
Toward a Principled Framework to Design Dynamic
Adaptive Streaming Algorithms over HTTP

Xiaoqi Yin Vyas Sekar Bruno Sinopoli
Electrical and Computer Engineering Department, Carnegie Mellon University

Pittsburgh, PA, USA
{xiaoqiy,vsekar}@andrew.cmu.edu, brunos@ece.cmu.edu

ABSTRACT

Client-side bitrate adaptation algorithms play a critical role

in delivering a good quality of experience for Internet video.

Many studies have shown that current solutions perform sub-

optimally, and despite the proliferation of several propos-

als in this space, both from commercial providers and re-

searchers, there is still a distinct lack of clarity and con-

sensus w.r.t. several natural questions: (1) What objectives

does/should such an algorithm optimize? (2) What environ-

ment signals such as buffer occupancy or throughput esti-

mates should an algorithm use in its control loop? (3) How

sensitive is an algorithm to operating conditions (e.g., band-

width stability, buffer size, available bitrates)? This work at-

tempts to bring clarity to this discussion by casting adaptive

bitrate streaming as a model-based predictive control prob-

lem. We demonstrate the initial promise of shedding light on

these questions using this control-theoretic abstraction.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications; C.4

[Performance of systems]: Modeling techniques

General Terms: Algorithms, Design, Performance

1 Introduction

Many recent studies have highlighted the critical role that

user-perceived quality-of-experience (QoE) plays in Inter-

net video applications, which ultimately ties in to revenues

for content providers [14, 19]. Specifically, metrics such as

the duration of rebuffering (i.e., the player’s playout buffer

does not have content to render), startup delay (i.e., the lag

between the user clicking vs. the time to begin rendering),

the average playback bitrate, and the stability of the bitrate

delivered have emerged as key factors.

Given that there is little, if any, support in the network for

optimizing such measures, bottlenecks could occur at every

point in the video ecosystem. For instance, Content Distri-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’14, October 27–28, 2014, Los Angeles, CA, USA.

Copyright 2014 ACM 978-1-4503-3256-9 ...$15.00.

bution Networks (CDN) servers may be chosen poorly or

the data may not be in the content server’s cache. Simi-

larly, there may be intermittent or persistent congestion in

the ISPs, or potential throttling of video flows. There may

even be bottlenecks in the home networks, with the shared

WiFi network being a point of contention.

Given this complex ecosystem and presence of diverse

bottlenecks, the bitrate adaptation logic in the video player

is critical to ensure a rich user experience. Thus, delivering

high QoE requires intelligent adaptation algorithms that can

dynamically adapt the quality to the current operating con-

ditions. Historically, video streaming over IP has relied on

custom servers and protocols to implement adaptation algo-

rithms. However, the actual widespread deployment of In-

ternet video has taken a different (and rather surprising) tra-

jectory with HTTP being the dominant and converged proto-

col for delivering video content. The reasons for the depar-

ture from custom protocols are pragmatic; e.g., repurposing

existing commodity CDN solutions and server deployments

and avoiding interactions with middleboxes [24].

This bitrate adaptation logic is also referred to as Dynamic

Adaptive Streaming over HTTP (DASH) algorithms.1 Our

specific interest here is in the implementation of client-side

DASH. At a high-level, DASH approaches work as follows.

The video content is divided into chunks and each chunk

is encoded at several discrete bitrate values. The DASH

problem is to choose the bitrate level for future chunks to

deliver the highest possible QoE; e.g., maximizing bitrate

while minimizing the likelihood of buffering and avoiding

too many bitrate switches. As recent efforts have pointed

out, this problem is challenging because the adaptation al-

gorithm has to be robust to network conditions as well as

interactions with lower-layer control loops [16].

