specifications is an interesting direction for future work.

Given the abstract model, we can apply techniques like
fuzzing [19,22] or “monkeying” [8,10,34]. Specifically, we
can think of the states of each IoT device model and the en-
vironment as potential input variables for fuzzing. Then, we
run multiple fuzz tests to explore the space of possible be-
haviors. We expect that device interactions will likely be
sparse as it is constrained by the specific environment that
couple interactions; e.g., physical proximity and network
topology. Thus, fuzzing can give us reasonable coverage
over the space of acceptable behaviors.

As a next step, such models can also be used to auto-
matically identify potential multi-stage attacks due to cross-
device interactions; e.g., triggering device X to transition to
state SX and then using that to reach an eventual goal state
(e.g., unlocking the door). To this end, we can borrow ideas
from attack graph analysis in the security literature [30, 36].

5 IoTSec Enforcement
Now, we turn to the challenges in practical enforcement. As
discussed earlier, host-based protections will no longer be
effective and we need network-level mechanisms to provide:
1) context-based enforcement according to system state Sk;
2) agile enforcement to change PostureSk,Di

implementa-
tion according to the constantly changing system state Sk.

Next, we discuss the potential of extending SDN and NFV
to secure IoT devices, identifying key challenges. In terms of
the control plane, the key challenge is scale and responsive-
ness in maintaining an up-to-date view of the global system
state Sk and responding to environment changes. For the
data plane, the key challenge is in developing efficient and
flexible platforms for developing IoT defenses.

5.1 Control plane
We foresee two challenges in extending SDN mechanisms
to IoT settings. First, traditional mechanisms for scaling
SDN typically exploit the weak consistency semantics [24]
needed in network management; e.g., critical network infor-
mation like topology that need stronger consistency seman-
tics typically do not change often. However, this is unlikely
to be the case for IoT since changes in critical state of Sk

that must be handled in a consistent fashion does change of-
ten. Second, we envision much more frequent reconfigura-
tion of policies relative to existing SDN efforts. One pos-
sible approach to handle the consistency and update chal-
lenges is to logically partition the set of IoT devices depend-
ing on the frequency in the interaction dependencies. Thus,
we can have a hierarchical control architecture where fre-
quently interacting components are handled together by a
low-level controller and infrequent interactions are handled
at the global controller.

5.2 Data plane
Unlike traditional IT deployments with a single firewall/IDS
for the enterprise, we envision many micro-middleboxes
(µmboxes), each can be customized for a specific device
type and can be rapidly instantiated and frequently recon-



��

Patch&camera&with&new&secure&password&

Current&&
World&

With&&
IoTSec&

admin/admin�

new&secure&password&

IoT&password&proxy�

IoTSec&Controller&

Figure 4: Patching exposed password for a home camera.

figured when the environment changes. This introduces a
different set of challenges with respect to (1) resource man-
agement and (2) programming abstractions relative to con-
current efforts in the NFV space. To address (1), we can
exploit the fact that the actual computation that each micro-
middlebox performs will be lightweight and not need to op-
erate at high traffic rates. Thus, we can create custom mi-
cro VMs [27] that can be rapidly booted/rebooted [26]. To
address (2), we envision a lightweight Click [27] version
akin to TinyOS [25] that can serve as an extensible program-
ming platform for developing these micro-middleboxes. In
addition, unlike many current middleboxes, the µmboxes
must support frequent reconfigurations without impacting
the availability of IoT devices and services.

5.3 Proof of Concept
As a preliminary proof-of-concept, we have developed an
early prototype of IoTSec. For the control plane, we use
OpenDaylight [11] and for the data plane we use modi-
fied versions of Squid [16] and Snort [35].

Next, we discuss two use cases that show the early
promise of IoTSec: 1) Providing security gateways for in-
secure devices and 2) Enforcing policies for cross-device in-
teractions.

IoT security gateway: As discussed in Section 2, a com-
mon vulnerability is that IoT devices can ship with default
admin passwords that allow adversaries to hijack the device
and/or extract private data. In Figure 4, we use a D-link
surveillance camera D-link surveillance camera which ships
with a hardcoded admin password that the user has no inter-
face to delete.4 As shown by the red lines in the figure, any
attacker can access the camera’s management interface and
images. To address this, we use a µmbox (Ubuntu VM with
a customized Squid proxy) to serve as a gateway that inter-
poses on all traffic to the camera. By interposing on traf-
fic, the µmbox can enforce the use of a new administrator-
chosen password to access the camera’s management inter-
face.

Cross-device policy: Next, we consider a simple two-
device setting with a Belkin Wemo device and the D-link
camera. In Figure 5, we consider a scenario where the re-
mote attacker compromised a Wemo through a backdoor
(no credential needed). Suppose this Wemo controls power
source for a smart oven that is a potential fire hazard. Our

4Unsurprisingly: “admin/admin”

Camera:'nobody'at'home''
→'block'message'“on”'to'Wemo'

nobody'at'home'

message'“on”�

With''
IoTSec' Current''

World'

block'message'“on”'

Wemo�

IoTSec'Controller'

Figure 5: Enforce cross device policy.

cross-device policy encodes a common policy from IFTTT:
ensure that the oven can be turned on only if the camera
detects a person in the room. IoTSec enforces this policy us-
ing a µmbox that accesses the status of the camera and uses
Snort to interpose on traffic to the Wemo. Our µmbox ’s
policy is set to allow the “ON” messages to be sent to Wemo
only if the global state identifies a person in the room and,
thus, can prevent a remote attacker from causing damage via
the Wemo vulnerability.

