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ABSTRACT
We envision a real-time network traffic map for the Internet,
where each network link is annotated with its capacity and
its current utilization, with an interface that networked ap-
plications can query to inform their control decisions. While
this goal is simple to state, it has been out of our reach due
to concerns over measurement overhead and coverage. Our
insight is that the rise of Internet video and the availability of
measurements from video players present an unprecedented
opportunity to address these issues. We outline a prelimi-
nary roadmap to build on this opportunity to realize a global
traffic map.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
systems—Distributed applications

General Terms
Performance, Measurement

1 Introduction
Many Internet applications can benefit from a service that
provides a real-time traffic map of the Internet [8, 19]. For
instance, CDNs could improve server selection and peer-to-
peer applications can choose peers more intelligently. Sim-
ilarly, websites can be optimized to customize content for
their clients based on the network state. Such a service may
also be useful for network diagnosis and troubleshooting. In
the absence of such a service, each application today deploys
custom home-grown solutions or operate “in the dark” via
trial-and-error solutions.

While this high-level vision of a global traffic map is not
new, this goal has proved remarkably elusive. The main
challenge that prior efforts have faced can be captured along
three key dimensions:
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• Coverage: Obtaining a global view of the network neces-
sarily entails deploying many millions of vantage points
running some measurement logic to obtain path-level met-
rics of interest. While “crowdsourcing” such measure-
ments via P2P applications is promising [7, 4, 21], even
the largest deployed efforts have limited visibility.
• Overhead: While reachability or latency are easy to mea-

sure, metrics such as available bandwidth or capacity
or the location of bottlenecks have traditionally required
algorithms with non-trivial overhead (e.g., few 100s of
KBs per run) per path [24].
• Real-time views: To reflect current conditions, this traf-

fic map also needs to be updated in near real-time. This
raises further concerns in conjunction with the above con-
cerns; i.e., we need millions of vantage points continu-
ously running non-trivial measurements all the time.

Thus, this vision of a global traffic map has been out of
our reach. In this context, we observe that the growing vol-
ume of Internet video traffic [1] and the ability to instrument
video players to measure performance of video sessions in
near real-time [17, 11] offer an unprecedented opportunity to
address the above challenges. Specifically, we have (perhaps
for the first time) the capability to obtain real-time measure-
ments of the network state from millions of vantage points
without any additional probing overhead.

This paper presents an preliminary roadmap to leverage
this opportunity of using video traffic as the “carrier signal”
to generate a real-time traffic map. We envision one or more
providers in the video ecosystem who can offer such a ser-
vice. For instance, many content providers (e.g., Google
or Netflix or PPLive), CDNs (e.g., Akamai, ChinaCache),
and third-party analytics providers (e.g., Conviva, Ooyala)
already collect such measurements and are in a good posi-
tion to build (and monetize) this service.

Specifically, our traffic map service annotates each link
in the network1 with its capacity and its current utilization.
A networked application can query the service to obtain the
state of links pertinent to its users’ performance. Even though

1The granularity of a link depends on the topology view; e.g.,
Layer 2 vs Layer 3, router vs. PoP. We currently use a PoP-level
view as it offers more robust topology measurements. Our vision
and algorithms, however, are quite general.
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Figure 1: Overview of the ICTM service

video measurements are an enabler for our vision, there are
two key challenges that remain. First, video measurements
provide coarse-grained estimates of end-to-end throughput
and do not directly provide the available bandwidth or uti-
lization per-link. Second, we do not know the background
traffic (i.e., other unobserved video and non-video traffic).

We present an initial attempt to address these challenges
by casting them as network tomography problems [6]. For
capacity inference, we leverage the history of measurements
to compensate for the lack of a fine-grained view. Further-
more, we can use side information such as the ratio of mea-
surement to background traffic; e.g., Netflix is typically 20-
30% of peak traffic in US [2]. We can also exploit typical
gravity-based traffic structures [26]. Third, to compute the
current utilization of links we infer the background traffic on
each link by approximating the traffic flows in the network
as a fair sharing solution. Then, we use a maximum likeli-
hood estimate of the background flows that best explains our
current observations.