Recognizing the growing importance of video QoE, sev-

eral proposals have emerged (e.g., [18, 18, 8, 17]). Despite

the proliferation of several algorithms, however, there ap-

pears to be a lack of clarity and consensus across these so-

lutions on several fronts; e.g., some argue for better band-

width estimation [25], while others suggest improving chunk

scheduling [18]. Some researchers even argue for avoid-

ing rate-based approaches that rely on throughput estimates

1In this paper, we use DASH to refer to the class of bitrate adapta-
tion algorithms rather than the specific standard [7].

1

from previous chunk downloads and make the case for purely

buffer-occupancy based algorithms [17].

This paper is an attempt to bring rigor to this problem

space. To this end, we formulate the DASH problem through

the “lens” of model predictive control from the domain of

control theory. This abstraction provides a general frame-

work to objectively compare different classes of algorithms

and analyze their sensitivity to operating conditions rather

than evaluate specific artifacts.

Using this framework, we present an initial attempt to

clarify some fundamental questions about the design space

of DASH algorithms:

• What is the objective function that these algorithms try

to optimize?

• Are rate-based algorithms fundamentally flawed or can

they be competitive w.r.t. buffer-based algorithms?

• Is there an optimal way to combine rate- and buffer-based

control approaches?

• How far away from the optimal solutions are pure rate-

based or pure buffer-based approaches?

• How sensitive are the algorithms to parameters such as

network variability, bitrate levels, and buffer size?

Our model-based results though preliminary are promis-

ing to shed light on this problem space. Our initial results

suggest that 1) buffer-based (BB) algorithms outperform rate-

based (RB) algorithms, however, by systematically combin-

ing buffer occupancy and bandwidth predictions, model pre-

dictive control (MPC) further drives the performance closer

to optimal; 2) the advantage of MPC over BB depends on

bandwidth prediction accuracy, in cases where future band-

widths are hard to predict, dropping bandwidth information

by adopting pure BB approach can in turn be beneficial; 3)

high bitrate variability and finer-grained bitrate levels will

increase the benefits of MPC/BB over pure RB algorithms.

We acknowledge several challenges and open questions

remain. First, we need to analyze the implementation com-

plexity of such optimal control algorithms and see if they can

be practically implemented in client-side players. Second,

we do not yet have a good understanding of the bandwidth

variability of video clients. Third, we have not fully explored

the sensitivity to the full spectrum of operating parameters.

Finally, we need to extend this framework to also consider

issues of fairness and efficiency when multiple players and

applications compete for shared resources.

2 Background and Motivation

We begin with a high-level overview of how HTTP-based

adaptive video streaming works, before describing the key

challenges and shortcomings of state-of-art solutions today.

Internet video technologies such as Microsoft Smooth-

Streaming [5], Apple’s HLS [22], and Adobe’s HDS [1] rely

on HTTP-based adaptive streaming. We refer to this class

of protocols as Dynamic Adaptive Streaming over HTTP

or DASH. In DASH systems, each video consists of mul-

tiple segments or “chunks” (corresponding to a few seconds

Figure 1: Abstract model of DASH algorithms

of play time) and each chunk is encoded at multiple dis-

crete bitrates. The chunks from different bitrate streams are

aligned so that the video player can switch to a different bi-

trate if necessary at a chunk boundary. This approach has

several pragmatic advantages over custom streaming proto-

cols such as Real-Time Messaging Protocol (RTMP). The

use of HTTP enables providers to seamlessly bypass mid-

dleboxes. Furthermore, it can use existing commodity CDN

servers without requiring custom modifications. Finally, by

making the server stateless, we can implement better load

balancing as well as fault tolerance mechanisms using mul-

tiple servers and CDNs [21, 20].

Figure 1 shows an abstract model of the adaptive video

player. The player uses some inputs (e.g., buffer occupancy

or estimates of the network bandwidth) in its decision logic

to choose the bitrate level for the next chunk to be down-

loaded. In making this decision, there are many (and poten-

tially conflicting) quality considerations a player must ac-

count for: minimizing rebuffering events where the play-

back buffer is empty and cannot render the video, deliver as

high a playback bitrate as possible within the bandwidth con-

straints, minimize startup delay so that the user does not quit

while waiting for the video to load, and keeping the play-

back as “smooth” as possible by avoiding frequent or large

bitrate jumps [14, 19].