6 Conclusions
Whether we like it or not, the world is heading towards the
catastrophic consequences of having a network with billions
of insecure IoT devices with potentially unfixable flaws. We
argue that traditional approaches to security are fundamen-
tally at odds with the IoT ecosystem (e.g., perimeter defense,
antivirus, patching) and inadequate to capture the dynamic
environment and cross-device interactions that are common
to IoT. Our goal in this paper was to articulate these chal-
lenges and chart out a roadmap to potentially promising so-
lutions. While we have many unsolved questions, we hope
that this paper acts as a catalyst to spark the debate on how
to tackle this impending security disaster.

Acknowledgments
This work was supported in part by NSF award number
CNS-1440056 and by Intel Labs University Research Office.

7 References

[1] Belkin Wemo. http://www.belkin.com/us/Products/home-
automation/c/wemo-home-automation/.

[2] Commtouch Antivirus for Embedded OS Datasheet.
http://www.commtouch.com/uploads/pdf/Commtouch-
Antivirus-for-Embedded-OS-Datasheet.pdf.

[3] Fridge sends spam emails as attack hits smart gadgets.
http://www.bbc.com/news/technology-25780908.

[4] Gartner Says 4.9 Billion Connected "Things" Will Be in Use in 2015.
http://www.gartner.com/newsroom/id/2905717.

[5] Google ON hub. https://on.google.com/hub/.
[6] Hackers attack shipping and logistics firms using malware laden handheld

scanners. http://www.securityweek.com/hackers-attack-
shipping-and-logistics-firms-using-malware-laden-
handheld-scanners.

[7] IFTTT Recipes. https://ifttt.com/recipes.
[8] Monkey.

http://developer.android.com/tools/help/monkey.html.
[9] NEST. https://nest.com/.

[10] Netflix Simian Army. https://github.com/Netflix/SimianArmy.
[11] OpenDayLight. http://www.opendaylight.org/.
[12] Samsung Smartthings. http://www.smartthings.com/.
[13] Scout Alarm. https://www.scoutalarm.com/.
[14] SHODAN. https://www.shodan.io/.



[15] Smart meters can be hacked to cut power bills.
http://www.bbc.com/news/technology-29643276.

[16] Squid. http://www.squid-cache.org/.
[17] The Internet of Things Is Wildly Insecure - And Often Unpatchable. http:

//www.wired.com/2014/01/theres-no-good-way-to-patch-
the-internet-of-things-and-thats-a-huge-problem/.

[18] Will giving the internet eyes and ears mean the end of privacy?
http://www.theguardian.com/technology/2013/may/16/
internet-of-things-privacy-google.

[19] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational fuzzing. In
Proc. of the IEEE Symposium on Security and Privacy, pages 725–741, May
2015.

[20] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A
large-scale analysis of the security of embedded firmwares. In USENIX Security
Symposium, 2014.

[21] A. K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous
publish/subscribe in p2p networks. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, pages 8–pp. IEEE, 2003.

[22] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for security
testing. Queue, 10(1):20, 2012.

[23] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet
malware. In Security and Privacy (SP), 2012 IEEE Symposium on, pages
443–457. IEEE, 2012.

[24] T. Koponen et al. Onix: A Distributed Control Platform for Large-scale
Production Network. In Proc. OSDI, 2010.

[25] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. A. Brewer,
and D. E. Culler. The emergence of networking abstractions and techniques in
tinyos. In NSDI, volume 4, pages 1–1, 2004.

[26] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, et al. Jitsu: Just-in-time
summoning of unikernels. In 12th USENIX Symposium on Networked System
Design and Implementation, 2015.

[27] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. ClickOS and the art of network function virtualization. In Proc. NSDI,
2014.

[28] F. McSherry and R. Mahajan. Differentially-private network trace analysis.
ACM SIGCOMM Computer Communication Review, 41(4):123–134, 2011.

[29] P. Mittal, V. Paxson, R. Sommer, and M. Winterrowd. Securing mediated trace
access using black-box permutation analysis. In HotNets. Citeseer, 2009.

[30] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network
security analyzer. In USENIX security, 2005.

[31] J. Pang, B. Greenstein, M. Kaminsky, D. McCoy, and S. Seshan. Wifi-reports:
Improving wireless network selection with collaboration. In Proceedings of the
7th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’09, pages 123–136, New York, NY, USA, 2009. ACM.

[32] A. Platzer. Verification of cyberphysical transportation systems. Intelligent
Systems, IEEE, 24(4):10–13, 2009.

[33] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to express and
automatically reconcile network policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages 29–42.
ACM, 2015.

[34] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and
scalable fault detection for mobile applications. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and services,
pages 190–203. ACM, 2014.

[35] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

[36] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Security and privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 273–284. IEEE, 2002.

[37] K. Walsh and E. G. Sirer. Experience with an object reputation system for
peer-to-peer filesharing. In USENIX NSDI, volume 6, 2006.


