
Verifiable Network Function Outsourcing:
Requirements, Challenges, and Roadmap

Seyed Kaveh Fayazbakhsh?, Michael K Reiter†, Vyas Sekar?

?Stony Brook University, †UNC Chapel Hill

ABSTRACT
Network function outsourcing (NFO) enables enterprises and small
businesses to achieve the performance and security benefits offered
by middleboxes (e.g., firewall, IDS) without incurring high equip-
ment or operating costs that such functions entail. In order for this
vision to fully take root, however, we argue that NFO customers
must be able to verify that the service is operating as intended w.r.t.:
(1) functionality (e.g., did the packets traverse the desired sequence
of middlebox modules?); (2) performance (e.g., is the latency com-
parable to an “in-house” service?); and (3) accounting (e.g., are
the CPU/memory consumption being accounted for correctly?). In
this position paper, we formalize these requirements and present a
high-level roadmap to address the challenges involved.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management; D.4.6 [Operating Systems]:
Security and Protection—Verification

Keywords
Network function outsourcing (NFO); verification; middlebox

1. INTRODUCTION
Many recent efforts have argued for bringing the benefits that

virtualization and cloud computing offers—reduced capital costs,
reduced operating costs, and the ability to dynamically scale
services—to network deployments [5, 17, 26, 28]. This type of net-
work function outsourcing (or NFO for short) is especially relevant
in the context of expensive and compute-intensive middlebox func-
tions (e.g., firewalls, intrusion detection systems, and application-
level performance accelerators). The high-level vision here is that
third-party providers (these could be traditional cloud providers,
ISPs, or CDNs) can offer such in-the-cloud middlebox services.
(We will use the terms provider, NFO provider, and cloud inter-
changeably.)

Given the critical role that middlebox functions serve in meet-
ing performance, security, and policy compliance goals, middlebox
NFO will likely be a significant aspect under the broader vision of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMiddlebox’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright 2013 ACM 978-1-4503-2574-5/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535828.2535831.

network function virtualization (NFV) [9].1 Our focus in this work
is to address a fundamental concern surrounding customer expecta-
tions when they cede control over such functions to providers. At a
high level, customers will be more comfortable with adopting NFO
services if they can be assured that the services will be conceptually
comparable to running those services in-house and yet offer signif-
icant savings. We argue that addressing this concern is critical to
the adoption and eventual success of the NFO vision.

In this respect, we highlight three key correctness properties that
an NFO service must satisfy (Section 3):

• Functionality: We need to ensure that the remote middle-
box functions and the composition (i.e., service chaining)
of these functions work as intended. For instance, the cus-
tomer may want to verify that the web firewall or spam filter
did apply the intended set of signature rules on the incoming
packets, analogous to the case where these functions were
running on dedicated “boxes” inside the customer’s network
under her direct control.

• Performance: Since the middlebox functions may be on the
critical path of end-to-end applications, the customer needs
to be assured that cloud-based processing and cloud network-
ing effects do not induce unnecessary overheads w.r.t. pro-
cessing delay, network latency, or end-to-end throughput.

• Accounting: A significant driver for NFO is reduced capital
and operating expenses. Thus, the customer would naturally
like to ensure that the received bill is indeed commensurate
with the offered workload; e.g., she is not being charged for
spurious packets or compute resources.

Achieving these correctness properties is challenging on three
fronts. First, middlebox actions depend on packet contents and his-
tory of observed traffic—NFO customers may not have visibility
into such effects. Second, network-level effects may introduce non-
reproducible and unforeseen effects (e.g., packet reordering, tran-
sient congestion) that make it hard to reason about the correctness
properties. Finally, middleboxes involve complex (and proprietary)
software that may be difficult to verify.