To see why these objectives are conflicting, let us con-

sider two extreme solutions. A trivial solution to minimize

rebuffering and the startup delay would be to always pick

the smallest available bitrate, but it conflicts with the goal

of delivering high bitrate. Conversely, picking the highest

available bitrate may lead to many rebuffering events. Sim-

ilarly, the goal of minimizing rebuffering and maintaining

a smooth playback may also conflict if the optimal choice

w.r.t. buffering and high average bitrate is to switch rapidly.

Many measurement studies have shown the poor perfor-

mance of state-of-art video players with respect to these QoE

measures [10, 18, 16]. These studies show that these prob-

lems are not artifacts of specific players but manifest across

all state-of-art players such as SmoothStreaming [5], Net-

flix [4], Adobe OSMF [2], and Akamai HD [3]. For brevity

we do not reproduce these results here but refer interested

readers to prior work [10, 18, 16].

To alleviate these problems, there have been several recent

2

proposals in the research literature [25, 18, 9, 17]. At a high

level, these solutions can be roughly divided into two cate-

gories: (1) rate-based algorithms (e.g., [18]) and (2) buffer-

based algorithms (e.g., [17]). Video players with rate-based

methods essentially pick the highest possible bitrate based

on the estimated available bandwidth. However, as shown

in prior work bandwidth estimation on top of HTTP suf-

fers from significant biases [16], which leads to problems

with traditional rate-based approaches. Some solutions try to

work around these biases by either smoothing out through-

put estimates [25] or choosing better scheduling strategies [18].

On the other hand, recent work makes a case for buffer-

based algorithms [17]. Rather than using throughput esti-

mates, this class of algorithms uses buffer occupancy as the

feedback signal, and designs mechanisms to keep the buffer

occupancy at a desired level, essentially discarding all infor-

mation coming from the bandwidth estimation.

Despite the broad interest in this topic from academia and

industry, what is critically lacking today is a principled un-

derstanding of the performance of bitrate adaptation algo-

rithms on several dimensions. Each solution offers “point”

heuristics that work in specific environments. While each

approach seen in isolation has been shown to outperform

the commercial players, there is little effort to systematically

compare how different classes of algorithms stack up against

each other or which of these technical components are criti-

cal or how robust these algorithms are to different operating

regimes (e.g., bandwidth stability, buffer size, number of bi-

trate levels). Furthermore, many of these algorithms fail to

formally state what objective they seek to optimize making

it harder to conduct a meaningful comparison.

Our motivation in this work is to bring some clarity to this

space. Rather than design yet another point solution, we seek

to develop a general framework to reason about classes of

algorithms. To this end, we resort to control-theoretic tools

to formally define the control problem and optimization un-

derlying DASH systems as discussed in the next section.

3 Control-Theoretic Model

In this section, we develop a mathematical model of the

HTTP video streaming process and formally define the bi-

trate adaptation problem. This gives us a framework to com-

pare and evaluate existing algorithms, and it also serves as

the foundation for potential improvements.

3.1 The Video Streaming Model

We model a video as a set of consecutive video segments

or chunks, V = {1, 2, · · · ,K}, each of which contains L

seconds of video and encoded with different bitrates. Thus,

the total length of the video is K × L seconds. The video

player can choose to download video segment k with bitrate

Rk ∈ R, where R is the set of all available bitrate levels.

The amount of data in segment k is then L×Rk. The higher

bitrate is selected, the higher video quality is perceived by

the user. Let q(·) : R → R+ be the function which maps

selected bitrate Rk to video quality perceived by user q(Rk).
We assume q(·) to be increasing.

The video segments are downloaded into a playback buffer,

which contains downloaded but as yet unviewed video. Let

B(t) ∈ [0, Bmax] be the buffer occupancy at time t, i.e., the

play time of the video remained in the buffer. The buffer size

Bmax depends on the policy of the service provider, as well

as storage limitations.