We evaluate our capacity and utilization inference algo-
rithms on realistic network topologies with synthetic back-
ground and measurement workloads. Our initial results are
promising. Even with our initial algorithms we are able to
predict the capacity with 80% accuracy when the measure-
ment traffic is roughly 20-30% of the total traffic. Further-
more, we observe a positive influence of having more data,
wherein adding more historical measurements can substan-
tially boost the capacity inference. We also observe that our
background inference algorithm is very accurate.

While these early results are promising, we acknowledge
several limitations that need to be addressed before our vi-
sion becomes practical. First, we need to understand how
critical the different “side” information factors are and how
accurate these need to be. Second, our current background
inference is slow as it relies on a simple space search algo-
rithm and we need faster algorithms to make ICTM a near
real-time service. Finally, we need to validate our ideas us-
ing real data feeds from popular video providers.

2 ICTM Overview
Our vision is an ICTM (Internet Capacity and Traffic Map)
service shown in Figure 1 that applications can query using
a public API to obtain a near real-time estimate of different
aspects of the network status. Applications may request the

link capacity, the traffic and utilization of the link, and the
available bandwidth between pairs of endpoints.

The figure also shows the key inputs into the system. The
first input is a set of video-based measurement feeds, where
each video client reports throughput and total number of
bytes downloaded in an epoch from a specific video server.
We assume access to a route measurement platform such as
iPlane [19].2 ICTM does not need any additional active mea-
surements beyond these data feeds. We use the video mea-
surements and the routing data to annotate each PoP-level
link with its link capacity and current utilization.

Many video providers, CDNs, and third-party providers
already collect large volumes of such video measurements
for their day-to-day operations [11, 17], and this is not a sig-
nificant additional burden. The coverage of the ICTM ser-
vice operated by different parties may vary; e.g., CDNs have
the view of all traffic from its own servers, while a content
provider can offer views across multiple CDNs. As such our
focus in this paper is on establishing the viability of such an
ICTM service irrespective of the choice of the provider and
economic/monetization issues.

2.1 Feasibility Study
The key advantage of Internet video is the unprecedented
coverage, both across space and time. Here, we present
measurements on the coverage observed by two indepen-
dent providers with different vantage points: a third-party
video analytics provider serving clients in the US (TPA) and
a large video provider in mainland China (ChinaVid).3 TPA
runs a measurement plug-in that runs on many affiliate con-
tent providers, while ChinaVid routinely collects throughput
and video quality measurements of its clients.

ISP/AS coverage: First, we analyze the temporal coverage
in terms of the client-side AS and ISP.4 Note that a single
ISP such as AT&T or Comcast may span multiple AS num-
bers. For example, for AS (similarly for ISP), we divide the
one-day period into 1, 10, and 60 minute epochs. Then, for
each AS (ISP) that appears at least once in the dataset, we
calculate the fraction of epochs in which the AS (ISP) has
at least 50 near-concurrent sessions. We show inverse CDF
of the coverage in Figure 2. Across both datasets, ≥ 50%
of the ISPs can be measured with very fine time granular-
ity (1 minute), while a substantial fraction of ASes (≥ 20%)
can be measured with very fine time granularity (1 minute)
as well. We also see that there is a significant increase us-
ing 10-minute vs. 1-hour window, which shows an explicit
trade-off between coverage and accuracy.

Client/server-side coverage: Next, we examine the client/server-
side coverage in terms of client/server-side /24 IP prefixes.
2The design of this route measurement platform and how it handles
issues like router aliasing etc., are outside the scope of this paper.
3We do not reveal the names for reasons of anonymity.
4Unfortunately, we do not have AS-path measurements concurrent
with the video players and thus we cannot measure coverage for
transit providers.
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(d) ISP ChinaVid
Figure 2: Inverse CDF of ISP/AS coverage.
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(a) Server IP prefix TPA
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(d) Client IP prefix ChinaVid
Figure 3: Inverse CDF of server/client IP prefix coverage.

Similar to Figure 2, Figure 3 shows the inverse CDF of frac-
tion of epochs in which each client or server IP prefix (/24)
has sufficient samples. We see that ≥ 40% of US server pre-
fixes, ≥ 20% of China server IP prefixes, and ≥ 20% of US
client IP prefix have enough sessions in every 1-minute win-
dows. (The coverage of China client IP prefixes is low due to
the extremely skewed distribution of the IP addresses within
each IP prefix). Again we see a significant increase by using
larger windows.