In this paper, we highlight one possible roadmap of a vNFO (Ver-
ifiable NFO) architecture that seeks to address these challenges and
achieve the above correctness properties (Section 4). At a high
level, we leverage the hypervisor as a potential “root-of-trust” to
log low-level system events to provide a basis for verifying correct-
ness properties [7,18]. Doing so, naively, however, will lead to sig-
nificant performance and scalability overhead (e.g., logging every
packet) and also fall short of directly satisfying the correctness re-
quirements (e.g., due to the lack of visibility into middlebox state or
1We use NFO to scope the problem to the middlebox outsourcing
context rather than the broader NFV term that encompasses several
other deployment scenarios.

transformations). To address these concerns, we sketch a promis-
ing solution building on consistent system-wide sampling [13] and
additional tools to provide the necessary middlebox context [14].

In many ways, the correctness requirements we highlight and
the solution strategies for NFO have natural parallels in the cloud
computing and distributed systems literature (see Section 5). That
said, the proprietary and traffic-dependent nature of NFO services
and the network-specific effects these workloads entail make these
correctness properties conceptually and practically more relevant
than these other use-cases, and yet significantly more challenging
to verify. Our specific contribution here is in synthesizing these
ideas in the specific NFO context and in providing one candidate
roadmap for the future.

2. CHALLENGES WITH NFO
In this section, we highlight potential problems that a customer

might encounter with NFO. These are different manifestations of
the concern that outsourcing the network functions cedes control
to the NFO provider, and, consequently, the customer cannot rea-
son about the middlebox functions. We also highlight how the na-
ture of the middlebox workloads and functions make this problem
uniquely challenging for NFO customers.2

Cloud IDS

Figure 1: Packets can be modified by the cloud when they are not
expected. In this example, the NFO provider is modifying the packet
payloads while the requested function (i.e., IDS) should not alter
packet contents.

Processing semantics: Let us consider the simple example in Fig-
ure 1 with an enterprise using a cloud-based IDS/IPS service. The
trouble here is that the enterprise may only observe the processed
packets and does not have any visibility into the original packets.
For instance, a misconfigured NFO provider may rewrite or intro-
duce spurious advertisements (e.g., [23]) or incorrectly modify the
packet payloads. Similarly, the enterprise may not know if the IPS
incorrectly dropped some packets or if these drops were due to net-
work effects (e.g., full buffers).
Performance guarantees: The NFO customer needs to ensure
that her applications do not suffer due to performance overheads
introduced by outsourcing. This is especially challenging due to
the non-deterministic performance effects that middlebox process-
ing and network-level operations raise. For instance, in Figure 2
it is difficult to tease out the different delays caused by the NFO
provider vs. those induced by the network en-route. The propri-
etary and stateful nature of middlebox actions may further intro-
duce non-deterministic effects; e.g., batch processing packets [19]
or delaying them for more redundancy elimination [3].
Verifying the bill: A key driver for NFO is the promise of reduced
capital and operational costs and dynamically scaling the deploy-
ment. NFO customers would naturally like to be assured that the
bill they receive from the NFO provider is commensurate with the
2One might argue that this lack of control exists even with locally-
owned middleboxes. Our goal is to provide a conceptual equiva-
lence between running the (possibly black-box) middlebox func-
tion locally vs. remotely.

Cloud IPS

t1	 t2	 t3	

Figure 2: The NFO customer cannot infer the performance of the
service just by looking at the observed traffic. In this example, the
customer cannot determine what fraction of total delay is due to
round trip communication (i.e., t1 +t3) vs. actual cloud processing
(i.e., t2).

Cloud IPS

(a) The customer has requested an IPS function.

Cloud Packet Filter

(b) The cloud runs a different and perhaps cheaper/easier to run
function (e.g., a packet filter).

Figure 3: The NFO provider is not using the resource it is billing
the customer for. Note that the black-box functionality of the cloud
is correct on the shown sequence of packets.

actual work being done. This is, however, easier said than done
as the customer does not see the actual workload, middlebox func-
tions, and the resources consumed. For instance, in Figure 3, even
though the output seen by the customer is equivalent, the cloud
provider is running a different middlebox from what was intended
and thus charging for resources that were never actually consumed.
Network-level effects and traffic dependence further exacerbate this
problem; for instance, a provider may charge for processing cycles
that eventually dropped a set of packets, but the customer cannot
check if these packets are real or spurious. Finally, due to complex
processing involved, it is not easy to determine in advance the ex-
act resource consumption, and thus customers may not be able to
estimate their expenses a priori [16].