At time tk, the video player starts to download segment

k. The downloading time depends on the selected bitrate

Rk as well as average download speed Ck . At time tk+1,

when segment k is completely downloaded, the video player

immediately starts to download the next segment k + 1. If

we denote by Ct the bandwidth at time t, then we have:

tk+1 = tk +
LRk

Ck

(1)

Ck =
1

tk+1 − tk

∫ tk+1

tk

Ct dt. (2)

The buffer occupancy evolves while the video is being

downloaded and played. The buffer occupancy increases by

L seconds after segment k is downloaded. Meanwhile, af-

ter the start-up phase, the buffer occupancy decreases as the

user watches the video. The buffer dynamics can then be

formulated as:

Bk+1 =

(

Bk −
LRk

Ck

)

+

+ L (3)

Here, Bk = B(tk) and (x)+ = max{x, 0}. Note that if

Bk < LRk

Ck

, the buffer becomes empty while the video player

is still downloading segment k, leading to rebuffering events.

3.2 Goal of Bitrate Adaptation: Maximize QoE

The ultimate goal of bitrate adaptation is to improve the QoE

of the users, so as to achieve higher long-term user engage-

ment [14]. While the definition of QoE may differ across

users, the key elements of QoE are the following:

1. Average Video Quality : 1

K

∑K

k=1
q(Rk);

2. Average QualityVariations: 1

K

∑K−1

k=1
|q(Rk+1)−q(Rk)|;

3. Total Rebuffer Time:
∑K

k=1

(

LRk

Ck

−Bk

)

+

,

or Number of Rebufferings:
∑K

k=1
1

(

LRk

Ck

> Bk

)

.

For brevity, we assume a fixed startup latency. However, the

model can be extended to incorporate the startup delay into

the objective function as well.

As users may have different preferences on which of three

components is more important to them we define the QoE

of video segment 1 through K by a weighted sum of the

aforementioned components:

QoEK
1 =

K
∑

k=1

q(Rk)− λ

K−1
∑

k=1

|q(Rk+1)− q(Rk)|

− µ

K
∑

k=1

(

LRk

Ck

−Bk

)

+

(4)

3

Here λ, µ are positive weighing parameters corresponding to

video quality variations and rebuffering time, respectively.

A relatively small λ indicates that the user is not particularly

concerned about video quality variability; the large λ is, the

more effort is made to achieve smoother changes of bitrates.

A large µ, relatively to the other parameters, indicates that a

user is deeply concerned about rebuffering. While not com-

prehensive, this definition of QoE 1) allows customization

so it can easily take into account user’s preference, 2) can

be extended as needed to incorporate other factors, such as

start-up time [14].

We are now ready to formulate the problem of bitrate

adaptation for QoE maximization in the following way:

max
R1,··· ,RK

QoEK
1

s.t. tk+1 = tk +
LRk

Ck

,

Ck =
1

tk+1 − tk

∫ tk+1

tk

Ct dt, (5)

Bk+1 =

(

Bk −
LRk

Ck

)

+

+ L,

Rk ∈ R, Bk ∈ [0, Bmax],

∀k = 1, · · · ,K.

We denote problem (5) as QoE MAXK
1 . The bandwidth

trace Ct, t ∈ [t1, tK+1] serves as input to the problem. Out-

puts ofQoE MAXK
1 are bitrate decisionsR1, · · · , RK , along

with corresponding downloading time t1, · · · , tK and buffer

occupancy B1, · · · , BK .

3.3 Classes of Algorithms

In this section we wish to characterize problem (5) and de-

scribe existing bitrate adaptation algorithms within this frame-

work to provide better insights on how they relate to one an-

other and allow easier comparison.

Problem (5) is a finite-horizon stochastic optimal control

problem. The source of randomness is the bandwidth Ct:

At time tk when the video player chooses bitrate Rk, only

the past bandwidth {Ct, t ≤ tk} is available while the future

one {Ct, t > tk} is not known with certainty, as it varies

randomly.