2.2 Problem Definition
Next, we formally define the inference problem that the ICTM
service needs to solve.

We divide time into discrete epochs with a size |e| on
the order of tens of minutes (as suggested by our coverage
measurements). The subscript e refers to a specific discrete
epoch in which our measurements are made.5 In each epoch,
we have client-side video measurements between different
source and destination pairs. Each source and destination
are mapped to a corresponding “node” in the network topol-
ogy map; e.g., an ingress/egress PoP. Let Mm,s,d,e denote a
measurement between source s and destination d in epoch
e . (There may be many measurements during a given epoch
for the same src-dst pair.) Each measurement m has two key
attributes: Bm,s,d,e denotes the total bytes downloaded and
Tm,s,d,e denotes the average throughput during this epoch.
Let Ps,d,e be the route used for traffic between s and d dur-
ing the epoch e (obtained from the route measurement en-
gine). Each path consists of multiple links; l ∈ P denotes
that this link lies on this path.

There are two quantities we want to infer: (1) the capac-
ity of each link Cl and (2) the background load of each link
in a given epoch bg l,e . Formally, the ICTM problem is to
estimate the values of the Cl and bg l,e given the Mm,s,d,e

5We expect this time granularity is sufficient for many application-
layer control decisions [18].

and Ps,d,e as inputs. Note that while the capacity does not
change across time on the scale of days or weeks, the back-
ground load is much more variable. At a high-level, this is a
tomographic inference problem, where we are inferring hid-
den variables based on some observed measurements. The
key difference is that classical network tomography focuses
on delay, loss etc., whereas our focus is on capacity and link
utilization.

There are other ways to formulate an ICTM service that
we do not consider here. For example, the service could
report the available bandwidth for a given source-destination
IP pair, without giving the link capacity or link utilization.
However, we choose a more extreme formulation to infer
per link capacity and utilization, because we can reconstruct
these other end-to-end measures with per-link estimates.

2.3 Challenges
Coarse measurement: With video-based measurements,
the measured bandwidth between two hosts is more coarse-
grained, because the video players run at the application-
layer within “sandboxes” that do not have access to packet-
level statistics. Thus, the throughput will be measured over
a coarser time duration than packet dispersion techniques
(e.g., Spruce [24], IGI [15]). Consequently, unlike these ac-
tive measurement approaches, we cannot infer the amount of
hidden background traffic.
Scale and responsiveness: Typical active measurement plat-
forms handle updates from a few (hundreds of) vantage points.
In contrast, ICTM has to handle measurements from mil-
lions of video viewers, maintain the most up-to-date infor-
mation of paths and links, and process a large number of
queries in near real-time.

3 Link Capacity Inference
In this section, we sketch an initial algorithm for inferring
the link capacities Cl given historical measurements Mm,s,d,e
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Minimize :
∑
l

Cost l (1)

∀l , e :
∑

s,d,l∈Ps,d

Bm,s,d,e

|e|
+

∑
s,d,l∈Ps,d

bgs,d,e ≤ Cl (2)

∀l : Cl ≥ Tm,s,d,e , if l ∈ Ps,d (3)

∀l : Cl =
∑

c∈CapVals

(
dl,c × Capc

)
(4)

∀l : Cost l =
∑

c∈CapVals

(
dl,c × Costc

)
(5)

∀l :
∑

c∈CapVals

dl,c = 1 (6)

∀l , c : dl,c ∈ {0, 1} (7)

Figure 4: Initial and underconstrained ILP formulation
for inferring capacities

and the pathsPs,d,e over a number of epochs. We begin with
simple solutions and progressively build insights toward the
final solution.

A simple strawman solution is to map each measurement
to its path and set the capacity to be the maximum through-
put observed over the measurement history. That is,

∀l : Cl = max
e,s,d, s.t. l∈Ps,d,e

Tm,s,d,e

While easy to compute, there are several obvious prob-
lems with this strawman. First, it does not account for the
background traffic and may significantly underestimate link
capacities. Second, by viewing each measurement indepen-
dently, it fails to utilize the confluence of multiple flows on a
link within the same epoch. Finally, it ignores other practical
aspects; e.g., links are likely drawn from some discrete set
of values (e.g., 1Gbps or 10Gbps) and links are provisioned
with some expected demand and cost budgets.