In summary, we see that three factors make it difficult for the cus-
tomer to reason that NFO service is running as intended: (1) lack
of visibility into the workload, (2) dynamic, traffic-dependent, and
potentially proprietary actions of the middleboxes, and (3) stochas-
tic effects introduced by the intermediate network. In the rest of the
paper, we begin by formalizing the correctness requirements before
outlining a promising candidate solution.

3. NFO CORRECTNESS PROPERTIES
In this section, we attempt to formally specify the correctness

properties for an abstract NFO service. This formalism is useful on
two fronts. First, it helps us to systematically model the motivating
scenarios from the previous section. Second, it also serves to in-

π1
in, π2

in,… π1
out, π2

out,...

Management	
Interface	

f1 fn …. σ1
σn

BCPU, BMem, BNet

Customer	

CPU,
Mem

Net CPU,
Mem

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., πin

1 , π
in
2 , . . .) is processed by a sequence of functions (i.e.,

fpkt
1 , fpkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., πout

1 , πout
2 , . . .) is then sent to the customer along with

a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.

Preliminaries: Let f : (Π × Σ) → (Π × Σ) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
Π denotes the set of all packets, and Σ is the set of reachable states
for f. For convenience, we specify that Π includes a special symbol
“⊥” and that each primitive function f satisfies (⊥, σ)← f(⊥, σ)
for all σ ∈ Σ. The symbol “⊥” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(π, σ) and f st(π, σ) denote the packet and state outputs of
f(π, σ), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~πin ∈ Π∗ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~πout ∈ Π∗ of the same length. (Some elements
of ~πout might be ⊥, indicating that the corresponding packet in ~πin

was dropped.) Let πji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~πin as its input. Also, let Σi denote the state space of fi.
Informally, the j-th element of ~πout, denoted by πout

j , should be
produced by setting πj0 ← πin

j and then applying

πj1 ← fpkt
1 (πj0, σ

in
1);σout

1 ← f st
1 (πj0, σ

in
1)

πj2 ← fpkt
2 (πj1, σ

in
2);σout

2 ← f st
2 (πj1, σ

in
2)

...

πjn ← fpkt
n (πj(n−1)σ

in
n);σout

n ← f st
n (πj(n−1), σ

in
n)

and then setting πout
j ← πjn. Note that in the above formulation

the output state of fi (i.e., σout
i) will be used as its input state (i.e.,

σin
i) in the next invocation of fi.
Suppose each invocation fi(πj(i−1), σ

in
i) consumes a set

of measurable computational resources R[fi(πj(i−1), σ
in
i)] =

〈Res1, . . . ,ResR〉 in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(πj(i−1), fi) and T out(πji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by f̂i,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, f̂i may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given πj(i−1), πji ∈ Π:
∃σin

i ∈ Σi : πji = f̂pkt
i (πj(i−1), σ

in
i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function f̂i that could
have output the observed packet.

• Snapshot primitive equivalence:
Given πj(i−1), πji ∈ Π, and σin

i ∈ Σi:
πji = f̂pkt

i (πj(i−1), σ
in
i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state σin

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given πin

j , π
out
j ∈ Π:

∃σin
1 ∈ Σ1, . . . , σ

in
n ∈ Σn :

πout
j = f̂pkt

n (. . . f̂pkt
2 (f̂pkt

1 (πin
j , σ

in
1), σin

2), . . . , σin
n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given πin

j , π
out
j ∈ Π, σin

1 ∈ Σ1, . . ., σin
n ∈ Σn:

πout
j = f̂pkt

n (. . . f̂pkt
2 (f̂pkt

1 (πin
j , σ

in
1), σin

2), . . . , σin
n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
〈Metric1, . . . ,MetricM 〉 as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

PerfSumm({πji,T
in(πj(i−1), fi),T

out(πji, fi)}j,i). To sim-
plify the presentation, we use a generalized form of the perfor-
mance computation that includes all time stamps and packet sam-
ples. In practice, some performance summary metrics may not need
all the inputs. For instance, end-to-end delay metrics may not need
the intermediate πji values.