However a bandwidth predictor can be used to obtain pre-

dictions defined as {Ĉt, t > tk}. Based on such predic-

tion and on buffer occupancy information (which is instead

known precisely), the bitrate controller selects bitrate of the

next segment k:

Rk = f
(

Bk, {Ĉt, t > tk}
)

. (6)

While the choice of a bandwidth predictor can influence

the overall QoE, in this study we solely focus on bitrate

adaptation algorithms, and regard bandwidth predictors as

given and characterized by their prediction error. Namely,

we focus on the design of f(·) and on the effect of the pre-

diction error on the performance of the compared control

algorithms.

Different bitrate adaptation algorithms essentially adopt

different functions f(·). Two main categories of algorithms

appear in the literature: rate-based (RB) and buffer-based

(BB) algorithms.

Video players with RB strategies essentially choose bi-

trate only based on bandwidth information, i.e.,

Rk = f
(

{Ĉt, t > tk}
)

. (7)

For example, a typical RB strategy is to choose the maxi-

mum possible bitrate below the predicted bandwidth.

On the other hand, BB strategies advocate decision mak-

ing based merely on buffer occupancy, namely:

Rk = f (Bk) , (8)

while regarding bandwidth variations as unmodeled distur-

bances. For example, Huang et al. illustrate one roadmap

for designing BB algorithms [17].

Note, however, that both algorithms are discarding pos-

sibly useful information, and consequently are in principle

suboptimal. Ideally, we want to use both buffer occupancy

and bandwidth prediction as shown in (6), to enable a broader

design space of bitrate adaptation algorithms. Specifically,

in this paper we propose to use model predictive control

(MPC) [13], also known as receding horizon control or dy-

namic optimization algorithms to explore this design space.

MPC algorithms are widely used to solve similar problems

in different domains, ranging from industrial control to nav-

igation. In our context, MPC algorithms essentially choose

bitrate Rk by looking h steps ahead, and solve QoE max-

imization problem QoE MAX k+h
k with bandwidth predic-

tions {Ĉt, t ∈ [tk, tk+h]}. The first bitrate Rk is applied

by using feedback information and the optimization process

is iterated at each step k. The main advantage of MPC is

that it incorporates the bandwidth predictions, buffer occu-

pancy and buffer dynamics into the bitrate adaptation pro-

cess, making use of the available information to maximize

QoE in a computationally efficient manner.

3.4 Performance Metric: Normalized QoE

We define a normalized QoE metric to compare the per-

formance of algorithms to the theoretical optimum, which

could be achieved if future bandwidth is known.

For a given bandwidth trace {Ct, t ∈ [t1, tK+1]}, the of-

fline optimal QoE, denoted by QoE(OPT), is the maximum

QoE that can be achieved with perfect knowledge of future

bandwidth over the entire time horizon. Technically, it is

calculated by solving problem QoE MAXK
1 . While the as-

sumption of knowing the entire future is not true in reality,

the offline solution provides a theoretical upper bound for all

algorithms for a particular bandwidth trace.

On the other hand, online QoE with bitrate selection algo-

rithm A is calculated under the assumption that at time tk,

the bitrate controller only knows the past bandwidth {Ct, t ∈
[t1, tk]}, based on which it selects Rk. We denote the online

QoE achieved by algorithm A by QoE(A).

4

Because offline optimal solution assumes perfect knowl-

edge about future, for any algorithms, the online QoE is

always less than the offline optimal QoE. In other words,

QoE(OPT) is an upper bound of online QoE achieved by

any algorithms. To this end, we define normalized QoE of A

(n-QoE(A)) as the performance metric for an algorithm A:

n-QoE(A) =
QoE(A)

QoE(OPT)
(9)

The normalized QoE of a particular algorithm varies with

different bandwidth trace cases. Based on this observation,

we will, in the following section, compare different algo-

rithms by 1) cdf of normalized QoE, 2) average normalized

QoE over all bandwidth trace cases.