We can address these by introducing other hidden vari-
ables capturing the rate of background traffic between each
src-dst pair in the historical epochs: bgs,d,e and solving the
optimization problem shown in Figure 4. This optimization
formulation makes a few key improvements over the above
naive solution. First, Eq (2) considers the total bytes across
all measurement flows on a link during a given epoch. (The
|e| factor is to normalize the bytes by the epoch duration
to make it a rate measure.) Second, it also incorporates the
new background variables. Third, it captures the observation
that capacities have to be drawn from a discrete set of val-
ues CapVals in Eq (4) by introducing binary variables dl,c
indicating whether the link l has the discrete capacity Capc .
(Note that at most one of these indicator variables can be
1.) Finally, it models capacity inference as a cost minimiza-
tion problem based on the intuition that operators have likely
chosen a low cost provisioning solution in expectation of ob-
served demands.

However, this problem is underconstrained similar to many
other network tomography formulations (e.g., [26]). That is,
these equations do not impose sufficient structure on the ca-
pacity values. To address this issue, network tomography

approaches typically rely on out-of-band (side) information
to impose more structure. In our context, we identify some
natural candidates to serve this role:
• Gravity models: The traffic volumes between a s, d pair

is roughly proportional to the products of the population
(or total traffic volume) originating in s and d [26].
• Measurement vs. Background ratio: We may addition-

ally know that our measurement traffic is roughly β of
the total traffic; e.g., reports suggest YouTube is ≈ 18%
and Netflix is ≈30% of peak traffic [2].
• Overprovisioning: Finally, we can use knowledge that

the network core links are typically overprovisioned to
run at γ=30-40% link utilization on average.

Thus, we update our optimization function to incorporate
this side information and attempt to minimize the deviation
of our estimates from these additional factors:6∑
l

Cost l+ω1×GravDev+ω2×BGRatioDev+ω3×OverProvDev

Specifically, the new terms in the objective to capture these
deviations are defined as follows:

BGRatioDev = (totmeas − β × totbg)2

OverProvDev =
∑
l

∑
e

(
totmeas l,e + totbg l,e − γ × Cl × |e|

)2
GravDev =

∑
s,d,e

(
bgs,d,e × |e| − Gs,d × totbge

)2
Here, totmeas and totbg denote the total volume of the

measurement and (unobserved) background traffic over the
measurement period. Similarly totmeas l,e and totbg l,e de-
note the volume of measurement and background traffic on
link l for the epoch e . Gs,d represents the gravity coefficient,
where we expect the total volume between a given s, d to be
Gs,d × totbge , where totbge is the total background traffic
in the epoch.

We can solve this optimization problem using many his-
torical measurements to obtain the Cl values. This optimiza-
tion is, however, non-trivial as it has both discrete (binary)
variables and quadratic terms in the objective. We also need
suitable weights ω1-ω3 to determine the importance of the
different side information factors. As a simple starting point,
we solve a practical relaxation of this optimization where we
treat the dl,c as fractional values in the range [0, 1]. Then, we
simply “round up” the obtained capacity values to the near-
est higher value in CapVals . In Section 5 we show that even
this simplified solution can yield accurate results for capac-
ity inference. We plan to investigate exact optimizations as
the capacity inference is an offline step.

4 Estimating Current Utilization
In this section, we move to the second problem of inferring
the bg l,e for each l at a given e .
6The choice of adding these as constraints vs. terms in the objective
is somewhat arbitrary. We add them to the objective because we
may not know the exact values.
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Figure 5: An example for background traffic inference.
There are 5 flows from A to C and 2 flows from B to C,
and 2 of them in red are selected as measurement traffic.

At first glance, this might seem a subproblem we solved in
the previous step. However, there are two main differences.
First, while capacity inference can rely on historical mea-
surements, link utilization needs to be more real-time and
based on the current epoch e . Second, the side information
we used such as gravity model or the ratio of background-to-
measurement traffic are aggregate effects that only manifest
over long timescales but not per-epoch.