In order to decouple wide-area network effects from the in-cloud
processing effects (see Figure 2), we want to compare the perfor-
mance w.r.t. the reference implementation f̂i for each of the func-
tions. If M̂etricm represents the corresponding performance with
the reference implementation, then we want the following property:

∀m : Metricm ∈ ∆Metric
m (M̂etricm)

Here, ∆Metric
m represents the space of acceptable values (along

with some additional slack) depending on the specific performance
metric m and the SLA. For instance, the agreement might be that
the 95%ile of the end-to-end processing delay is at most 10 ms
higher than the reference implementation.

3.3 Accounting Correctness
Similar to performance correctness, accounting correctness

needs a contractually agreed billing specification. Let B =
〈B1 . . .BR〉 be the measured values of the billed resources such as
CPU or memory consumption. Each billed resource r is measured
as Br = ResSumr({R[fi(πj(i−1), σ

in
i)]}j,i), where the value of

eachR[.] is the instantaneous resource consumption, and the sum-
mary function ResSumr is customized for different types of re-
sources. For instance, the provider may charge for every CPU cycle
but for memory it may use the 95%ile of memory consumption.

Given this, we consider two natural notions of accounting cor-
rectness:

• Consistency: Given a trusted log of the
{R[fi(πj(i−1), σ

in
i)]}j,i values and the specification of

the ResSumr functions, the customer can determine
whether the charged value Br is consistent with the actual
physical consumption.

• Minimality: The above notion of consistency, while useful,
does not tell us if the customer should have incurred the con-
sumption vector {R[fi(πj(i−1), σ

in
i)]}j,i. Specifically, there

may be a larger footprint due to provider oversight or mis-
configurations; e.g., due to poor VM scheduling or network
retransmissions. Thus, we also define a stronger check w.r.t.
the reference implementation:

∀i, j, r : R[fi(πj(i−1), σ
in
i)] ∈ ∆Res

r (R[f̂i(πj(i−1), σ
in
i)])

As in the performance case, ∆Res
r captures the space of al-

lowable values denoting the acceptable slack due to stochas-
tic effects.

4. ROADMAP FOR vNFO
In this section, we outline a high-level Verifiable NFO or vNFO

architecture that can address the requirements from the previous
sections.
Assumptions: To make our discussion concrete, we scope the
problem along two dimensions. First, we assume that each middle-
box function is implemented as a virtual appliance3 and that each
NFO customer is assigned a dedicated set of VMs that are used ex-
clusively to process its traffic. Thus, we do not focus on isolation
3We are agnostic to whether these are customer specified, NFO
provider owned, or if they are third-party offerings.

1. Verification Manifest 4. Verification Report

2. Logging
Scheme A

2. Logging
Scheme B

3. Local Log A 3. Local Log B

Machine A Machine B

Figure 5: Overview of vNFO: The customer specifies the logging
requirements (e.g., sampling rate). The CLE configures the shims
and the VMs with the FlowTags [14] and trajectory sampling [13]
parameters. The CLE integrates the local logs and sends the veri-
fication report to the customer.

and security issues due to multiplexing across customers. Second,
we consider an operational model where the NFO provider is incen-
tivized to provide customers with attested logs via trusted modules
(e.g., TPM). We believe that this is aligned with provider interests,
as they can incentivize adoption by providing additional assurances
to otherwise wary customers, or use vNFO to differentiate their of-
fering in a commoditized market, or offer a premium vNFO service
to offset overheads [7, 25].