4 Preliminary Results

Simulation framework: We evaluate different algorithms

using a custom simulation framework. The simulation takes

as input a bandwidth timeseries and models the video down-

loading and playback process and the buffer dynamics. At

time tk when the bitrate of segment k is needed, the simula-

tion calls the bitrate controller embedded with the RB/BB/MPC

algorithms to get Rk. Given the lack of recent measure-

ments that systematically study bandwidth stability, we use

a simplistic synthetic bandwidth trace generator where the

bandwidth is based on some hidden state St ∈ S capturing

number of users sharing a bottleneck link. The actual band-

width Ct follows a Gaussian distribution with mean m(St)
and variance σ2(St), which both depend on the hidden state

St. We vary both how the state changes as well as the m(·),
σ(·) to generate many synthetic traces.

We assume the video length is 5 minutes, consisting of

150 2s chunks. As a baseline, we assume the video is en-

coded in the following bitrate levels: R = {400Kbps, 750Kbps,

1000Kbps, 2500Kbps, 4500Kbps} based on public data from

YouTube [6]. We set the buffer size to Bmax = 30s. We

specify QoE by setting λ = 1, µ = 3000. We assume that

the video starts to play at t = 10s, which normalizes the

start-up delay for all algorithms.

Algorithms: Ideally, we want to compare the optimal RB,

BB and MPC algorithms. However, determining the opti-

mal algorithm within each class is difficult as it involves op-

timizing over an infinite-dimensional functional space. To

this end, we choose a widely adopted function form for each

class of algorithms from prior work, and optimize the free

parameters by empirical simulations based on randomly gen-

erated bandwidth traces. Specifically, for RB, we pick the

maximum available bitrate below p times predicted band-

width, and calculate the best p through offline simulations.

Similarly, for BB, we employ the function suggested by Huang

et al [17]. Here Rk is chosen to be the maximum available

bitrate below rk, where rk is defined :

rk =

Rmin Bk < r

Rmin + Bk−r
c

(Rmax −Rmin) r ≤ Bk ≤ r + c

Rmax Bk > r + c

0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

Normalized QoE

C
D

F

MPC
Buffer-Based
Rate-Based

Figure 2: Cdf of normalized QoE

with r and c as free parameters. For MPC algorithms, we set

the look-ahead horizon h as 5 segments as a baseline.

For RB and MPC, we assume the bandwidth predictions

are true bandwidth plus zero-mean Gaussian noise with stan-

dard deviation σerr=10% of actual bandwidth as baseline,

and test algorithms with different prediction error levels.

Finally, we compute the offline optimal solution with per-

fect knowledge of the bandwidth trace. To make it tractable

to compute this offline optimal, we assume it can pick bi-

trates from a continuous range [400Kbps, 4500Kbps].

4.1 Comparison of Algorithms

Baseline results: Figure 2 shows the CDF of normalized

QoE of the three algorithms over 100 simulation runs with

the baseline setup. There are three main observations. First,

this result confirms the hypothesis from prior work that BB

is better than RB. Second, it also suggests that there is still

room for improvement for BB as there is a 5% gap w.r.t.

MPC. Finally, we observe that MPC is quite close to the

optimal achievable QoE with the median value being 94%

of optimal. Next, we evaluate sensitivity of these results to

key parameters such as prediction accuracy, QoE weights,

and the look-ahead horizon.

Impact of prediction error: Figure 3a shows how the band-

width prediction errors influence the performance of bitrate

adaptation algorithms. As expected BB is unaffected as it

does not use any bandwidth information. When bandwidth

predictions are accurate, MPC has larger advantage over BB

algorithms. As prediction error grows beyond 25%, MPC

can be even worse than BB. This suggests that if the actual

prediction error is very large, then the video player should

drop RB or MPC and use pure BB algorithms. One natural

question for future work is to determine this tolerance level

at which the control should shift to BB mode.