This suggests we need a different approach. Fortunately,
since we have already run the capacity inference step, we
can additionally use the Cl values. Thus, we reformulate
our goal to infer bg l,e given Mm,s,d,e , Ps,d,e , and Cl .

We make two simplifying assumptions here. First, we as-
sume that the background rate is relatively constant during
this epoch. Second, we assume that all traffic runs TCP or
TCP-friendly algorithms. If all flows are running TCP, then
they will saturate the network with a rate allocation that is
approximately close to a max-min fair allocation [20].

Building on these insights, we sketch the following infer-
ence algorithm. Consider one specific possible value of the
background load bgs,d,e for the current epoch. Now, given
this value, and the inferred capacities {Cl}, we can compute
what the remaining traffic could have achieved via network-
wide max-min fairness allocations. Let this predicted value
be TEst

s,d,e(bgs,d,e). Since we know the actual observed
values Bm,s,d,e and Tm,s,d,e , we can pick the “maximum
likelihood” estimate:

arg min
bgs,d,e

|TEst
s,d,e(bgs,d,e)− Ts,d,e |

We can use some suitable summary for Ts,d,e using the
Tm,s,d,e measurements. Depending on the choice, we might
get lower or upper bounds. For instance, if we pick the min
observed throughput for each s, d during this epoch e and
use that to estimate the background loads, we get a conser-
vative overestimate of the background traffic rates. We cur-
rently pick the median value in our experiments.

Figure 5 shows an illustrative example. With max-min
fair allocation, the throughput of each A-C flow is 1Mbps,
and the B-C flow is 5Mbps. Suppose our measurement set
consists of 1 A-C and 1 B-C flow. Then, we enumerate the
search space of the possible link utilizations. Consider one
of these points where the background traffic occupies 90% of
the capacity on both links. Then, it leaves 10% of the band-
width (that is 0.5Mbps on A−B and 1.5 Mbps on B − C)
for our measurement flows. According to max-min fair shar-
ing, these two flows should have throughputs of 0.5Mbps
and 1Mbps respectively, clearly deviating from the observa-
tion. However, when we consider setting background traf-
fic to occupy 80% of the bandwidth on A-B and 60% of

Figure 6: Topology used in simulation.

the bandwidth on B-C, the throughputs of the two measure-
ment flows generated by max-min fair share model match
the measurements. Therefore, we can infer the background
traffic occupies 5 ∗ 80% = 4Mbps on A-B and 15 ∗ 60% =
9Mbps on B-C.

There are two other issues here. First, there might be mul-
tiple values of the background loads bgs,d,e that generate the
same estimation error. In that case, we select the one which
best matches the side information of measurement vs. back-
ground ratio. Second, we need fast algorithms for solving
this search problem. We currently use a simple but expen-
sive greedy algorithm for searching the space.

5 Preliminary Results

Setup: Since we do not have public information on back-
ground loads or link capacities, we rely on simulations to
validate our algorithms. We implemented a flow-level sim-
ulator [23] that takes as input a traffic matrix, topology and
routing information, flow size and arrival patterns, link ca-
pacities, and determines the throughput of each flow.

For the following results, we used a PoP-level topology.
We generated synthetic traffic patterns where the traffic vol-
ume between a pair of PoPs is proportional to the product of
the city populations. We assume a Poisson arrival distribu-
tion with fixed flow sizes of 2 epochs. (This is not fundamen-
tal and was just for convenience to complete the simulation
model.) We choose the link capacities from a discrete set of
values {100Mbps, 1Gbps, 10Gbps}, with the expected uti-
lization around 80%. Figure 6 shows the ground truth topol-
ogy and link capacities.

We randomly selected some of the flows as measurement
traffic and use their observed throughput and byte counts as
the input to our algorithms. The key metric of interest is the
estimation accuracy for each link. Since the capacities are
discrete values, we report the fraction of links for which the
inference is correct. For the background ratio, we compute
the accuracy metric as 1− |inference l−groundtruth l |

groundtruth l
and report

the network-wide average. We vary the number of epochs
and fraction of measured flows.