4.1 High-level Approach
We begin by considering an extreme design point, where the

NFO customer receives an attested log of every packet processing
event, snapshots of each middlebox VM image at packet processing
time, and associated metadata (e.g., resource footprints and times-
tamps). Given these logs and the reference implementation f̂i, the
customer can simply replay the trace with local instances to verify
the correctness properties (e.g., [18]).

While this idealized view helps us identify an intuitive solution,
there are two obvious practical challenges:
1. Visibility: Middleboxes may dynamically modify packet head-

ers and contents. Consequently, even with elaborate logging,
we may not be able to collate system-wide logs, as the same
packet may have different incarnations [14].

2. Scalability: Pervasive logging may impose significant overhead
for the provider (e.g., instrumenting and collecting logs) and the
customer (e.g., receiving and replaying logs).

Next, we discuss potential solutions to each challenge.

4.2 vNFO Overview
We envision a lightweight trusted shim that sits between the

physical platform and the middlebox VMs as shown in Figure 5.4

The shim is responsible for logging the relevant packet arrival
and departure events and other system-level measurements (e.g.,
RDTSC for CPU cycles). This offers a trusted vantage point to ob-
tain relevant events rather than having to modify every single mid-
dlebox VM. A trusted Central Logging Entity (CLE) generates the
system-wide view by correlating logs from different shim instances
and also records other relevant external events (e.g., network con-
gestion).

As discussed above, there are two key concerns w.r.t. visibil-
ity and scalability. First, to tackle the visibility challenge, we
leverage recent work on enhancing middleboxes with the Flow-
Tags API [14]. The intuition is that middleboxes export the relevant

4As the shim is functionally minimal, unlike a full-fledged hyper-
visor, it may be amenable to static checking.

packet in-out mappings using tags in the packet header to the CLE.
For example, a NAT or a proxy tells the CLE how it mapped the
packet headers. These tags enable the CLE to track the trajectory
of (modified) packets throughout the network.

Second, we rely on sampling to reduce the logging overhead.
If we verify the correctness properties for a subset of (pseudo-
randomly) chosen packets, then we can provide a tunable de-
gree of assurance. Note, however, a naive uniform sampling ap-
proach may not work. For instance, if we use uniform random
sampling at different middleboxes, we cannot reason about the
pipeline/compositional properties in terms of functionality, perfor-
mance, or accounting. What we need is a consistent trajectory sam-
pling scheme, where a given packet (and its attendant metadata) is
logged at every element on its logical path [13]. At a high level,
trajectory sampling works as follows. Each node in the network
computes a hash of the invariant fields of the packet header and
logs packets if the hash falls within the assigned and globally com-
mon hash range. (Invariant fields are the ones that do not change as
the packet traverses the network; e.g., TTL is not invariant.) Since
every element is logging the same subset of packets, we can recon-
struct the packet trajectory. In the context of middleboxes that may
modify headers, this necessitates the use of FlowTags rather than
the actual IP 5-tuple/payload to provide these invariants.

4.3 End-to-end View
The customer and provider agree on a verification manifest,

which indicates a logging specification (e.g., keys to the sampling
hash function and the desired sampling frequency) along with the
required logging granularity (e.g., packets and/or middlebox VM
state). The provider generates an attestation that the intended shim
and the middlebox VMs are running using traditional TPM-based
mechanisms [1].

The CLE instruments shim instances with the relevant sampling
parameters. Each shim reports the set of logged packets, associ-
ated VM memory context, and metadata regarding packet in/out
timestamps, FlowTags labels, and resource consumptions for the
subset of packets (e.g., CPU cycles, memory usage). The CLE
periodically sends this report to the customer. To reduce the band-
width costs of communicating the reports, they can be compressed
as needed, for example, using diffs between memory snapshots.

Next, we discuss how the customer can verify the correctness
properties within the vNFO framework:
• Functional correctness: Given the packet logs and the detailed

VM snapshots, the customer uses a deterministic replay scheme
by running the VM from the reported memory snapshot and
checks if f̂ functionally behaves in the same way [18]. In case
the customer decides to only enable packet logging (e.g., to re-
duce bandwidth costs), she can revert to blackbox correctness
as follows. Using the reference VM image for each f̂ and the
logged packets, we use symbolic checking to ensure that there
is some valid input state that could have resulted in the output
packet (e.g., [11]). Because the customer has the entire packet
trajectory, we can speed up the checking for the pipeline equiv-
alence by pruning the search space w.r.t. intermediate outputs.