Impact of look-ahead horizon: Figure 3b answers the ques-

tion of how far we should look ahead in MPC to achieve best

performance. As the look-ahead horizon increases, more in-

formation of future bandwidth is taken into consideration,

leading to increased MPC performance. However, since pre-

diction accuracy reduces as we look farther into the future,

the performance of MPC can drop if the horizon is too large.

Impact of QoE weights: We also studied how the QoE pa-

rameters λ and µ influence the performances of the algo-

rithms (not shown). At a high level, we find that the normal-

ized QoE of MPC algorithm remains much more stable than

5

0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Prediction Error

n-
Q

oE

MPC
BB
RB

(a) Prediction error

2 3 4 5 6 7 8 9
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Look-ahead Horizon

n-
Q

oE

MPC, Error = 0.1
MPC, Error = 0.15
MPC, Error = 0.2

(b) Look-ahead horizon

Figure 3: Performance of MPC vs. different configura-

tion factors

200 400 600 800 1000
0.75

0.8

0.85

0.9

0.95

1

Bandwidth Variability

n-
Q

oE

MPC
BB
RB

(a) Bandwidth variability

4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Bitrate Levels

n-
Q

oE

MPC
BB
RB

(b) Bitrate levels

Figure 4: Sensitivity to operating parameters

RB and BB as λ and µ changes. In particular, as we increase

the weight on stability (i.e., as λ increases), the advantage of

MPC over BB increases and BB over RB also increases. In

terms of µ, both MPC and BB achieves near-zero rebuffer-

ing, their performance is unaffected whereas RB’s optimal-

ity suffers significantly when we weigh rebuffering more.

4.2 Sensitivity to Operating Conditions

Figure 4a shows the sensitivity to bandwidth variability. While

the performances of MPC and BB remain stable, RB algo-

rithms suffer greatly from bandwidth variations. Because

RB approaches try to closely track bandwidth changes, they

incur large bitrate variations as well as rebuffer time as band-

width becomes more variable.

Finally, Figure 4b shows how number of bitrate levels

influences the algorithms. As video players with BB and

MPC can select from a finer-grained set of bitrate levels, they

achieve better and better performance. On the other hand,

the performance of RB first grows with number of bitrate

levels. However, when there are too many bitrate levels, the

performance drops because this allows RB to change bitrate

more frequently, leading to increased bitrate instability.

5 Discussion

Essentially, all models are wrong, but some are

useful. [12]

While our work provides a systematic method to objec-

tively evaluate different classes of DASH that was critically

lacking today, we acknowledge several modeling limitations

and open questions for future work.

Full-spectrum sensitivity analysis: Even though we study

a wide range of parameters, we acknowledge that this is still

not comprehensive. For instance, we also need to analyze

how other operating parameters such as buffer size, startup

delay and startup bitrate impact our findings.

Bandwidth estimation and interaction with TCP: We cur-

rently assume a bandwidth estimator is given and character-

ized by estimation error. In practice, a real bandwidth es-

timator must be developed in order for MPC to be applied.

Furthermore, our current model assumes the prediction error

to be an independent process. However, as observed empiri-

cally in prior work [16], the error in predicting the available

bandwidth might depend on the recent history of the bitrates

of past segments due to the interaction between TCP and

HTTP. An open question is to systematically characterize

this relationship and how this coupling influences the design

of bitrate adaptation algorithm.

Multi-player interactions: This study only modeled the

QoE maximization problem for single player, and thus re-

gards the bandwidth variations as fixed externalities. How-

ever, in the case of multiple video players competing for a

bottleneck link, fairness among players becomes an objec-

tive in addition to single player QoE maximization, which is

not yet formally defined. Given that there is a diversity of

video players and providers, an interesting direction for fu-

ture work is to study pairwise interactions across RB-, BB-,

and MPC-based players. Similarly, another open question

is whether we can suggest guidelines analogous to TCP-

friendliness for MPC players.

Computational complexity: While RB and BB need rel-

atively minor computations, the main limitation of MPC is

its high computational complexity because it involves solv-

ing an optimization problem at each step. For video players

with less computing power, such as mobile phone apps, we

need to develop lightweight algorithms. Here, we believe

that fast MPC algorithms are a promising alternative [26].