As a simplifying assumption, we use accurate estimates of
the side information values – the gravity vector Gs,d , over-
provisioning factor γ, and the background-to-measurement
traffic ratio β. We set the values of ω1 = ω2 = ω3 = 1 and
leave better choices of these weights for future work.

Capacity Inference: Figure 7 shows that the fraction of
links with perfect capacity inference improves from < 20%
when 10% of the traffic serves as measurements to > 80%
when the ratio increases to 30%. The result also shows the
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Figure 7: Accuracy of link capacity inference
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Figure 8: Accuracy of background traffic inference

improvement as we have more historical information by in-
creasing the number of measurement epochs. For instance,
keeping the measurement ratio fixed at 0.2 we only infer the
capacities accurately for 23% of the links with 5 epochs.
However, when we use 20 epochs of information the accu-
racy is significantly improved to about 60%.

Utilization inference: Figure 8 shows accuracy of esti-
mating the link utilization as the measurement traffic ratio
increases. We consider two cases with perfect capacity in-
ference and the actual capacity inferred using 20 epochs of
measurements. Similar to capacity inference, the accuracy
increases with more measurement traffic, e.g. the accuracy
is 60% when 30% of the traffic can be measured. One rea-
son for the poor performance when the measurement only
occupies 10% or 20% of the total traffic is that the inaccu-
racy of the link capacity inference impacts the background
inference (see Figure 7). With incorrect capacities as the in-
put, our background traffic inference also suffers. However,
if the capacity is precisely inferred, the accuracy of the back-
ground inference is ≥ 80% even if the measurement traffic
ratio is only 10%. This suggests that additional information
from ISPs (e.g., link capacities) can improve our inferences.

6 Related Work

Network Tomography: Network tomography [6] infers a
network’s characteristics using information derived from in-
direct data sources; e.g., to infer topology [13, 9], traffic ma-
trix [26], latency [25], and packet loss [10, 12, 22]. While
we are inspired by this line of research, we focus on different
and arguably more challenging inference tasks.

Crowdsourcing: Recent works rely on network-intensive

P2P applications running on end systems to estimate and in-
fer network performance [5, 7, 4, 3]. Our work follows in
this spirit, but uses video as the data source. Given current
trends, video has a much better coverage than that of P2P.
End-to-end tools: End-to-end tools such as Pathneck [14],
IGI/PTR [15], BRoute [16] are used to measure the network
bandwidth and locate the bottleneck link on the path. The
main disadvantages of these tools are the high overhead and
the need for dedicated vantage points.

7 Discussion and Limitations
Measurement biases: Because video clients use CDN servers,
there might be some selection bias toward picking local servers
leading to blind spots into edge links between clients or deep
into the network core. That said, this client-CDN segment is
arguably the “high impact” part of the network that carries
most traffic and ICTM naturally sheds light on this critical
segment of the global network.
Additional instrumentation and information: In this work
we took an explicit stance to rely on the existing measure-
ments made by video clients. This choice was pragmatic
as the browser or player-based sandbox limits the types of
measurements that can be run. One open question is what
additional measurements can boost our accuracy.
Other “carriers”: It is conceivable that other application-
level carriers (e.g., large web or ad providers [22]) could also
use our algorithms to create similar traffic maps. However,
we believe that video is uniquely positioned because it offers
a continuous view of bandwidth conditions as it is inherently
using persistent transfers, unlike pure web traffic.
Cross-provider collaboration: Our current work assumes
a single provider with access to video measurements. An
interesting direction for future work is to consider a semi-
federated approach where different video application providers
can collaboratively refine individual traffic maps to comple-
ment each other’s blind spots. Additionally, some ISPs may
provide some capacity estimates to help validate the infer-
ence results.
Sensitivity: There are several assumptions in our inference
mechanisms; e.g. gravity model, estimates on measured traf-
fic vs. background, and degree of over-provisioning. As fu-
ture work, we need to evaluate the sensitivity of the inference
to the accuracy of such side information to better understand
how critical they are to the ICTM’s success.
Real-world validation: Finally, the validation in this pa-
per was based on simulation with synthetic traffic patterns.
We are now collecting the real dataset of both the network
topology (by trace-route) and video-viewing with the help of
a leading Chinese video service provider. We will use these
real data to verify our approaches in the near future.
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