For the rest of this discussion, we assume that the customer
has the VM snapshots as well.
• Performance correctness: The above replay step provides a

baseline reference for M̂etricm for each metric m. Given
this reference value, the customer can check if the re-
ported value Metricm is within the distribution specified by
∆Metric

m (M̂etricm). As discussed earlier, ∆Metric
m provides

some slack to account for natural variability in performance.

Note that we are not verifying the wide-area network character-
istics [4, 22, 29]; we can only assure the customer that there are
no undesirable effects introduced by the NFO provider in order
to help the customer to disambiguate the different sources of
observed poor performance (Figure 2).
• Accounting correctness: We ensure the basic consistency

property using the sampled trace along with the (attested)
{R[fi(πj(i−1), σ

in
i]}j,i values. We need to renormalize the

ResSumr functions by the sampling rate and then check if the
billed value Br is within the sampling-induced error. To verify
the minimality property, the customer uses the execution replay
with the f̂s and then checks if the ideal resource consumption
vectors (for the sampled packets) are within the slack specified
by the ∆Res

r functions.

5. RELATED WORK
In addition to the specific related work highlighted inline, our vi-

sion is related to cloud computing, network monitoring, and trusted
computing. We briefly discuss some of these and highlight the new
challenges or opportunities that NFO entails.
Accountable networking: ICING ensures path compliance in an
adversarial environment via cryptographic techniques [22]. Keller
et al. suggest the use of trusted switch interface cards to provide
guarantees in virtual networks [20]. Zhang et al. [29] and Argyraki
et al. [4] provide mechanisms to pinpoint nodes that maliciously
drop packets. Many of these efforts focus on wide-area or federated
routing scenarios. In contrast, we want to ensure that the packets
within an NFO provider traverse the intended sequence of middle-
boxes. Given the virtualized environment, we use a trusted shim
layer instead of relying on heavyweight cryptographic techniques
or new trusted hardware.
Auditing cloud outsourcing: NFO inherits several natural con-
cerns associated with the lack of control with cloud outsourc-
ing [10]. Alibi focuses on providing accounting consistency for
traditional cloud applications [7]. vNFO considers a different use
case of outsourcing and additionally focuses on functional and per-
formance correctness. CloudCmp is a framework to compare per-
formance and cost of different cloud providers [21] and is comple-
mentary to vNFO.
Performance monitoring and debugging: The idea of using trac-
ing to debug and pinpoint performance problems is far from new
and has natural parallels in operating systems (e.g., [2,15]) and net-
working (e.g., [13]). Our contribution is in the synthesis of these
techniques to satisfy the new correctness requirements that NFO
raises.
Remote attestation and verification: vNFO builds on a rich lit-
erature in the areas of security and distributed systems on trusting
remote software agents (e.g., [6, 12, 24]). Recent research provides
more efficient methods for verifying specific types of computations
(e.g., [27]) and for efficient replay for virtual machines (e.g., [18]).
Middlebox NFO: NFO/NFV is an idea that has been around for a
while (e.g., [28]) and has recently seen renewed interest given the
success of cloud computing and virtualization [5, 8, 17, 26]. These
prior efforts focus on the viability of NFO and architectural support
for NFO, and do not discuss the correctness properties discussed
here.

6. CONCLUSIONS AND FUTURE WORK
The NFO space is still evolving — how middlebox modules are

realized (i.e., VMs vs. hardware), shared vs. dedicated VMs, single
vs. federated provision models and many other alternatives. Our

goal in this paper was to take a first step to articulate the correctness
requirements for NFO and present an initial sketch of a solution for
a specific point in this problem space. We do not claim that vNFO
is the only feasible solution or that it is optimal in any way.