Characterizing bandwidth stability: While there is a rich

history of Internet measurement to understand various prop-

erties of Internet paths [23, 28, 27], they do not specifi-

cally target video workloads. There are two key distinguish-

ing characteristics of video that are relevant here. First, the

key metric that impacts the control logic is not the available

bandwidth or the capacity, but the stability of the bandwidth.

Second, the specific target servers are not general end-hosts

but CDN servers hosting videos. In fact, there has been sur-

prisingly little work on understanding bandwidth stability—

the three closest related works we are aware of focusing on

the stability of Internet path properties focus largely on non-

video workloads and are quite dated [15, 27, 11]. An inter-

esting direction for future work is to develop a measurement-

driven understanding of available bandwidth stability and

predictability of clients to video servers to inform the design

of the above control-theoretic models.

Acknowledgements

This work was supported in part by the National Science

Foundation under Grant ECCS 0925964.

6

6 References

[1] Adobe http dynamic streaming.
www.adobe.com/products/hds-dynamic-streaming.html.

[2] Adobe osmf player. http://www.osmf.org.
[3] Akamai hd network. www.akamai.com/hdnetwork.
[4] Netflix. www.netflix.com/.
[5] Smoothstreaming protocol.

http://go.microsoft.com/?linkid=9682896.
[6] Youtube bitrate levels. https:

//support.google.com/youtube/answer/2853702?hl=en.
[7] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the

Internet. IEEE Multimedia, 2011.
[8] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What Happens

when HTTP Adaptive Streaming Players Compete for Bandwidth? In Proc.

NOSSDAV, 2012.
[9] S. Akhshabi, L. Ananthakrishnan, A. Begen, and C. Dovrolis. Server-Based

Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players. In Proc.

ACM SIGMM NOSSDAV, 2013.
[10] S. Akhshabi, A. Begen, and C. Dovrolis. An Experimental Evaluation of Rate

Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. MMSys,
2011.

[11] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. Analyzing Stability in
WideArea Network Performance. In Proc. ACM SIGMETRICS, 1997.

[12] G. E. P. Box and N. R. Draper. Empirical Model-Building and Response
Surfaces, p. 424, Wiley. ISBN 0471810339.

[13] E. F. Camacho and C. B. Alba. Model predictive control. Springer, 2013.
[14] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and

H. Zhang. Understanding the impact of video quality on user engagement. In
Proc. SIGCOMM, 2011.

[15] Q. He, C. Dovrolis, and M. Ammar. On the predictability of large transfer TCP
throughput. In Proc. ACM SIGCOMM, 2005.

[16] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC,
2012.

[17] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video
Streaming Service. In Proc. ACM SIGCOMM, 2014.

[18] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in
HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. CoNext, 2012.

[19] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer
Behavior: Inferring Causality using Quasi-Experimental Designs. In Proc.

IMC, 2012.
[20] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and

Performance for Content Multihoming. In Proc. SIGCOMM, 2012.
[21] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A

Case for a Coordinated Internet Video Control Plane. In SIGCOMM, 2012.
[22] R. Pantos. Http live streaming. 2011.
[23] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM ToN,

5(5):601–615, 1997.
[24] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future

internet. In Proc. HotNets, 2010.
[25] G. Tian and Y. Li. Towards Agile and Smooth Video Adaption in Dynamic

HTTP Streaming . In Proc. CoNext, 2012.
[26] Y. Wang and S. Boyd. Fast model predictive control using online optimization.

Control Systems Technology, IEEE Transactions on, 18(2):267–278, 2010.
[27] Y. Zhang and N. Duffield. On the constancy of Internet path properties. In IMW,

2001.
[28] Y. Zhang, V. Paxson, S. Shenker, and L. Breslau. The stationarity of Internet

path properties: Routing, loss, and throughput. Technical report, ACIRI
Technical report, 2000.

7