Our immediate near-term goal is to make the vNFO vision prac-
tical and demonstrate that the performance overhead of doing so
is minimal. Our longer-term agenda is to extend our vision to
other points in the NFO problem space; e.g., environments where
middleboxes (or VMs) are multiplexed across customers; dealing
with security/privacy concerns such as potential information leak-
age, and considerations for federated NFO offerings (i.e., functions
distributed across providers).

ACKNOWLEDGMENTS
This work was supported in part by grant number N00014-13-1-
0048 from the Office of Naval Research and by Intel Labs’ Univer-
sity Research Office.

7. REFERENCES
[1] Trusted Computing Group.

http://www.trustedcomputinggroup.org/.
[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In Proc. SOSP, 2003.

[3] A. Anand, V. Sekar, and A. Akella. SmartRE: an architecture
for coordinated network-wide redundancy elimination. In
Proc. SIGCOMM, 2009.

[4] K. Argyraki, P. Maniatis, and A. Singla. Verifiable
network-performance measurements. In Proc. CoNEXT,
2010.

[5] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: a
cloud networking platform for enterprise applications. In
Proc. SOCC, 2011.

[6] S. Berger, R. Cáceres, D. Pendarakis, R. Sailer, E. Valdez,
R. Perez, W. Schildhauer, and D. Srinivasan. TVDc:
managing security in the trusted virtual datacenter. SIGOPS
Oper. Syst. Rev., 42(1):40–47, Jan. 2008.

[7] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar.
Towards verifiable resource accounting for outsourced
computation. In Proc. VEE, 2013.

[8] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi.
PacketCloud: an open platform for elastic in-network
services. In Proc. MobiArch, 2013.

[9] M. Chiosi et al. Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for
action. Technical report, ETSI, 2012.

[10] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina. Controlling data in the cloud:
outsourcing computation without outsourcing control. In
Proc. CCSW, 2009.

[11] R. A. Cochran and M. K. Reiter. Toward online verification
of client behavior in distributed applications . In Proc. NDSS,
2013.

[12] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. OHanlon, J. Ramsdell, A. Segall, J. Sheehy, and
B. Sniffen. Principles of remote attestation. International
Journal of Information Security, 10(2):63–81, 2011.

[13] N. G. Duffield and M. Grossglauser. Trajectory sampling for
direct traffic observation. IEEE/ACM Trans. Netw.,
9(3):280–292, June 2001.

[14] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.
FlowTags: enforcing network-wide policies in the presence
of dynamic middlebox actions. In Proc. HotSDN, 2013.

[15] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica.
X-Trace: a pervasive network tracing framework. In Proc.
NSDI, 2007.

[16] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet processing. In Proc.
SIGCOMM, 2012.

[17] G. Gibb, H. Zeng, and N. McKeown. Outsourcing network
functionality. In Proc. HotSDN, 2012.

[18] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel.
Accountable virtual machines. In Proc. OSDI, 2010.

[19] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
gpu-accelerated software router. In Proc. SIGCOMM, 2010.

[20] E. Keller, R. B. Lee, and J. Rexford. Accountability in hosted
virtual networks. In Proc. VISA, 2009.

[21] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
comparing public cloud providers. In Proc. IMC, 2010.

[22] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller,
and A. Seehra. Verifying and enforcing network paths with
ICING. In Proc. CoNext, 2011.

[23] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting in-flight page changes with web tripwires. In Proc.
NSDI, 2008.

[24] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards
trusted cloud computing. In Proc. HotCloud, 2009.

[25] V. Sekar and P. Maniatis. Verifiable resource accounting for
cloud computing services. In Proc. CCSW, 2011.

[26] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: network processing as a cloud service. In
Proc. SIGCOMM, 2012.

[27] V. Vu, S. Setty, A. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE
Symposium on Security and Privacy, 2013.

[28] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes no longer
considered harmful. In Proc. OSDI, 2004.

[29] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary
identification for data plane security. In Proc. CoNext, 2008.

